Hierarchical Data Format query language (HDFql)

Reference Manual

Version 1.2.0

June 2016

Copyright (C) 2016

This document is part of the Hierarchical Data Format query language (HDFgl). For more information about

HDFql, please visit the website http://www.hdfgl.com.

Disclaimer

Every effort has been made to ensure that this document is as accurate as possible. The information
contained in this document is provided without any express, statutory or implied warranties. The founders
of HDFqgl shall have neither liability nor responsibility to any person or entity with respect to any loss or

damage arising from the information in this document or the usage of HDFql.

Hierarchical Data Format query language (HDFql) Reference Manual

TABLE OF CONTENTS

1. INTRODUCTIONceeuirieiencriresisessessesessesessessesessesssessessssssssessessssesssessesessesessessesessesssensasensenes 1
2. INSTALLATION ...oceveiireereeerenesessessesessesesessesessesessssssessesessesssessesessesessessesessessssesssessesensessasensans 3
2.1 WINDOWS....eooeeeeeeeee e e e eee e se s s e e e s es e ee s eeseee s ee s es e seeeees e seseeeseesseeseseees e seseseees 4

2.2 LINUX oo eeee e e e s s s s s e s e ee s seees e ee s es e ees et eeseeeseeee e seseees e seneeeees 4

2.3 IMIAC OS X oo e s e e et e et s s ee e 5

3. USAGE ...cucueiuirieiitetiseesesesessesese s sse s sse s e s se st esa st ssessassese st ese b ese b assebe b e s e b e st b e s eRe b e R s beaseneabaneene 6
E T R o o OO 6

3.2 JAVA ettt r e eere s 8

3.3 PYTHON oot e e s et es e seseees s es e s eesesseeeeseeeseeseseeeseseseeeees 9

B CH oottt ettt e et e et ee et ee e eene 11

3.5 COMMAND-LINE INTERFACEoooieeeeeeeeeeeeeeeseeseeeeeeesseesseeeesesseeseseess e seeeses s esses s seseess e sseessseen 12

B. CURSORccuieviurereiitisiseesestesesessesessesessesssessesesssssssesssessessssesssessesessessesessesensesessessessssesessnnans 15
8.1 DESCRIPTIONcoveereeeeeeseeeseesesessee s eesessesssessssesssssseses e ssssseesssssssesssesss s es s s sesessesssesessnssesnsenns 15

B2 SUBCURSORooveeeeeeeeeseeeeeeeeeeese e eee s sesee s eeseses e se e eeeees e seseeee e es s ees e ss e s ees e seseseseess e seseees 18

B3 EXAMPLES ..o e e e e es e s e s ee e e e s ee e eee e 20

5. APPLICATION PROGRAMMING INTERFACEcccveeruereerereesessssessessesessesessessssessesensesssessesenseses 26
5.1 CONSTANTS oo eeeeee e eee s eeee s se e eee e eeeee e esees e se e ee s es e eeseees e eeeeeee e seseseseeeseeseseeesean 26

5.2 FUNCTIONS «.oooeeoeeeeeeeeeeeeeee e e e eeeeee e se e eee e seeeeee s esees e es e ee s es e eeseees e seseees e seseeeeeeeseesesesene 29
5.2.1 HDFQL_EXECUTEoooeeeieeeeesseesseeeseeessesesee s sessessssssses s essssssssssessssssssesssssssssssssssessossseans 32

5.2.2 HDFQL_EXECUTE_STATUS w.ooooveoeeeeeeeeeeseesseesesesseesssees s essssesssssesas e sssessss s sssssneans 34

5.2.3 HDFQL_CURSOR_INITIALIZEcoveoeeeeeeeeee e seeeeeseeeeeees e seeeeee e sesee s seee e eeeeees e seeeeenee 35

5.2.4 HDFQL_CURSOR_USEcovoreeeeeeeeeeeeeeseseeseeeseseeeseeeeeeees e seeeess e seseseseess s seseess e seeeees e seeeeeen 36

5.2.5 HDFQL_CURSOR_USE_DEFAULTo.veoveeeeeeeeeseeseeeeeeseesseessse s sses s sssssnnens 37

Version 1.2.0 i

Hierarchical Data Format query language (HDFql) Reference Manual

Version 1.2.0

5.2.6 HDFQL_CURSOR_CLEAR........oomeieeeeeeeeseesese s seseeeseeeeseees e seeeess e seeesese s sesesssessee s seesessens 38
5.2.7 HDFQL_CURSOR_CLONE ... eeeeeeeeeeeeeeseeseeeseseeeseeseseses e seeeess e seeeeeseess e seseeseeeseseees e seeeeseee 39
5.2.8 HDFQL_CURSOR_GET DATATYPE.......eeieeeeeeeeeeeeeeeeeeeeeeseeseeeesseesseeseseesseeseseesseeseseeeseseeeesse 40
5.2.9 HDFQL_CURSOR_GET_COUNT.....ocuiveieeeeeeseeeseseeseeseeeseseseeeess e sseesese s sesesseessses s seeeesneans 42
5.2.10 HDFQL_SUBCURSOR_GET_COUNTvuuvveeeeeeeeeeeeeeseesseeeseeesseesese s seeesseesseeses s snesenneas 43
5.2.11 HDFQL_CURSOR_GET_POSITIONeeoveeeeeereeeeeeeeereseeseeeesseeseeeseseesseeseseesseeseseeeseeseeeessee 44
5.2.12 HDFQL_SUBCURSOR_GET_POSITION w...ccvumeeriveeeeeeeeeeeeseeeeeseseeeseseesseeseseesseeseseseseseeeeeeee 45
5.2.13 HDFQL_CURSOR_FIRST ..coveriveeeeeeeeeeeesesesseeseseesseeseseees e seesess e ssessesessseseseesssessseess s seeeenses 46
5.2.14 HDFQL_SUBCURSOR_FIRSTcoveueeeeieeeeeeseeeseseeeseeseseseseeseeeess e seeesesessseseseesssesseeess e seeeseseoe 47
5.2.15 HDFQL_CURSOR_LAST ...coooreeeeeeeeeeeeeeeseseeseeeseseeeseeseseses e seesesseseseseseessseseseessseseseessseseseeesee 49
5.2.16 HDFQL_SUBCURSOR_LAST......coveeeeeeeeeeeseeeseseeeseeseseseseeseeeesseseseseseess s seseessseseseess e seeeessee 50
5.2.17 HDFQL_CURSOR_NEXT ..cooootoeeeeeeeeeeeeeese s seseees e eeseses e seeeess e seeesese s sese s seseess e seeeessee 51
5.2.18 HDFQL_SUBCURSOR_INEXT.....coveeeeeeeeeeeeseeeseseeeseeseeeseseeseeeessesseesesesseesesesseeseseess e sseeesseans 52
5.2.19 HDFQL_CURSOR_PREVIOUSooveeeeeeeseeeseseeeseeeeeees e seeeesseesseesese s seseesseesseeess e seeeeenee 53
5.2.20 HDFQL_SUBCURSOR_PREVIOUS........oovvuereeiseeeseeseeeseessesesssesssssssssssesssssssesssssssessessnanns 54
5.2.21 HDFQL_CURSOR_ABSOLUTEoourveeiieeeeeseeeseeeseeseeessessessssessssssssasssesssssssssssssssssesssssseens 55
5.2.22 HDFQL_SUBCURSOR_ABSOLUTEoeueeeeeeereeseeeeeeseeeeseeeeeseesseeseseess e eeseesseeseseees e seeeeeses 57
5.2.23 HDFQL_CURSOR_RELATIVE.....c.eeeeeeeeeeeeeseeeseseeeseeeeeees e seeeese e seeesesee s seseessseseseses e seeeeesee 58
5.2.24 HDFQL_SUBCURSOR_RELATIVEcoveiveeieeiseeeseeseeessesseesssesssssessesssessssssssesssssssesssssnaons 59
5.2.25 HDFQL_CURSOR_GET SIZE......oveueveeieeereesseeesesssesssesssessessssessssssssssssessssssssessssssssesssssneons 61
5.2.26 HDFQL_SUBCURSOR_GET_SIZE w..ooeeoeeeeeeeeeeseeeeseeeeeeeeeeseeeeeseeseeeseseess e seseese e eeeeees e seeeeesee 62
5.2.27 HDFQL_CURSOR_GETcooereeeeeeeeeeeeeeeeseesseeseseees e eeseees e seeeees e seseseseess e seseess e seeeees e seeeeeen 63
5.2.28 HDFQL_SUBCURSOR_GETeuveereeeieeeseesseessseeseesssesessesseesssesssssesess e ssssssssesssssssesnsssneons 64
5.2.29 HDFQL_CURSOR_GET_TINYINT w.oooveoveeeeeeeeeseeeseeeeeeseessessssessssssssesssesessssssesssssssesnessneens 65
5.2.30 HDFQL_SUBCURSOR_GET_TINYINTcvummeeeeeeeeeeeeeeeeseeeeeeeseeeseseeeseeseseeseeeseeeses e seeeeeees 66
5.2.31 HDFQL_CURSOR_GET_UNSIGNED_TINYINT ...cooeereereeereeeeeeeseeeseseeeseeseeeeseeseeeees e seeeeeeee 68
i

Hierarchical Data Format query language (HDFql) Reference Manual

Version 1.2.0

5.2.32

5.2.33

5.2.34

5.2.35

5.2.36

5.2.37

5.2.38

5.2.39

5.2.40

5.2.41

5.2.42

5.243

5.2.44

5.2.45

5.2.46

5.2.47

5.2.48

5.2.49

5.2.50

5.2.51

5.2.52

5.2.53

5.2.54

5.2.55

5.2.56

5.2.57

HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINT w...ccovveeeeeeeeeeeseeeeeee s sese s 69
HDFQL_CURSOR_GET_SMALLINT w..ooeeoeeeeeeeeeeeeeeeee e ss e eeeeees s eeees s seseees s seeee e ss e 70
HDFQL_SUBCURSOR_GET_SMALLINTooeeeeeeeeeeeereeeseeeeeeeseseseeeeeseseeeseseesseeseseese e sseee 71
HDFQL_CURSOR_GET_UNSIGNED_SMALLINT......coeeveeeeeeeeeeeeseeeeese s sese s 73
HDFQL_SUBCURSOR_GET_UNSIGNED_SMALLINToorvevereeeseeeeeesseesese s s s 74
HDFQL_CURSOR_GET_INT . .eeeeeeeeeeeeeeseeeeseeeeeeeeseeseeeseseess e eeseees s eeesseeseeesesesseeseseesseeseeeee 75
HDFQL_SUBCURSOR_GET INT w.coveeeeeeeeeeeeeeeeeseeeeeseseess e eeseees s eeees s e seseeeseeseseeneeeseeee 76
HDFQL_CURSOR_GET_UNSIGNED _INT w.coovereeeeeeeeeeeeeseeeeeeeseseseeeeese s sese s seseesse e 78
HDFQL_SUBCURSOR_GET_UNSIGNED_INTvveeereeeeeeseeeeeeeseeeeeee s sese s seeeessee e 79
HDFQL_CURSOR_GET_BIGINT «..cuveeeeeeeeeeeeeeeeeeeeseeseseesseeseseses e seeeses s seseeeseeseseesseeseseee 80
HDFQL_SUBCURSOR_GET _BIGINTcuveeeeereeeeeeeeeeeseseesseseseseseseeeseseeseseseseeeseeseseesseseeeee 81
HDFQL_CURSOR_GET_UNSIGNED_BIGINTovvereereeeeeeeeeeseeseeeeeeee s seseeseeseeeesse s 82
HDFQL_SUBCURSOR_GET_UNSIGNED_BIGINTeoveoeeeeeeeeereeeeseeeeeeeesseesese e seeeesseeseeen 84
HDFQL_CURSOR_GET_FLOATcoveeeeeeeeeeeeeeeeeese s sesee s seees e seeeees s sese s seseese e seee 85
HDFQL_SUBCURSOR_GET_FLOAT w....veoeeereerseeeseeeseseeeeseessssesesee s esessss s seseeseseesenseaees 86
HDFQL_CURSOR_GET_DOUBLEc..vveeeeereerseeeseeeseseeeseessseesssse s eessssssssesesee s 88
HDFQL_SUBCURSOR_GET DOUBLEcovveeeeeeeeeeeeeesseeseeeseseseeeeeseesseeseseess e seeeessesseeee 89
HDFQL_CURSOR_GET_CHAR ...ccooeeeeeeeeeeeeeeeeeeee e eesee s seees s eeeese e sese s seens e sene 90
HDFQL_SUBCURSOR_GET_CHARcveurveereeeeeeesseeseseeessessss s sssesssssssssesessessssesssssaee 91
HDFQL_VARIABLE_REGISTERvveovveoeeeoseeseseeeseeesessees e sssss s sssesssssssssseseseeseseesesssaees 92
HDFQL_VARIABLE_UNREGISTERoveoveeeeeeeeeeeeeeeeeseeeees e seeeees e seeeeeseeseseseseeeseeseseeseeseeee 94
HDFQL_VARIABLE_GET_NUMBERc.veeeeeeeeeeeeeeeeeseeeeseeeeeeses e seeeeeseeseseseseesseseeeeseeesseeee 96
HDFQL_VARIABLE_GET_DATATYPEoooveeeeeeeeeeeeeee s sesess s sesssss e 97
HDFQL_VARIABLE_GET_COUNT ...oooveeeereeeeeeeees e sesssse e essa e sesss s s sssen 99
HDFQL_VARIABLE_GET_SIZE w..eeoeeeeeeeeeeeee e eeeeeeeee e seeeeseeseseees s ees s seseeeess e seeeesneen 100
HDFQL_VARIABLE_GET_DIMENSION_COUNTovvveeereeeeeeeeeeeeeeeseeeseseesseeseseess e seeeeseeene 101
iii

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.58 HDFQL_VARIABLE_GET_DIMENSION......c.ccociiiiiiiiiiiiiiiiiic i 102

5.3 EXAMPLES ..ot 104
5.3 G/ Gttt bbbttt h bt bbbt n e 104

5.3.2 JAVA L s 106

5.3.3 PYTHON . ..ooiiic e s 109

5314 Gl s 111

ST Y U L N 114
6.1 DATATYPES ... e 117
6.2 POST-PROCESSINGcoiiiiiiiiiiiitiitientc e sb e s aa e sbe e sna s 119
6.2.1 ORDER ...ttt e 119

B.2.2 TOP ..t 121

L T = T I 1 123

B.2.4 STEP...eeiiiiiii e e s 125

6.2.5 INTO i e 127

6.3 DATA DEFINITION LANGUAGE (DDL) ...eeitiiiieiiriineenienieeee sttt 129
6.3.1 CREATE DIRECTORYcitiiiiiiiiiiiiciic et 129

6.3.2 CREATE FILE.....iiiiiiiiiiiiiiiiiic i 130

6.3.3 CREATE GROUPotiiiiiiiiiiiiiiiii e 131

6.3.4 CREATE DATASET ...ttt e 133

6.3.5 CREATE ATTRIBUTE ...ttt 136

6.3.6 CREATE [SOFT | HARD] LINKoouiiiiiiiitiniiiiicie it 138

6.3.7 CREATE EXTERNAL LINK ...ciiiiiiiiiiiiiiiiiiciniintc e 139

6.3.8 ALTER DIMENSIONcoiiiiiiiiiiiii i 141

6.3.9 RENAME FILE......coiiiiiiiiiiiii s s 142
6.3.10 RENAME [GROUP | DATASET | ATTRIBUTE]....cceeitrierierieienieeteniesieenee et sree e s 143
6.3.11 COPY FILE et s 144

Version 1.2.0 iv

Hierarchical Data Format query language (HDFql) Reference Manual

6.4

6.5

6.6

Version 1.2.0

6.3.12 COPY [GROUP | DATASET | ATTRIBUTE] ...cooomeeeeeeeeeeereeeeseseeseseeseseeeseeeseseeseseeseseeseseesee 145
6.3.13 DROP DIRECTORYoomeeeeeeeeeeseeeeseseeeeseeeeseeseseeseseeeesseeeeseses e ses e sesseeseseeseseseseeseseeses e 146
B.3.14 DROP FILE....eooeeereeeeeeeeeee e seseeeeseeeeseeeseseeses e eeseeees e s ees e ses e sesseeeeseeseseseseeseesesesseees 147
6.3.15 DROP [GROUP | DATASET | ATTRIBUTE....ceeueeeereereeereeeeeeeeseseeseseeeseeeseseseseeses s 148
DATA MANIPULATION LANGUAGE (DIVIL) «...cuoveeeeeeeeee e seseeses e seeeseseeseseeees e ses s 148
8.1 INSERT oveeeeeeeee e eeee e ee s ee e ees e e s s e s s e s et seeseeee s se s ses e seeseeee s 149
B.8.2 UPDATE ..o eeeeeeeeees e e e ee e s s s e s ees e s e s et sesseese s se s ses e seeseeeeseeen 153
B.4.3 DELETE cooooveeeeeeeeeeee e eeeeees e eeeeeee e ees e sesee s s e es s ees e ees e s s s ses e ses e 154
DATA QUERY LANGUAGE (DOL) veeeveeeeeeeeeeeeeeseseeeeeeeeseeeseseesessesesseesesseseseeseseesesseses e ssseses e seseen 154
B.5.1 SELECT eerreeeeeeeeeeee oo eeeeee e s e s ee e s s se s seseeees e s s ee s s et sesseeee s se s ses e seeseses s 154
DATA INTROSPECTION LANGUAGE (DIL) w.rvvereveeeeeeeeeseeeeseeeeseseeseseeeseeeeseseseseesesseseseaeseseeses e sesee 156
6.6.1 SHOW FILE VALIDITY ...ooveoeeeeeeeeeeeeseeeeseeeeeee s eeseeses s s ees e ses e sesseese e sesee s seseeses e 156
6.6.2 SHOW USE DIRECTORY ...cooveereeereeereeeeeseeeeeeeseseeseseeseseeeesseesesseses e eesseesesesesseseseesesseses e 157
B.6.3 SHOW USE FILEoooeeeeeeeeeeeeeeeeeeeeseeseseeeeeeee s eeseeees e ees s ses e ses e e sesee s sesseses e 158
6.6.4 SHOW ALL USE FILEo.veooceeoeeeeeeeeseeeseeeseee s eeseeess s ses s sssss s sesse s es e 159
6.6.5 SHOW USE GROUP..........ooooeeeeeeeeeeseeeseessseeseseeesseesss s sssse s sssse s sesse s es s 160
6.6.6 SHOW [GROUP | DATASET | ATTRIBUTE]....eeeeeeereereeeseeeeseseeseseeseseeesseeseseseseesesseseseeeee 161
B.6.7 SHOW TYPE ... eee e eee e esee s ees s ees s ee e seseses e see s e 164
6.6.8 SHOW STORAGE TYPE........ovvomeeeeeeeeseeeseesssee s ssseeses s sesseses s sesse s s s 165
6.6.9 SHOW [DATASET | ATTRIBUTE] DATATYPE ...ooovvermeeeeeeeeeeseeeeeseeseseeeeseseeeses e sssseesssseeen 166
6.6.10 SHOW [DATASET | ATTRIBUTE] ENDIANNESS «....cveueeereeeeeeeereseeseseeeeeeeeseeeeseseeseseeseseeeee 167
6.6.11 SHOW [DATASET | ATTRIBUTE] CHARSET ...eorveerreereeeeeeeeeeeeeseseeseseeesseeeseseeseseeses s 168
6.6.12 SHOW STORAGE DIMENSIONcooveomveeieeeseseeeseeeeseeeseeeseseeseseesesseessses s sesse s sneeeees 169
6.6.13 SHOW [DATASET | ATTRIBUTE] DIMENSIONcoveuieermeeeeeeeeseeses s ess e 170
6.6.14 SHOW [DATASET | ATTRIBUTE] MAX DIMENSIONcomveereeeeeeereseeeeeeeseeesesee s 172
B.6.15 SHOW FILE SIZE oeeroeeeeeeeeeeeeeeeeeeeseseeeeseeeseseeseseeeeseeses e e s ses e ses e sesseeeeeeseseeses e ses e ses e 173
v

Hierarchical Data Format query language (HDFql) Reference Manual

6.7

Version 1.2.0

6.6.16 SHOW [DATASET | ATTRIBUTE] SIZE.....coioiiiiieiiiiiererteeeeeeeeeee e 174
6.6.17 SHOW RELEASE DATE. ..ottt s 175
6.6.18 SHOW HDFQL VERSION......coiiiiiiiiiiiiiiiiiiii it s 176
6.6.19 SHOW HDF VERSION ..ottt s 177
6.6.20 SHOW PCRE VERSION ..ottt s 178
6.6.21 SHOW ZLIB VERSIONooiiiiiiiiiiiiiiiiiic e 179
6.6.22 SHOW DIRECTORY ..ottt 180
6.6.23 SHOW FILE.....coiiiiiiiiiii i 181
6.6.24 SHOW MAC ADDRESS ..ottt s 182
6.6.25 SHOW EXECUTE STATUS ..ottt s 183
6.6.26 SHOW [[USE] FILE | DATASET] CACHEccutrieiiiniirienienieeie sttt 183
6.6.27 SHOW FLUSH......oiiiiiiiiiii s 184
6.6.28 SHOW DEBUGcutiiiiiiiiiictiin s e s 185
MISCELLANEQUS ... 186
6.7.1 USE DIRECTORY ...uutiiiiiiiiiiiiiiiciiiiii i 187
6.7.2 USE FILE....iiiiiiiiiiiii i 187
6.7.3 USE GROUP ...ttt 189
6.7.4 FLUSH [GLOBAL | LOCAL]...coittitertiiteeienit ettt sttt sttt sr e s s 190
6.7.5 CLOSE FILE.....oiiiiiiiiiiiiiiiiiiiiic it 191
6.7.6 CLOSE ALL FILE .oeiviiiiiiiiiiiiiiiiciii it 192
6.7.7 CLOSE GROUP ..ottt e 193
6.7.8 SET [FILE | DATASET] CACHE......ciiiteierreeeeesteete ettt 193
6.7.9 ENABLE FLUSH [GLOBAL | LOCAL] ...eiutiitieitetinitetenteete sttt sttt sttt s 197
6.7.10 ENABLE DEBUGcciiiiiiiiiiiiiiiiiiicitiinc et 198
6.7.11 DISABLE FLUSH..... .ottt 198
6.7.12 DISABLE DEBUGcoociiiiiiiiiiiiiiie it 199
vi

Hierarchical Data Format query language (HDFql) Reference Manual

B.7.13 RUN ottt ettt et e bt s bt et e e e bt e s b e e sh e e sat e s bt e b e e b e e beeebeeeaeeenreen 200
L0 Y LY 1 201
Application programming iNtErface (AP1)coccueeii ittt e e e e rere e e e b e e e et aeeeeenaaeeaan 201
ATEITDUTE bbbttt ettt e bt e s bt s ae e e et e et e e bt e bt e she e saee s b e b e e b e e reenaees 201
LU =] PP PPPPPPPTTO: 201
D =] =] O OPPPTPTN 201
(D1 - 1 0V o 1= PP PPPPPPPPPPRRPPRE 202
LT 40 11 o 202
(o el o] fo Tol=L 1] 1 V=TSP PP PRSPPI 202
RESUIE SBE ...ttt sttt e st e e bt e e s a b e e s bt e e st e e sbae e sbeesabeeesabeesabeesanbeesbeeenareeas 202
RESUIT SUDSEE ..ttt e b e bt st et et e b e e bt e sbe e saeesae e et e e beenbeesaeesanesane 202
SUDICUISOT .ttt ettt sttt et e s bt e s bt e sa et sab e e bt e bt e beeabe e saeeeateeabeenbeesaeesabeeabeebeenneenaees 203

Version 1.2.0 Vii

Hierarchical Data Format query language (HDFql) Reference Manual

LIST OF TABLES

Table 5.1 — HDFQl CONSTANTS IN C/CHF..uuiiiriiieieiierie et ctee et ettt etee et eteeeete e e eteeeeaeeeeateeenseeessseeenteeensseessesenseeas 28
Table 5.2 — HDFgl constants in C/C++ and their corresponding definitions in Java, Python and C# 29
Table 5.3 — HDFQI fUNCEIONS 1N C/CH+ c.uiiiiiiiieeie ettt ettt eee et e ettt e e et e e enteeeeteeeeateeeseeessseeensesensseesnsesenseeas 32
Table 5.4 — HDFqgl functions in C/C++ and their corresponding definitions in Java, Python and C#..................... 32
Table 6.1 — HDFql operations text formatting CONVENTIONSccoccuiiiiiiciiec et e e e e aree e 114
Table 6.2 — HDFQI OPEIatioNSuciiiiiiiie ittt ettt ettt e e etre e e e sbte e e e sbtaeeesbteeeesbteeeesnseaeessseneessnseneessnns 117
Table 6.3 — HDFql datatypes and their corresponding definitions in HDF5 and C (ISO C99)cccecevveeeciieeeenns 119

Version 1.2.0 viii

Hierarchical Data Format query language (HDFql) Reference Manual

LIST OF FIGURES

Figure 3.1 — Illustration of the command-line interface “HDFQICLI”ccveeiiiiiiiiiiiee e 14
Figure 4.1 — Linearization of a two dimensional dataset into a (one dimensional) cursor.........cccccceceeeeevveeeennee. 17
Figure 4.2 — Cursor populated with data from dataset “my_dataset0”........ccccoeviiviieieiriee e 20
Figure 4.3 — Cursor populated with data from dataset “my_datasetl”........cccooeiiiiiiii e e e 21
Figure 4.4 — Cursor populated with data from dataset “my_dataset2”.........cccoceiieciieecciiee e e 22
Figure 4.5 — Cursor and its subcursor populated with data from dataset “my_dataset3”ccccoevivviiicienennnen. 23
Figure 4.6 — Cursor and its subcursors populated with data from dataset “my_dataset4”cccoceeevecrieeennnen. 24
Figure 4.7 — Cursor and its subcursors populated with data from dataset “my_dataset5”ccccccevvicnveenneennn. 25

Version 1.2.0 ix

1. INTRODUCTION

HDFql stands for “Hierarchical Data Format query language” and is the first tool that enables users to manage
HDF files through a high-level language. This language was designed to be simple to use and similar to SQL
thus dramatically reducing the learning effort. HDFgl can be seen as an alternative to the C API (which contains
more than 400 low-level functions that are far from easy to use!) and to existing wrappers for Java, Python and
C# for manipulating HDF files. Whenever possible, it automatically uses parallelism to speed-up operations

hiding its inherent complexity from the user.

As an example, imagine that one needs to create an HDF file named “myFile.h5” and, inside it, a group named
“myGroup” containing an attribute named “myAttribute” of type float with a value of 12.4. Using the C API, it

could be implemented like this:

hid t file;

hid t group;
hid t dataspace;
hid t attribute;
hsize t dimension;

float value;

H5Fcreate (' , H5F ACC EXCL, H5P DEFAULT, H5P DEFAULT);

file = H5Fopen('n e.h5", H5F ACC _RDWR, H5P DEFAULT);

H5Gcreate (file, "/myGroup", H5P DEFAULT, H5P DEFAULT, H5P DEFAULT);
group = H5Gopen(file, "/myGroup", H5P DEFAULT);

dimension = 1;

dataspace = H5Screate simple(l, &dimension, NULL);

attribute = H5Acreate(group, '"m

e, H5T NATIVE FLOAT, dataspace, H5P DEFAULT,
H5P7DEFAULT) g
value = g

H5Awrite (attribute, H5T NATIVE FLOAT, &value);

! Hierarchical Data Format is the name of a set of file formats and libraries designed to store and organize large amounts of numerical data. It is currently
supported by the non-profit HDF Group, whose mission is to ensure continued development of HDF technologies and the continued accessibility of data
currently stored in HDF. Please refer to the website http://www.hdfgroup.org for additional information.

Version 1.2.0 Page 01 of 203

http://www.hdfgroup.org/

Hierarchical Data Format query language (HDFql) Reference Manual

In HDFql, the same example can easily be implemented just by doing this:

create file myFile.hb5
use file myFile.hb
create group /myGroup

create attribute /myGroup/myAttribute as float default 12.4

Version 1.2.0 Page 02 of 203

2. INSTALLATION

The official website of the Hierarchical Data Format query language (HDFql) is http://www.hdfgl.com. Here, the
most recent documentation and examples that illustrate how to solve disparate use-cases using HDFql can be
found. In addition, in the download area (http://www.hdfgl.com/download) all versions of HDFql ever publicly
released are available. These versions are packaged as ZIP files, each one of them meant for a particular
platform (i.e. Windows, Linux or Mac OS X), architecture (i.e. 32 bit or 64 bit), and C/C++ compiler’. When
decompressed, such ZIP files typically have the following organization in terms of directories and files
contained within:

HDFQl-x.y.z

|
+ example (directory that contains HDFql examples in C/C++, Java, Python and C#)

|

+ include (directory that contains HDFql header file and other relevant header files)
+ 1ib (directory that contains HDFgl C/C++ static and shared libraries)

+ bin (directory that contains HDFql command-line interface and a proper launcher)

+ wrapper (directory that contains HDFql wrappers for Java, Python and C#)

+ doc (directory that contains HDFql reference manual)

- LICENSE.txt (file that contains information about HDFgl license)

- RELEASE.txt (file that contains information about HDFql releases)

- README.txt (file that contains succinct information about HDFql)

! At the time of writing, HDFql only supports Microsoft Visual Studio and Gnu Compiler Collection (GCC) C/C++ compilers. Additional compilers will be
supported in the near future, namely MinGW (http://www.mingw.org) and Clang (http://clang.llvm.org).

Version 1.2.0 Page 03 of 203

http://www.hdfql.com/
http://www.hdfql.com/download
http://www.mingw.org/
http://clang.llvm.org/

Hierarchical Data Format query language (HDFql) Reference Manual

The following sections provide concise instructions on how to install HDFql in the different platforms that it

currently supports — namely Windows, Linux and Mac OS X.

2.1 WINDOWS

e Download the appropriate ZIP file according to the HDFql version, architecture and compiler of interest
from http://www.hdfgl.com/download. For instance, if the HDFql version of interest is 1.0.0 and it is to be
used in a machine running Windows 32 bit and, eventually, be linked against C/C++ code using the

Microsoft Visual Studio 2010 compiler then the file to download is “HDFql-1.0.0_Windows32_VS-2010.zip”.

e Unzip the downloaded file using Windows Explorer in-build capabilities or a free tool such as 7-Zip

(http://www.7-zip.org).

2.2 LINUX

e Download the appropriate ZIP file according to the HDFql version, architecture and compiler of interest
from http://www.hdfgl.com/download. For instance, if the HDFql version of interest is 1.1.0 and it is to be
used in a machine running Linux 64 bit and, eventually, be linked against C/C++ code using the GCC 4.8.x

compiler then the file to download is “HDFql-1.1.0_Linux64_GCC-4.8.zip".

e Unzip the downloaded file using the Archive Manager or the KArchive (if in GNOME or KDE respectively), or
by opening a terminal and executing “unzip <downloaded_zip_file>". If the unzip utility is not installed in

the machine, it can be done by executing from a terminal:
e In a Red Hat-based distribution, “sudo yum install unzip”.

e In a Debian-based distribution, “sudo apt-get install unzip”.

Version 1.2.0 Page 04 of 203

http://www.hdfql.com/download
http://www.7-zip.org/
http://www.hdfql.com/download

Hierarchical Data Format query language (HDFql) Reference Manual

2.3 MACOS X

e Download the appropriate ZIP file according to the HDFql version, architecture and compiler of interest
from http://www.hdfgl.com/download. For instance, if the HDFql version of interest is 1.2.1 and it is to be
used in a machine running Mac OS X 64 bit and, eventually, be linked against C/C++ code using the GCC
4.9.x compiler then the file to download is “HDFql-1.2.1_Darwin64_GCC-4.9.zip”.

e Unzip the downloaded file using the Archive Utility or by opening a terminal and executing “unzip
<downloaded_zip file>". If the unzip utility is not installed in the machine, it can be done by executing

“sudo port install unzip” from a terminal.

Version 1.2.0 Page 05 of 203

http://www.hdfql.com/download

3. USAGE

After following the instructions provided in chapter INSTALLATION, HDFql is ready for usage. It can be used in
C/C++ through static and shared libraries; in Java, Python and C# through wrappers; and finally, through a
command-line interface named “HDFqICLI”. The subsequent sections provide guidance on usage and basic

troubleshooting information to solve issues that may arise.

3.1 C/C++

HDFql can be used in the C/C++ programming languages through static and shared libraries. These libraries are

stored in the directory “lib”. The following short program illustrates how HDFql can be used in such languages.

// include HDFql header file (make sure it can be found by the C/C++ compiler)
#include "HDFgl.h"

int main(int argc, char *argv[])

{
// display HDFql version in use
printf ("HDFgl version: %s\n", HDFQL VERSION);
// create an HDF file named "my file.h5"
hdfgl execute ("CREATE FILE my file.hb");
// use (i.e. open) HDF file "my file.h5"
hdfgl execute("USE FILE my file.hb5");
// create a dataset named "my dataset" of type int
hdfgl execute ("CREATE I AS INT");
return 0;
}

Version 1.2.0 Page 06 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Assuming that the program is stored in a file named “example.c”, it must first be compiled before it can be

launched from a terminal. To compile the program against the HDFql static:

e In Microsoft Visual Studio, by executing “clexe example.c /I<hdfql_include_directory>

<hdfql_lib_directory>\HDFql.lib /link /LTCG /NODEFAULTLIB:libcmt.lib” from a terminal.

e In GCC, by executing “gcc example.c -I<hdfql_include_directory> <hdfql_lib_directory>/libHDFql.a -fopenmp

-Im -Idl -0 example” from a terminal.

To compile the same program against the HDFql shared library:

e In Microsoft Visual Studio, by executing “clexe example.c /I<hdfql _include_directory>

<hdfql_lib_directory>\HDFql_dll.lib” from a terminal.

e In GCC, by executing “gcc example.c -I<hdfql_include_directory> -L<hdfql_lib_directory> -IHDFql -Im -Idl -o

example” from a terminal.

In case the program does not compile, likely a C/C++ compiler is not installed in the machine. If a C/C++

compiler is missing, the solution is:

e In Windows, download and install a free version of Microsoft Visual Studio from the website

http://www.microsoft.com/visualstudio.
e In Linux, install the Gnu Compiler Collection (GCC) by executing from a terminal:
e In a Red Hat-based distribution, “sudo yum install gcc gcc-c++”.
e In a Debian-based distribution, “sudo apt-get install gcc g++".

e In Mac OS X, install the Gnu Compiler Collection (GCC) by executing “xcode-select --install” from a terminal.
If xcode-select does not support the parameter “--install” (due to being outdated), download and install

the Command-Line Tools package from http://developer.apple.com/downloads which includes GCC.

Version 1.2.0 Page 07 of 203

http://www.microsoft.com/visualstudio
http://developer.apple.com/downloads

Hierarchical Data Format query language (HDFql) Reference Manual

In case the program does not launch, most likely the HDFqgl shared library (which is needed to launch the

program) was not found. The solution is:

e In Windows, copy the file “HDFql_dIl.dll” into the directory where the program is located. Alternatively,
add the directory where the file “HDFql_dIl.dll” is located to the environment variable “PATH” by executing
“set PATH=<hdfql_lib_directory>;%PATH%"” from a terminal.

e In Linux, add the directory where the file “libHDFqgl.so” is located to the environment variable

“LD_LIBRARY_PATH” by executing from a terminal:
e In Bash shell, “export LD_LIBRARY_PATH=<hdfql_lib_directory>:SLD_LIBRARY PATH".
e InCshell, “setenv LD_LIBRARY_PATH <hdfql_lib_directory>:SLD_LIBRARY_PATH”.

e In Mac OS X, add the directory where the file “libHDFqgl.dylib” is located to the environment variable
“DYLD_LIBRARY_PATH” by executing from a terminal:

e InBash shell, “export DYLD_LIBRARY _PATH=<hdfql_lib_directory>:SDYLD_LIBRARY PATH”.

e InCshell, “setenv DYLD_LIBRARY PATH <hdfql_lib_directory>:SDYLD_LIBRARY PATH”.

3.2 JAVA

HDFgl can be used in the Java programming language through a wrapper named “HDFql.java”. This wrapper is
stored in the directory “java” found under the directory “wrapper”. The following short program illustrates

how HDFqgl can be used in such language.

public class Example
{
public static void main(String args[])
{
// load HDFql shared library (make sure it can be found by the JVM)
System.loadLibrary ("HDFqgl");

// display HDFql version in use
System.out.println("HDFqgl version: " + HDFql.VERSION) ;

Version 1.2.0 Page 08 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// create an HDF file named "my file.h5"

HDFql.execute ("CREATE FILE my file.hb5");

// use (i.e. open) HDF file "my file.h5"

HDFqgl.execute ("USE FILE my file.h5");

// create a dataset named "my dataset" of type int

HDFqgl.execute ("CREATE DATASET my dataset AS INT");

Assuming that the program is stored in a file named “Example.java”, it must first be compiled by executing
“javac Example.java” before it can be launched by executing “java Example” from a terminal. In case the
program does not compile or launch, likely the Java Development Kit (JDK) is not installed in the machine or the
HDFgl wrapper was not found. For the former, install the JDK by following the instructions available at
http://www.oracle.com/technetwork/java/javase/downloads. For the latter, add the directory where the file

“HDFqgl.java” (i.e. the wrapper) is located to the environment variables “CLASSPATH” and “PATH”:

e In Windows, by executing “set CLASSPATH=<hdfql java_wrapper_directory>;.;%CLASSPATH%"” and “set

PATH=<hdfql_java_wrapper_directory>;%PATH%" from a terminal.
e In Linux/Mac OS X, by executing from a terminal:

e In Bash shell, “export CLASSPATH=<hdfql java_wrapper_directory>:.:SCLASSPATH"” and “export
PATH=<hdfql_java_wrapper_directory>:SPATH”.

e In C shell, “setenv CLASSPATH <hdfql_java_wrapper_directory>:.:SCLASSPATH” and “setenv PATH

<hdfql_java_wrapper_directory>:SPATH" .

3.3 PYTHON

HDFgl can be used in the Python programming language through a wrapper named “HDFql.py”. This wrapper is
stored in the directory “python” found under the directory “wrapper”. The following short script illustrates

how HDFqgl can be used in such language.

Version 1.2.0 Page 09 of 203

http://www.oracle.com/technetwork/java/javase/downloads

Hierarchical Data Format query language (HDFql) Reference Manual

import HDFql module (make sure it can be found by the Python interpreter)

import HDFql

display HDFgl version in use
print "HDFql version: $%s'" % HDFql.VERSION

create an HDF file named "my file.h5"

HDFql.execute ("CREATE FILE my

~

ile.h5")

use (i.e. open) HDF file "my file.h5"

"o ETT,E

HDFql.execute ("USE FILE my file.h5")

create a dataset named "my dataset" of type int

HDFqgl.execute ("CREATE DATASET my dataset AS INT")

Assuming that the script is stored in a file named “example.py” it can be launched by executing “python
example.py” from a terminal. In case the script does not launch, likely the Python interpreter is not installed in
the machine or the HDFql wrapper was not found. For the former, install the Python interpreter by following
the instructions available at http://www.python.org/download. For the latter, add the directory where the file

“HDFql.py” (i.e. the wrapper) is located to the environment variable “PYTHONPATH":

e In Windows, by executing “set PYTHONPATH=<hdfql python_wrapper directory>;%PYTHONPATH%" from

a terminal.
e In Linux/Mac OS X, by executing from a terminal:
e In Bash shell, “export PYTHONPATH=<hdfql_python_wrapper_directory>:SPYTHONPATH" .

e InCshell, “setenv PYTHONPATH <hdfql_python_wrapper_directory>:SPYTHONPATH”.

Besides these steps, a scientific computing package named NumPy must be installed when working with user-
defined variables (please refer to the function hdfgl_variable_register for additional information). NumPy can

be found at http://www.scipy.org/scipylib/download.html along with instructions on how to install it.

Version 1.2.0 Page 10 of 203

http://www.python.org/download
http://www.scipy.org/scipylib/download.html

Hierarchical Data Format query language (HDFql) Reference Manual

34 CH

HDFgl can be used in the C# programming language through a wrapper named “HDFqgl.cs”. This wrapper is
stored in the directory “csharp” found under the directory “wrapper”. The following short program illustrates

how HDFqgl can be used in such language.

public class Example
{
public static void Main(string []args)
{
// display HDFgl version in use

System.Console.WriteLine ("HDFql version: {0}", HDFql.Version);

// create an HDF file named "my file.h5"

HDFql .Execute ("CREATE FILE my file.h5");

// use (i.e. open) HDF file "my file.h5"
HDFql.Execute ("USE FILE my file.h5");

// create a dataset named "my dataset" of type int

HDFql .Execute ("CREATE DATASET my dataset AS INT");

Assuming that the program is stored in a file named “Example.cs”, it must first be compiled by executing “mcs
<hdfql_csharp_wrapper_directory>/*.cs Example.cs” before it can be launched by executing “mono
Example.exe” from a terminal. In case the program does not compile or launch, likely the Mono Project (a free
C#t compiler/CLR) is not installed in the machine or the HDFql wrapper was not found. For the former, install
the Mono Project by following the instructions available at http://www.mono-project.com/download. For the
latter, add the directory where the file “HDFql.cs” (i.e. the wrapper) is located to the environment variable

“PATH”:
e In Windows, by executing “set PATH=<hdfql_csharp_wrapper_directory>;%PATH%" from a terminal.
e In Linux/Mac OS X, by executing from a terminal:

e In Bash shell, “export PATH=<hdfql_csharp_wrapper_directory>:SPATH" .

Version 1.2.0 Page 11 of 203

http://www.mono-project.com/download

Hierarchical Data Format query language (HDFql) Reference Manual

e In Cshell, “setenv PATH <hdfql_csharp_wrapper_directory>:SPATH".

3.5 COMMAND-LINE INTERFACE

A command-line interface named “HDFqICLI” is available and can be used for manipulating HDF files. It is
stored in the directory “bin”. To launch the command-line interface, open a terminal (“cmd” if in Windows,
“xterm” if in Linux, or “Terminal” if in Mac OS X), go to the directory “bin”, and type “HDFqICLI” (if in Windows)
or “./HDFqICLI” (if in Linux/Mac OS X). The list of parameters accepted by the command-line interface can be
viewed by launching it with the parameter “--help”. At the time of writing, this list includes the following

parameters:

e --help (show the list of parameters accepted by HDFqICLI)

e --version (show the version of HDFgICLI)

e --mac-address (show the MAC address(es) of the machine)

o --debug (show debug information when executing HDFgl operations)

e --no-path (do not show group path currently in use in HDFgICLI prompt)
e --execute=X (execute HDFql operation(s) “X" and exit)

o --execute-file=X (execute HDFql operation(s) stored in file “X” and exit)

e --save-file=X (save executed HDFgl operation(s) to file “X”)

In case the command-line interface does not launch, most likely the HDFql shared library (which is needed to

launch the interface) was not found. Depending on the platform, the solution is:
e In Windows, to either:

o Copy the file “HDFql_dlIl.dIl” into the directory where the command-line interface is located.

Version 1.2.0 Page 12 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

e Add the directory where the file “HDFgl_dlIl.dll” is located to the environment variable “PATH” by
executing “set PATH=<hdfql_lib_directory>;%PATH%" from a terminal.

e Execute the batch file named “launch.bat” which properly sets up the environment variable

“PATH” and launches the command-line interface from a terminal.

e In Linux, to either:

e Add the directory where the file “libHDFql.so” is located to the environment variable

“LD_LIBRARY_PATH” by executing from a terminal:
e In Bash shell, “export LD_LIBRARY_PATH=<hdfql_lib_directory>:SLD_LIBRARY PATH".
e InCshell, “setenv LD _LIBRARY_PATH <hdfql_lib_directory>:SLD_LIBRARY PATH".

e Execute the bash script file named “launch.sh” which properly sets up the environment variable

“LD_LIBRARY_PATH” and launches the command-line interface from a terminal.

e In Mac OS X, to either:

e Add the directory where the file “libHDFqgl.dylib” is located to the environment variable
“DYLD_LIBRARY_PATH” by executing from a terminal:

e InBash shell, “export DYLD_LIBRARY PATH=<hdfql_lib_directory>:SDYLD_LIBRARY PATH”.
e InCshell, “setenv DYLD LIBRARY PATH <hdfql_lib_directory>:SDYLD LIBRARY PATH”".

e Execute the bash script file named “launch.sh” which properly sets up the environment variable

“DYLD_LIBRARY_PATH” and launches the command-line interface from a terminal.

Version 1.2.0 Page 13 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

BN C:\Windows\systern32\cmd.exe - HDFgICLLexe =E= @

to return to the terminal.

mple. hs

s returned in 0.0 seconds)

mple. hs
elements returned in 0.0 second
ow
) elements returned in 0.0 seconds)

reate dataset t az varfloa

) elements returned in 0.0 second

.14, 3
second

oo 4
elements returned in 0.0 seconds)

Figure 3.1 — lllustration of the command-line interface “HDFqICLI"”

Version 1.2.0 Page 14 of 203

4. CURSOR

Generally speaking, a cursor is a control structure that is used to iterate through the results returned by a
query (that was previously executed). It can be seen as an effective means to abstract the programmer from
low-level implementation details of accessing data stored in specific structures. This chapter provides a
description of cursors and subcursors in HDFql, as well as examples and illustrations to demonstrate these two

concepts in practice.

4.1 DESCRIPTION

HDFql provides cursors which offer several ways to traverse result sets according to specific needs. The

following list enumerates these functionalities (please refer to their links for further information):
e First (moves cursor to the first position within the result set — hdfgl_cursor_first)

e Last (moves cursor to the last position within the result set — hdfqgl_cursor_last)

e Next (moves cursor to the next position within the result set — hdfgl_cursor_next)

e Previous (moves cursor to the previous position within the result set — hdfqgl_cursor_previous)
e Absolute (moves cursor to an absolute position within the result set — hdfql_cursor_absolute)

e Relative (moves cursor to a relative position within the result set — hdfgl_cursor_relative)

Besides their traversal functionalities, a particular feature of cursors in HDFql is that they store result sets
returned by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION LANGUAGE (DIL) operations. To
retrieve values from result sets, the functions starting with “hdfql_cursor_get” can be used. These and
remaining functions offered by cursors can be found in Table 5.3 (each of these begins with the prefix

“hdfgl_cursor”).

Version 1.2.0 Page 15 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

When a certain operation is executed, HDFql stores the result set returned by this operation in its default
cursor. This cursor is available to the programmer and is automatically created and initialized upon loading the

HDFql library by a program. If additional cursors are needed, they can be created like this:

// create a cursor named "my cursor"

HDFQL CURSOR my cursor;

Before a cursor can be used to store and eventually traverse a result set, it must be properly initialized (refer to

the function hdfql_cursor_initialize for further information). Initializing a cursor can be done like this:

// initialize a cursor named "my cursor"

hdfql cursor initialize(&my cursor);

To switch between different cursors (to be used for separate needs), the function hdfgl_cursor_use may be

employed:

// use a cursor named "my cursor"

hdfgl cursor use(&my cursor);

Finally, the following C/C++ snippet illustrates usage of the HDFql default cursor and a user-defined cursor, as

well as some typical operations performed on/by these.

// create a cursor named "my cursor"

HDFQL CURSOR my cursor;

// create datasets named "my dataset0" and "my datasetl" of type float
hdfql execute ("CREATE DATASET my dataset(0 AS FLOAT");

hdfgl execute ("CREATE DATASET my datasetl AS FLOAT (4, 2)");

// select (i.e. read) dataset "my dataset0" and populate HDFgl default cursor with it

hdfql execute("SELECT FROM my dataset0");

// initialize cursor "my cursor" and use it
hdfql cursor initialize(&my cursor);

hdfgl cursor use(&my cursor);

Version 1.2.0 Page 16 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// select (i.e. read) dataset "my datasetl”" and populate cursor "my cursor" with it

hdfql execute("SELECT FROM my datasetl");

// use HDFql default cursor and display its number of elements (should be 1)
hdfqgl cursor use (NULL);

printf ("Number of elements in cursor is 3d\n", hdfgl cursor get count (NULL))

// use cursor "my cursor" and display its number of elements (should be 8 - i.e. 4x2)
hdfql cursor use(&my cursor);

printf("Number of elements in cursor is %d\n", hdfgl cursor get count (NULL))

// display elements of cursor "my cursor" (should display 8 elements)
while (hdfgl cursor next (NULL) == HDFQL SUCCESS)
{
printf("Current element of cursor is %f\n", *hdfqgl cursor get float (NULL));

When populating a cursor with data from a dataset or attribute with two or more dimensions, the data is
always linearized into a single dimension. The linearization process is depicted in Figure 4.1. Subsequently, if
need be, it is up to the programmer to access the data (stored in the cursor) according to its original
dimensions. In this case, the SHOW [DATASET | ATTRIBUTE] DIMENSION operation — which returns the original
dimensions of a dataset or attribute — may be useful to help in the task of going from one dimension to the

original dimensions.

Dataset [3, 2]

Cursor [€]

Figure 4.1 — Linearization of a two dimensional dataset into a (one dimensional) cursor

Version 1.2.0 Page 17 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

4.2 SUBCURSOR

HDFql also provides subcursors — they are meant to complement (i.e. help) cursors in the task of storing data of
type variable (i.e. VARTINYINT, UNSIGNED VARTINYINT, VARSMALLINT, UNSIGNED VARSMALLINT, VARINT,
UNSIGNED VARINT, VARBIGINT, UNSIGNED VARBIGINT, VARFLOAT, VARDOUBLE and VARCHAR.). In practice,
when a dataset or attribute of type variable is read through a DATA QUERY LANGUAGE (DQL) operation, only
the first value of the variable data is stored in the cursor (as expected), while all values of the variable data are
stored in the subcursor. In other words, each position of the cursor stores the first value of the variable data
and also points to a subcursor that in turn stores all the values of the variable data. The values stored in a
subcursor (which are also known as a result subset) can be accessed with the functions starting with
“hdfgl_subcursor_get” (enumerated in Table 5.3). Similar to cursors, HDFql subcursors offer several ways to

traverse result subsets, namely:

e First (moves subcursor to the first position within the result subset — hdfgl_subcursor_first)

e last (moves subcursor to the last position within the result subset — hdfgl_subcursor_last)

e Next (moves subcursor to the next position within the result subset — hdfgl_subcursor_next)

e Previous (moves subcursor to the previous position within the result subset — hdfgl_subcursor_previous)
e Absolute (moves subcursor to an absolute position within the result subset — hdfgl_subcursor_absolute)

e Relative (moves subcursor to a relative position within the result subset — hdfgl_subcursor_relative)

The following C/C++ snippet illustrates usage of the HDFql subcursors, as well as some typical operations

performed on/by these.

// create a dataset named "my dataset" of type variable int of one dimension (size 4)

hdfql execute ("CREATE DATASET my dataset AS VARINT (4)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES((7, 8, 5, 3), (9), (6, 1, 2), (4, 0))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

Version 1.2.0 Page 18 of 203

Hierarchical Data Format query language (HDFql)

Reference Manual

// move the cursor in use to the next position within the result set (stored)

while (hdfgl cursor next (NULL) == HDFQL SUCCESS)

{

// display elements of the cursor in use

printf("Current element of cursor 1is

// move the subcursor in use to the next position within the result subset

while (hdfgl subcursor next (NULL) == HDFQL SUCCESS)

{

// display elements of the subcursor in use

printf ("

Current element of subcursor 1is

*hdfgl cursor get int (NULL));

*hdfgl subcursor get int (NULL));

The output of executing the snippet would be similar to this:

Current element of

Current
Current
Current

Current

Current element of

Current

Current element of

Current
Current

Current

Current element of

Current

Current

element
element
element

element

element

element

element

element

element

element

cursor 1is 7
of subcursor
of subcursor
of subcursor
of subcursor
cursor is 9
of subcursor
cursor 1is 6
of subcursor
of subcursor
of subcursor
cursor 1is 4
of subcursor

of subcursor

is
is
is

is

is

is

is

is

is

is

W 1 o 3

Version 1.2.0

Page 19 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

4.3 EXAMPLES

The following C/C++ snippets demonstrate how HDFql cursors and subcursors are populated with (variable)
data stored in datasets or attributes, along with illustrations to facilitate understanding of the populating

process and its final result.

// create a dataset named "my datasetO" of type short
hdfql execute ("CREATE DATASET my dataset(0 AS SMALLINT");

// insert (i.e. write) a value into dataset "my dataset0"

hdfgl execute ("INSERT INTO my dataset(O VALUES(7)");

// select (i.e. read) dataset "my dataset0" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset(0");

Dataset “my_dataset0” Cursor

Subcursorl

Figure 4.2 — Cursor populated with data from dataset “my_dataset0”

Version 1.2.0 Page 20 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// create a dataset named "my datasetl" of type float of one dimension (size 3)

hdfql execute("CREATE DATASET my datasetl AS FLOAT(3)");

// insert (i.e. write) values into dataset "my datasetl"

hdfql execute("INSERT INTO my datasetl VALUES(5.5, 8.1, 4.9)");

// select (i.e. read) dataset "my datasetl" and populate cursor in use with it

hdfql execute("SELECT FROM my datasetl");

Dataset “my_datasetl” Cursor

Subcursor3

Subcursor2

Subcursorl

Figure 4.3 — Cursor populated with data from dataset “my_dataset1”

Version 1.2.0 Page 21 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// create a dataset named "my dataset2" of type double of two dimensions (size 3x2)

hdfqgl execute("CREATE DATASET my dataset2 AS DOUBLE (3, 2)");

// insert (i.e. write) values into dataset "my dataset2"

hdfql execute("INSERT INTO my dataset?2 VALUES((3.2, 1.3), (0, 0.2), (9.1, 6.5))");

// select (i.e. read) dataset "my dataset2" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset2");

Dataset “my_dataset2”

Cursor

Subcursorl | Subcursor2 | Subcursor3 Subcursord4 | Subcursor5 | Subcursoré

NULL MNULL NULL NULL NULL NULL

Figure 4.4 — Cursor populated with data from dataset “my_dataset2”

Version 1.2.0 Page 22 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// create a dataset named "my dataset3" of type variable short

hdfql execute("CREATE DATASET my dataset3 AS VARSMALLINT");

// insert (i.e. write) values into dataset "my dataset3"

hdfql execute("INSERT INTO my dataset3 VALUES(7, 9, 3)");

// select (i.e. read) dataset "my dataset3" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset3");

Dataset “my_dataset3” Cursor

Subcursorl

Figure 4.5 — Cursor and its subcursor populated with data from dataset “my_dataset3”

Version 1.2.0 Page 23 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// create a dataset named "my dataset4" of type variable float of one dimension (size 3)

hdfql execute("CREATE DATASET my dataset4 AS VARFLOAT (3)");

// insert (i.e. write) values into dataset "my dataset4"

hdfqgl execute("INSERT INTO my dataset4 VALUES((5.5), (8.1, 2.2), (4.9, 3.4, 5.6))");

// select (i.e. read) dataset "my dataset4" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset4");

Dataset “my_datasetd” Cursor

49,3.4,56

Subcursorl Subcursor2 Subcursor3

Figure 4.6 — Cursor and its subcursors populated with data from dataset “my_dataset4”

Version 1.2.0 Page 24 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// create a dataset named "my datasetb5" of type variable double of two dimensions (size
3x2)
hdfqgl execute("CREATE DATASET my datasetb AS VARDOUBLE (3, 2)");

// insert (i.e. write) values into dataset "my dataset5"
hdfqgl execute("INSERT INTO my datasetb5 VALUES(((3.2, 8, 6.7), (1.3, 0.2)), ((0), (0.2,
1.5)), ((9.1, 2, 4, 7), (6.5)))");

// select (i.e. read) dataset "my datasetb5" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset5");

Dataset “my_dataset5”

o EEFEXN 1.3,0.2 Cursor

1 0.2,1.5

Subcursorl Subcursor2 Subcursor3

Subcursord Subcursor5s Subcursoré

Figure 4.7 — Cursor and its subcursors populated with data from dataset “my_dataset5”

Version 1.2.0 Page 25 of 203

5. APPLICATION PROGRAMMING INTERFACE

An application programming interface (APIl) specifies how software components should interact with each
other. In practice, an APl comes in the form of a library that includes specifications for functions, data
structures, object classes, constants and variables. A good APl makes it easier to develop a program by
providing all the building blocks. This chapter is devoted to describing HDFgl APl and how to use it through

practical examples in C/C++, Java, Python and C#.

5.1 CONSTANTS

A constant is an identifier whose associated value cannot typically be altered by the program during its
execution. Using a constant instead of specifying a value multiple times in the program not only simplifies code
maintenance, but can also supply a meaningful name for it. Constants in the C/C++ programming languages

follow a naming convention of writing all words in uppercase and separating each word with an underscore (_).

The following table summarizes all existing HDFql constants in C/C++.

Constant (in C/C++) Description Datatype
HDFQL_VERSION Represents the HDFgl version in use char * 1.2.0
HDFQL_YES Represents the concept “Yes” int 0
HDFQL_NO Represents the concept “No” int -1
HDFQL_ENABLED Represents the concept “Enabled” int 0
HDFQL_DISABLED Represents the concept “Disabled” int -1
HDFQL_DEFAULT Represents the concept “Default” int -1
HDFQL_UNDEFINED Represents the concept “Undefined” int -1
HDFQL_GLOBAL Represents the concept “Global” int 1

Version 1.2.0 Page 26 of 203

Hierarchical Data Format query language (HDFql)

Reference Manual

HDFQL_LOCAL Represents the concept “Local” int 2
HDFQL_TRACKED Represents the HDF tracked strategy int 1
HDFQL_INDEXED Represents the HDF indexed strategy int 2
HDFQL_SUCCESS Represents an operation that succeeded int 0

Represents an operation that failed due to an
HDFQL_ERROR int -1
unknown/unexpected error
HDFQL_ERROR_PARSE Represents an operation that failed due to a parsing error int -2
HDFQL_DIRECTORY Represents a directory int 1
HDFQL_FILE Represents a file int 2

HDFQL_GROUP Represents the HDF object type group int 4

HDFQL_DATASET Represents the HDF object type dataset int 8
HDFQL_ATTRIBUTE Represents the HDF object type attribute int 16
HDFQL_SOFT_LINK Represents the HDF soft link type int 32
HDFQL_HARD_LINK Represents the HDF hard link type int 64

HDFQL_EXTERNAL_LINK Represents the HDF external link type int 128
HDFQL_CONTIGUOUS Represents the HDF contiguous layout/strategy int 1
HDFQL_COMPACT Represents the HDF compact layout/strategy int 2
HDFQL_CHUNKED Represents the HDF chunked layout/strategy int 4
HDFQL_TINYINT Represents the tiny integer datatype (TINYINT) int 1
Represents the unsigned tiny integer datatype (UNSIGNED

HDFQL_UNSIGNED_TINYINT int 2

TINYINT)

HDFQL_SMALLINT Represents the small integer datatype (SMALLINT) int 4
Represents the unsigned small integer datatype (UNSIGNED

HDFQL_UNSIGNED_SMALLINT int 8

SMALLINT)

HDFQL_INT Represents the integer datatype (INT) int 16

HDFQL_UNSIGNED_INT Represents the unsigned integer datatype (UNSIGNED INT) int 32

HDFQL_BIGINT Represents the big integer datatype (BIGINT) int 64

Version 1.2.0 Page 27 of 203

Hierarchical Data Format query language (HDFql)

Reference Manual

Represents the unsigned big integer datatype (UNSIGNED

HDFQL_UNSIGNED_BIGINT int 128
BIGINT)
HDFQL_FLOAT Represents the float datatype (FLOAT) int 256
HDFQL_DOUBLE Represents the double datatype (DOUBLE) int 512
HDFQL_CHAR Represents the fixed size char (string) datatype (CHAR) int 1024
HDFQL_VARTINYINT Represents the variable tiny integer datatype (VARTINYINT) int 2048
Represents the unsigned variable tiny integer datatype
HDFQL_UNSIGNED_VARTINYINT int 4096
(UNSIGNED VARTINYINT)
Represents the variable small integer datatype
HDFQL_VARSMALLINT int 8192
(VARSMALLINT)
Represents the unsigned variable small integer datatype
HDFQL_UNSIGNED_VARSMALLINT int 16384
(UNSIGNED VARSMALLINT)
HDFQL_VARINT Represents the variable integer datatype (VARINT) int 32768
Represents the unsigned variable integer datatype
HDFQL_UNSIGNED_VARINT int 65536
(UNSIGNED VARINT)
HDFQL_VARBIGINT Represents the variable big integer datatype (VARBIGINT) int 131072
Represents the unsigned variable big integer datatype
HDFQL_UNSIGNED_VARBIGINT int 262144
(UNSIGNED VARBIGINT)
HDFQL_VARFLOAT Represents the variable float datatype (VARFLOAT) int 524288
HDFQL_VARDOUBLE Represents the variable double datatype (VARDOUBLE) int 1048576
Represents the variable size char (string) datatype
HDFQL_VARCHAR int 2097152
(VARCHAR)
HDFQL_NATIVE_ENDIAN Represents the native architecture byte ordering int 1
HDFQL_LITTLE_ENDIAN Represents the little endian byte ordering int 2
HDFQL_BIG_ENDIAN Represents the big endian byte ordering int 4
HDFQL_ASCII Represents the ASCII character encoding int 1
HDFQL_UTF8 Represents the UTF8 character encoding int 2
Table 5.1 — HDFgl constants in C/C++
Version 1.2.0 Page 28 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

HDFqgl also supports other programming languages namely Java, Python and C# through wrappers. In these
languages, the prefix “HDFQL_” (used in C/C++) is discarded. Java and Python follow the C/C++ naming
convention of constants, while C# follows the upper camel-case convention. The following table lists a subset

of HDFgl constants as defined in C/C++ and how to define these in Java, Python and C#.

Constant (in C/C++) Java Python C#
HDFQL_VERSION VERSION VERSION Version
HDFQL_SUCCESS SUCCESS SUCCESS Success

HDFQL_ERROR_PARSE ERROR_PARSE ERROR_PARSE ErrorParse
HDFQL_TINYINT TINYINT TINYINT TinyInt
HDFQL_UNSIGNED_BIGINT UNSIGNED_BIGINT UNSIGNED_BIGINT UnsignedBigint
HDFQL_UTF8 UTF8 UTF8 utfs

Table 5.2 — HDFqgl constants in C/C++ and their corresponding definitions in Java, Python and C#

5.2 FUNCTIONS

A function is a group of instructions that together perform a specific task, requiring direction back to the caller
on completion of the task. Any given function might be called at any point during a program's execution,
including by other functions or itself. It provides better modularity of a program and a high degree of code

reusing. The following table summarizes all existing HDFql functions in C/C++.

Function (in C/C++)

Description

hdfgl_execute Execute a script (composed of one or more operations)

hdfgl_execute_status Get status of the last executed operation

hdfgl_cursor_initialize Initialize a cursor for subsequent use

hdfgl_cursor_use Set the cursor to be used for storing the result of operations

hdfql_cursor_use_default Set HDFql default cursor as the one to be used for storing the result of operations

Version 1.2.0 Page 29 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

hdfql_cursor_clear Clear (i.e. empty) the cursor in use
hdfgl_cursor_clone Clone (i.e. duplicate) a cursor into another one
hdfgl_cursor_get_datatype Get datatype of the cursor in use
hdfgl_cursor_get_count Get number of elements (i.e. result set size) stored in the cursor in use
hdfgl_subcursor_get_count Get number of elements (i.e. result subset size) stored in the subcursor in use
hdfgl_cursor_get_position Get current position of cursor in use within result set
hdfgl_subcursor_get_position Get current position of subcursor in use within result subset
hdfgl_cursor_first Move the cursor in use to the first position within result set
hdfql_subcursor_first Move the subcursor in use to the first position within result subset
hdfgl_cursor_last Move the cursor in use to the last position within result set
hdfgl_subcursor_last Move the subcursor in use to the last position within result subset
hdfgl_cursor_next Move the cursor in use one position forward from its current position
hdfgl_subcursor_next Move the subcursor in use one position forward from its current position
hdfgl_cursor_previous Move the cursor in use one position backward from its current position
hdfgl_subcursor_previous Move the subcursor in use one position backward from its current position
hdfql_cursor_absolute Move the cursor in use to an absolute position within the result set
hdfql_subcursor_absolute Move the subcursor in use to an absolute position within the result subset
hdfgl_cursor_relative Move the cursor in use to a relative position within result set
hdfgl_subcursor_relative Move the subcursor in use to a relative position within result subset
hdfql_cursor_get_size Get current element size (in bytes) of the cursor in use
hdfgl_subcursor_get_size Get current element size (in bytes) of the subcursor in use
hdfgl_cursor_get Get current element of the cursor in use as a generic (typeless) pointer
hdfgl_subcursor_get Get current element of the subcursor in use as a generic (typeless) pointer
hdfql_cursor_get_tinyint Get current element of the cursor in use as a TINYINT
hdfql_subcursor_get_tinyint Get current element of the subcursor in use as a TINYINT

Version 1.2.0 Page 30 of 203

Hierarchical Data Format query language (HDFql)

Reference Manual

hdfgl_cursor_get_unsigned_tinyint

Get current element of the cursor in use as an UNSIGNED TINYINT

hdfgl_subcursor_get_unsigned_tinyint

Get current element of the subcursor in use as an UNSIGNED TINYINT

hdfgl_cursor_get_smallint

Get current element of the cursor in use as a SMALLINT

hdfgl_subcursor_get_smallint

Get current element of the subcursor in use as a SMALLINT

hdfgl_cursor_get_unsigned_smallint

Get current element of the cursor in use as an UNSIGNED SMALLINT

hdfgl_subcursor_get_unsigned_smallint

Get current element of the subcursor in use as an UNSIGNED SMALLINT

hdfgl_cursor_get_int

Get current element of the cursor in use as an INT

hdfgl_subcursor_get_int

Get current element of the subcursor in use as an INT

hdfgl_cursor_get_unsigned_int

Get current element of the cursor in use as an UNSIGNED INT

hdfgl_subcursor_get_unsigned_int

Get current element of the subcursor in use as an UNSIGNED INT

hdfgl_cursor_get_bigint

Get current element of the cursor in use as a BIGINT

hdfgl_subcursor_get_bigint

Get current element of the subcursor in use as a BIGINT

hdfgl_cursor_get_unsigned_bigint

Get current element of the cursor in use as an UNSIGNED BIGINT

hdfgl_subcursor_get_unsigned_bigint

Get current element of the subcursor in use as an UNSIGNED BIGINT

hdfql_cursor_get_float

Get current element of the cursor in use as a FLOAT

hdfql_subcursor_get_float

Get current element of the subcursor in use as a FLOAT

hdfgl_cursor_get_double

Get current element of the cursor in use as a DOUBLE

hdfgl_subcursor_get_double

Get current element of the subcursor in use as a DOUBLE

hdfql_cursor_get_char

Get current element of the cursor in use as a CHAR (i.e. string)

hdfgl_subcursor_get_char

Get current element of the subcursor in use as a CHAR (i.e. string)

hdfqgl_variable_register

Register a variable for subsequent use

hdfqgl_variable_unregister

Unregister a variable

hdfql_variable_get_number

Get number of a variable

hdfgl_variable_get_datatype

Get datatype of a variable

hdfqgl_variable_get_count

Get number of elements (i.e. result set size) stored in a variable

Version 1.2.0

Page 31 of 203

Hierarchical Data Format query language (HDFql)

Reference Manual

hdfgl_variable_get_size

Get size (in bytes) of a variable

hdfgl_variable_get_dimension_count

Get number of dimensions of a variable

hdfqgl_variable_get_dimension

Get size of a certain dimension of a variable

Table 5.3 — HDFgl functions in C/C++

In Java, the naming of functions — known as methods in this programming language — follows the lower camel-

case convention. Python follows the convention of writing all words in lowercase and separating each word

with an underscore (_). C# follows the upper camel-case convention. Similarly to constants, the prefix “hdfgl_"

(used in C/C++) is discarded for Java, Python and C#. The following table lists a subset of HDFql functions as

defined in C/C++ and how to define these in Java, Python and C#.

Function (in C/C++)

hdfgl_execute execute execute Execute
hdfgl_execute_status executeStatus execute_status ExecuteStatus
hdfql_cursor_next cursorNext cursor_next CursorNext

hdfgl_cursor_get_tinyint

cursorGetTinylInt

cursor_get_tinyint

CursorGetTinyInt

hdfql_cursor_get_unsigned_int

cursorGetUnsignedint

cursor_get_unsigned_int

CursorGetUnsignedint

hdfgl_subcursor_get_big_int

subcursorGetBigint

subcursor_get_big_int

SubcursorGetBigint

Table 5.4 — HDFqgl functions in C/C++ and their corresponding definitions in Java, Python and C#

5.2.1 HDFQL_EXECUTE

Syntax

int hdfql_execute(const char *script)

Version 1.2.0

Page 32 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Execute a script named script. A script can be composed of one or more operations — in case of multiple
operations these are separated with a semicolon (;). In HDFql, operations are case insensitive meaning that, for
example, operation “SHOW DATASET” is equivalent to “show dataset” or any other case variation. If a certain
operation returns an error, any subsequent operations within the script are not executed. Please refer to Table

6.2 for a complete enumeration of HDFql operations.

Parameter(s)

script — string containing one or more operations to be executed. Multiple operations are separated with a

semicolon (;).
Return
HDFQL_SUCCESS
HDFQL_ERROR

HDFQL_ERROR_PARSE

Example(s)

// declare variable

int status;

// execute script (composed of only one operation - i.e. SHOW USE FILE)

status = hdfql execute("SHOW USE FILE");

// display message about the status of executed script (i.e. success/failure)
if (status == HDFQL SUCCESS)

printf("Execution was successful\n");,
else

printf("Execution failed and returned status is %d\n", status);,

// execute script (composed of two operations - i.e. USE FILE my file.h5 and SHOW)

hdfql execute("USE FILE my file.h5 ; SHOW");

Version 1.2.0 Page 33 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.2 HDFQL_EXECUTE_STATUS

Syntax
int hdfql_execute_status(void)

Description

Get status of the last executed operation. In other words, this function returns the status of the last execution

of hdfgl_execute.
Parameter(s)
None

Return
HDFQL_SUCCESS
HDFQL_ERROR

HDFQL_ERROR_PARSE

Example(s)

// declare variable

int status;

// execute script (composed of only one operation - i.e. SHOW USE DIRECTORY)
hdfgl execute ("SHOW USE DIRECTORY");

// get status of last executed script

status = hdfql execute status();

// display message about the status of last executed script (i.e. success/failure)
if (status == HDFQL SUCCESS)

printf("Execution was successful\n");,
else

printf("Execution failed and returned status is %d\n", status);,

Version 1.2.0 Page 34 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.3 HDFQL_CURSOR_INITIALIZE

Syntax

void hdfql_cursor_initialize(HDFQL_CURSOR *cursor)

Description

Initialize a cursor named cursor for subsequent use. Before a new cursor is used for the first time, it should
always be initialized (otherwise unexpected errors may arise). The initialization of a cursor sets its datatype
attribute to undefined (HDFQL_UNDEFINED), its current element to NULL, and resets its count and position
attributes to zero making it ready for usage. As a side note, the process of initializing a cursor is only required in
C/C++ and performed once, while in other programming languages supported by HDFgl — namely, Java, Python

and C# — such initialization is redundant as it is done automatically when declaring a cursor.

Parameter(s)

cursor — pointer to a cursor (previously declared) to be initialized with default values. If the pointer is NULL, the

cursor in use is initialized instead.
Return

None

Example(s)

// create a cursor named "my cursor'

HDFQL CURSOR my_cursor;

// initialize cursor "my cursor"

hdfql cursor initialize(&my cursor);

// use cursor "my cursor"

hdfql cursor use(&my cursor);

// display number of elements in cursor "my cursor" (should be 0)

=

printf ("Number of elements in cursor is %d\n", hdfql cursor get count (NULL));

Version 1.2.0 Page 35 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.4 HDFQL_CURSOR_USE

Syntax

void hdfql_cursor_use(HDFQL_CURSOR *cursor)

Description

Set the cursor named cursor as the one to be used for storing results of operations.

Parameter(s)

cursor — pointer to a cursor to be used for storing the result of operations. If the pointer is NULL, the HDFq|l

default cursor is used instead (i.e. equivalent of calling the function hdfgl_cursor_use_default).
Return

None

Example(s)

// create a cursor named "my cursor"

HDFQL CURSOR my cursor;

// use cursor "my cursor"

hdfql cursor use(&my cursor);

// initialize cursor "my cursor"

hdfgl cursor initialize (NULL);

// display datatype of cursor "my cursor" (should be -1 - i.e. HDFQL UNDEFINED)

printf("Datatype of cursor is 2d\n", hdfql cursor get type(NULL))

// get current working directory

hdfgl execute ("SHOW USE DIRECTORY");

// display (again) datatype of cursor "my cursor" (should be 1024 - i.e. HDFQL CHAR)
printf("Datatype of cursor is 2d\n", hdfql cursor get type(NULL))

// use HDFql default cursor

Version 1.2.0 Page 36 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

hdfql cursor use (NULL);

// display datatype of HDFql default cursor (should be -1 - i.e. HDFQL UNDEFINED)
printf("Datatype of cursor is 2d\n'", hdfql cursor get type(NULL))

5.2.5 HDFQL_CURSOR_USE_DEFAULT

Syntax

void hdfql_cursor_use_default(void)

Description

Set HDFgl default cursor as the one to be used for storing results of operations.
Parameter(s)

None

Return

None

Example(s)

// create a cursor named "my cursor"

HDFQL CURSOR my cursor;

// initialize cursor "my cursor"

hdfgl cursor initialize(&my cursor);

// use cursor "my cursor"

hdfql cursor use(&my cursor);

// display datatype of cursor "my cursor" (should be -1 - i.e. HDFQL UNDEFINED)
printf("Datatype of cursor is 2d\n'", hdfql cursor get type(NULL))

// get current working directory

hdfql execute("SHOW USE DIRECTORY");

Version 1.2.0 Page 37 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// display (again) datatype of cursor "my cursor" (should be 1024 - i.e. HDFQL CHAR)
printf("Datatype of cursor is 2d\n", hdfql cursor get type(NULL))

// use HDFql default cursor

hdfgl cursor use default();

// display datatype of HDFgl default cursor (should be -1 - i.e. HDFQL UNDEFINED)
printf("Datatype of cursor is 2d\n'", hdfql cursor get type(NULL))

5.2.6 HDFQL_CURSOR_CLEAR

Syntax
void hdfql_cursor_clear(HDFQL_CURSOR *cursor)
Description

Clear (i.e. empty) the cursor in use. More specifically, this function removes all elements (i.e. result set) stored
in the cursor, specifies its datatype attribute to undefined (HDFQL_UNDEFINED), changes its current element to

NULL, and resets its count and position attributes to zero.

Parameter(sl

cursor — pointer to a cursor to be cleared (i.e. emptied). If the pointer is NULL, the cursor in use will be cleared

instead.
Return

None

Example(s)

// get current working directory

hdfql execute ("SHOW USE DIRECTORY");

// display number of elements in the cursor in use (should be 1)

printf ("Number of elements in cursor is %d\n", hdfql cursor get count (NULL));

Version 1.2.0 Page 38 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// clear the cursor in use

hdfgl cursor clear (NULL);

// display (again) number of elements in the cursor in use (should be 0)

printf ("Number of elements in cursor is ed\n", hdfgl cursor get count (NULL));

5.2.7 HDFQL_CURSOR_CLONE

Syntax

void hdfgl_cursor_clone(HDFQL_CURSOR *cursor_original, HDFQL_CURSOR *cursor_clone, int

cursor_clone_clear)

Description

Clone (i.e. duplicate) a cursor named cursor_original into another one named cursor_clone. In other words,
cursor_clone will be an exact copy of cursor_original, meaning that it will have the same datatype, count and
position values, store the same result set, and have the same current element as the original cursor. Optionally,
cursor_clone can be cleared before the cloning is performed (otherwise a memory leak will occur if

cursor_clone already contains elements).

Parameter(s)

cursor_original — pointer to a cursor to be cloned. If the pointer is NULL, the cursor currently in use is the one

to be cloned.
cursor_clone — pointer to the cursor that will be a clone (i.e. duplicate) of the original cursor.

cursor_clone_clear — integer that specifies if cursor_clone is to be cleared (HDFQL_YES) or not (HDFQL_NO)

before cloning is performed.
Return

None

Version 1.2.0 Page 39 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create a cursor named "my cursor"

HDFQL CURSOR my cursor;

// get current working directory (it will be stored in HDFgl default cursor)

hdfql execute("SHOW USE DIRECTORY");

// clone the cursor in use (i.e. HDFql default cursor) into the cursor "my cursor"

hdfgl cursor clone(NULL, &my cursor, HDFQL NO);

// use cursor "my cursor"

hdfql cursor use(&my cursor);

// display number of elements in the cursor in use (should be 1)

printf ("Number of elements in cursor is %d\n", hdfql cursor get count (NULL));

5.2.8 HDFQL_CURSOR_GET_DATATYPE

Syntax
int hdfql_cursor_get_datatype(HDFQL_CURSOR *cursor)

Description

Get the datatype of the cursor in use. If the cursor has never been populated or has been initialized or cleared,
the returned datatype is undefined (HDFQL_UNDEFINED). Please refer to Table 6.3 for a complete enumeration

of HDFqgl datatypes.

Parameter(s)

cursor — pointer to a cursor to get its datatype. If the pointer is NULL, the datatype of the cursor in use will be

returned instead.

Return

HDFQL_TINYINT
HDFQL_UNSIGNED_TINYINT

Version 1.2.0 Page 40 of 203

Hierarchical Data Format query language (HDFql)

HDFQL_SMALLINT

HDFQL_UNSIGNED_SMALLINT

HDFQL_INT

HDFQL_UNSIGNED_INT

HDFQL_BIGINT

HDFQL_UNSIGNED_BIGINT

HDFQL_FLOAT

HDFQL_DOUBLE

HDFQL_CHAR

HDFQL_VARTINYINT

HDFQL_UNSIGNED_VARTINYINT

HDFQL_VARSMALLINT

HDFQL_UNSIGNED_VARSMALLINT

HDFQL_VARINT

HDFQL_UNSIGNED_VARINT

HDFQL_VARBIGINT

HDFQL_UNSIGNED_VARBIGINT

HDFQL_VARFLOAT

HDFQL_VARDOUBLE

HDFQL_VARCHAR

HDFQL_UNDEFINED

Version 1.2.0

Reference Manual

Page 41 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// get current working directory

hdfql execute("SHOW USE DIRECTORY");

// display datatype of the cursor in use (should be 1024 - i.e. HDFQL CHAR)
printf("Datatype of cursor is 2d\n'", hdfql cursor get type(NULL))

5.2.9 HDFQL_CURSOR_GET_COUNT

Syntax

int hdfql_cursor_get_count(HDFQL_CURSOR *cursor)

Description

Get the number of elements (i.e. result set size) stored in the cursor in use. If the result set stores data from a
dataset or attribute that does not have a dimension (i.e. if it is scalar), the returned number of elements is one.
Otherwise, if the result set stores data from a dataset or attribute that has dimensions, the returned number of
elements equals the multiplication of all its dimensions’ sizes (e.g. if a cursor stores a result set of two
dimensions of size 10x3, the number of elements is 30). If the cursor has never been populated or has been

initialized or cleared, the returned number of elements is zero.

Parameter(s)

cursor — pointer to a cursor to get its number of elements (i.e. result set size). If the pointer is NULL, the

number of elements of the cursor in use will be returned instead.
Return

int — number of elements (i.e. result set size) stored in the cursor.

Example(s)

// get current working directory

hdfql execute ("SHOW USE DIRECTORY");

Version 1.2.0 Page 42 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// display number of elements in the cursor in use (should be 1)

printf ("Number of elements in cursor is $d\n", hdfgl cursor get count (NULL))

5.2.10 HDFQL_SUBCURSOR_GET_COUNT

Syntax
int hdfql_subcursor_get_count(HDFQL_CURSOR *cursor)

Description

Get the number of elements (i.e. result subset size) stored in the subcursor in use. If the cursor that the
subcursor belongs to has never been populated or has been initialized or cleared, the returned number of

elements is zero.

Parameter(s)

cursor — pointer to a cursor to get the number of elements (i.e. result subset size) stored in the subcursor in

use. If the pointer is NULL, the number of elements of the cursor in use will be returned instead.
Return

int — number of elements (i.e. result subset size) stored in the subcursor.

Example(s)

// create a dataset named "my dataset" of type variable int of two dimensions (size 2x2)

hdfql execute ("CREATE DATASET my dataset AS VARINT (2, 2)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// display number of elements in the cursor in use (should be 4 - i.e. 2x2)

printf ("Number of elements in cursor is $%d\n", hdfgl cursor get count (NULL))

Version 1.2.0 Page 43 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display number of elements in the subcursor in use (should be 3)

printf ("Number of elements in subcursor is %d\n", hdfgl subcursor get count (NULL));

// move the cursor in use to next position within the result set (i.e. second position)

hdfql cursor next (NULL);

// display number of elements in the subcursor in use (should be 1)

printf ("Number of elements in subcursor is %d\n", hdfgl subcursor get count (NULL));

5.2.11 HDFQL_CURSOR_GET_POSITION

Syntax

int hdfql_cursor_get_position(HDFQL_CURSOR *cursor)

Description

Get current position of the cursor in use within the result set. The first element of the result set is at position
one (1), while the last element is located at the position returned by hdfqgl_cursor_get_count. If the result set is
empty or the cursor was moved before the first element or after the last element, the returned position is

undefined (HDFQL_UNDEFINED).

Parameter(sl

cursor — pointer to a cursor to get its current position within the result set. If the pointer is NULL, the current

position of the cursor in use will be returned instead.
Return

int — current position of the cursor in use within the result set.

Example(s)

// clear the cursor in use

hdfqgl cursor clear (NULL);

Version 1.2.0 Page 44 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// display position of the cursor in use within the result set (should be -1 - i.e.
HDFQL UNDEFINED)
printf("Position of cursor is %d\n", hdfql cursor get position(NULL))

// get current working directory

hdfgl execute ("SHOW USE DIRECTORY");

// move the cursor in use to the first position within the result set

hdfgl cursor first (NULL);

// display (again) position of the cursor in use within the result set (should be 1)

printf("Position of cursor is %d\n", hdfql cursor get position(NULL));

5.2.12 HDFQL_SUBCURSOR_GET_POSITION

Syntax
int hdfql_subcursor_get_position(HDFQL_CURSOR *cursor)

Description

Get current position of the subcursor in use within the result subset. The first element of the result subset is at
position one (1), while the last element is located at the position returned by hdfgl_subcursor_get_count. If the
result subset is empty or the subcursor was moved before the first element or after the last element, the

returned position is undefined (HDFQL_UNDEFINED).

Parameter(s)

cursor — pointer to a cursor to get the current position of the subcursor in use within the result subset. If the

pointer is NULL, the current position of the cursor in use will be returned instead.
Return

int — current position of the subcursor in use within the result subset.

Version 1.2.0 Page 45 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create a dataset named "my dataset" of type variable int of two dimensions (size 2x2)

hdfql_execute("CREATE DATASET my dataset AS VARINT 2, 2)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfql cursor first (NULL);

// display position of the subcursor in use within the result subset (should be -1 - i.e.
HDFQL UNDEFINED)
printf("Position of subcursor is %d\n", hdfql subcursor get position(NULL));

// move the subcursor in use to the next position within the result subset (two times)
hdfql subcursor next (NULL);
hdfgl subcursor next (NULL) ;

// display (again) position of the subcursor in use within the result subset (should be
2)
printf("Position of subcursor is $d\n", hdfqgl subcursor get position(NULL));

5.2.13 HDFQL_CURSOR_FIRST
Syntax
int hdfgl_cursor_first(HDFQL_CURSOR *cursor)

Description

Move the cursor in use to the first position within the result set. In other words, the cursor will point to the first
element of the result set and its position is set to one (1). If the result set is empty, an error is returned and its

position remains unchanged.

Version 1.2.0 Page 46 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor — pointer to a cursor to move to the first position within the result set. If the pointer is NULL, the cursor

in use will move to the first position instead.
Return
HDFQL_SUCCESS

HDFQL_ERROR

Example(s)

// get current working directory

hdfgl execute ("SHOW USE DIRECTORY");

// display position of the cursor in use within the result subset (should be -1 - i.e.
HDFQL UNDEFINED)

printf("Position of cursor is 2d\n", hdfql cursor get position(NULL));

// move the cursor in use to the first position within the result set

hdfgl cursor first (NULL);

// display (again) position of the cursor in use within the result set (should be 1)

printf("Position of cursor is %d\n", hdfql cursor get position(NULL));

5.2.14 HDFQL_SUBCURSOR_FIRST
Syntax
int hdfgl_subcursor_firstf(HDFQL_CURSOR *cursor)

Description

Move the subcursor in use to the first position within the result subset. In other words, the subcursor will point
to the first element of the result subset and its position is set to one (1). If the result subset is empty, an error is

returned and its position remains unchanged.

Version 1.2.0 Page 47 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor — pointer to a cursor to move the subcursor in use to the first position within the result subset. If the

pointer is NULL, the cursor in use will move the subcursor to the first position instead.
Return
HDFQL_SUCCESS

HDFQL_ERROR

Example(s)

// create a dataset named "my dataset" of type variable int of two dimensions (size 2x2)

hdfgl execute ("CREATE DATASET my dataset AS VARINT (2, 2)");

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute ("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfqgl execute("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfql cursor first (NULL);

// display position of the subcursor in use within the result subset (should be -1 - i.e.
HDFQL UNDEFINED)
printf("Position of subcursor is %d\n", hdfql subcursor get position(NULL));

// move the subcursor in use to the first position within the result subset

hdfql subcursor first (NULL);

// display (again) position of the subcursor in use within the result subset (should be
1)
printf("Position of subcursor is %d\n", hdfql subcursor get position(NULL));

Version 1.2.0 Page 48 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.15 HDFQL_CURSOR_LAST

Syntax

int hdfql_cursor_last(HDFQL_CURSOR *cursor)

Description

Move the cursor in use to the last position within the result set. In other words, the cursor will point to the last
element of the result set and its position is set to the value returned by hdfgl_cursor_get count. If the result

set is empty, an error is returned and its position remains unchanged.

Parameter(s)

cursor — pointer to a cursor to move to the last position within the result set. If the pointer is NULL, the cursor

in use will move to the last position instead.
Return
HDFQL_SUCCESS

HDFQL_ERROR

Example(s)

// get current working directory

hdfgl execute ("SHOW USE DIRECTORY");

// move the cursor in use to the last position within the result set

hdfql cursor last (NULL) ;

// display position of the cursor in use within the result set (should be 1)

printf("Position of cursor is %d\n", hdfql cursor get position(NULL))

Version 1.2.0 Page 49 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.16 HDFQL_SUBCURSOR_LAST

Syntax

int hdfql_subcursor_last(HDFQL_CURSOR *cursor)

Description

Move the subcursor in use to the last position within the result subset. In other words, the subcursor will point
to the last element of the result subset and its position is set to the value returned by
hdfgl_subcursor_get_count. If the result subset is empty, an error is returned and its position remains

unchanged.

Parameter(s)

cursor — pointer to a cursor to move the subcursor in use to the last position within the result subset. If the

pointer is NULL, the cursor in use will move the subcursor to the last position instead.
Return
HDFQL_SUCCESS

HDFQL_ERROR

Example(s)

// create a dataset named "my dataset" of type variable int of two dimensions (size 2x2)

hdfgl execute ("CREATE DATASET my dataset AS VARINT (2, 2)");

// insert (i.e. write) values into dataset "my dataset"

hdfql_execute("TNSF,RT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) dataset "my dataset"” and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfql cursor first (NULL);

// display position of subcursor in use within the result subset (should be -1 - i.e.

HDFQL UNDEFINED)

Version 1.2.0 Page 50 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

printf("Position of subcursor is $d\n", hdfql subcursor get position(NULL));

// move the subcursor in use to the last position within the result set

hdfqgl subcursor last (NULL);

// display (again) position of subcursor in use within the result subset (should be 3)

printf("Position of subcursor is $d\n", hdfgl subcursor get position(NULL));

5.2.17 HDFQL_CURSOR_NEXT

Syntax

int hdfql_cursor_next(HDFQL_CURSOR *cursor)

Description

Move the cursor in use one position forward from its current position. In other words, the cursor will point to
the next element of the result set and its position is incremented by one. If the result set is empty or the cursor

is in the last position, an error is returned and its position remains unchanged.

Parameter(s)

cursor — pointer to a cursor to move one position forward from its current position. If the pointer is NULL, the

cursor in use will move one position forward from its current position instead.
Return
HDFQL_SUCCESS

HDFQL_ERROR

Example(s)

// get current working directory

hdfql execute ("SHOW USE DIRECTORY");

// move the cursor in use to the next position within the result set

hdfgl cursor next (NULL);

Version 1.2.0 Page 51 of 203

Hierarchical Data Format query language (HDFql)

Reference Manual

// display position of cursor within the result set (should be 1)

printf("Position of cursor is 2d\n", hdfqgl cursor get position(NULL));

5.2.18 HDFQL_SUBCURSOR_NEXT

Syntax

int hdfql_subcursor_next(HDFQL_CURSOR *cursor)

Description

Move the subcursor in use one position forward from its current position. In other words, the subcursor will

point to the next element of the result subset and its position is incremented by one. If the result subset is

empty or the subcursor is in the last position, an error is returned and its position remains unchanged.

Parameter(s)

cursor — pointer to a cursor to move the subcursor in use one position forward from its current position. If the

pointer is NULL, the cursor in use will move the subcursor one position forward from its current position

instead.
Return
HDFQL_SUCCESS

HDFQL_ERROR

Example(s)

// create a dataset named "my dataset" of type variable int of two dimensions

hdfql execute ("CREATE DATASET my dataset

// insert (i.e. write) values into dataset "my dataset"”

hdfql execute("INSERT INTO my dataset VALUES(((7,

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM r

S

1y dataset");

AS VARINT (2,

(size 2x2)

(4, 0)))");

Version 1.2.0

Page 52 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// move the cursor in use to the first position within the result set

hdfgl cursor first (NULL);

// display position of subcursor in use within the result set (should be -1 - i.e.
HDFQL UNDEFINED)

printf("Position of subcursor is $d\n", hdfgl subcursor get position(NULL));

// move the subcursor in use to the next position within the result subset (two times)
hdfgl subcursor next (NULL) ;
hdfqgl subcursor next (NULL) ;

// display (again) position of subcursor in use within the result subset (should be 2)

printf("Position of subcursor is %d\n", hdfql subcursor get position(NULL));

5.2.19 HDFQL_CURSOR_PREVIOUS

Syntax
int hdfql_cursor_previous(HDFQL_CURSOR *cursor)

Description

Move the cursor in use one position backward from its current position. In other words, the cursor will point to
the previous element of the result set and its position is decremented by one. If the result set is empty or the

cursor is in the first position, an error is returned and its position remains unchanged.

Parameter(s)

cursor — pointer to a cursor to move one position backward from its current position. If the pointer is NULL, the

cursor in use will move one position backward from its current position instead.
Return
HDFQL_SUCCESS

HDFQL_ERROR

Version 1.2.0 Page 53 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create a dataset named "my dataset" of type float of two dimensions (size 2x10)

hdfgl execute ("CREATE DATASET my dataset AS FLOAT (2, 10)");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset");

// move the cursor in use to the last position within the result set

hdfql cursor last (NULL) ;

// move the cursor in use to the previous position within the result set

hdfql_cursor_previ ous (NULL) ;

// display position of cursor in use within the result set (should be 19 - i.e. 2x10-1)

printf("Position of cursor is %d\n", hdfql cursor get position(NULL));

5.2.20 HDFQL_SUBCURSOR_PREVIOUS

Syntax
int hdfql_subcursor_previous(HDFQL CURSOR *cursor)

Description

Move the subcursor in use one position backward from its current position. In other words, the subcursor will
point to the previous element of the result subset and its position is decremented by one. If the result subset is

empty or the subcursor is in the first position, an error is returned and its position remains unchanged.

Parameter(s)

cursor — pointer to a cursor to move the subcursor in use one position backward from its current position. If the
pointer is NULL, the cursor in use will move the subcursor one position backward from its current position

instead.
Return

HDFQL_SUCCESS

Version 1.2.0 Page 54 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

HDFQL_ERROR

Example(s)

// create a dataset named "my dataset" of type variable int of two dimensions (size 2x2)

hdfgl execute ("CREATE DATASET my dataset AS VARINT (2, 2)");

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) dataset "my dataset"” and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfgl cursor first (NULL);

// move the subcursor in use to the last position within the result subset

hdfql subcursor last (NULL) ;

// move the subcursor in use to the previous position within the result subset (two
times)

hdfgl subcursor previous (NULL);

hdfgl subcursor previous (NULL);

// display position of the subcursor within the result subset (should be 1 - i.e. 3-1-1)
printf("Position of subcursor is $d\n", hdfqgl subcursor get position(NULL));

5.2.21 HDFQL_CURSOR_ABSOLUTE

Syntax

int hdfql_cursor_absolute(HDFQL_CURSOR *cursor, int position)

Description

Move the cursor in use to an absolute position position within the result set. If position is positive, the cursor
will position itself with reference to the beginning of the result set. If position is negative, the cursor will
position itself with reference to the end of the result set. The first element of the result set is at position one

(1), while the last element is located at the position returned by hdfgl_cursor_get _count. An attempt to move

Version 1.2.0 Page 55 of 203

Hierarchical Data Format query language (HDFql)

Reference Manual

the cursor before the first element will return an error and set the position of the cursor to zero, while an

attempt to move the cursor after the last element will return an error and set the position of the cursor to

number of elements in the result set plus one.

Parameter(s)

cursor — pointer to a cursor to move to an absolute position within the result set. If the pointer is NULL, the

cursor in use will be moved to an absolute position instead.
position — absolute position to which to move the cursor.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Example(s)

// create six HDF groups named "gl", "g2", "g3", '"g4" and "g5"
hdfgl execute ("CREATE GROUP gl, g2, g3, g4, gb");

// populate cursor in use with all existing groups (should be gl, g2, g3, g4, g5)

hdfql execute ("SHOW GROUP") ;

// move the cursor in use to absolute position 3 within the result set

hdfql cursor absolute(NULL, 3);

// display current element of the cursor in use within the result set (should be g3)

printf("Current element of cursor is %s", hdfgl cursor get char(NULL));

// move the cursor in use to absolute position -2 within the result set

hdfql cursor absolute(NULL, -7);

// display current element of the cursor in use within the result set (should be g4)

printf("Current element of cursor is %s'", hdfgl cursor get char (NULL)) ;

Version 1.2.0

Page 56 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.22 HDFQL_SUBCURSOR_ABSOLUTE

Syntax

int hdfql_subcursor_absolute(HDFQL_CURSOR *cursor, int position)

Description

Move the subcursor in use to an absolute position position within the result subset. If position is positive, the
subcursor will position itself with reference to the beginning of the result subset. If position is negative, the
subcursor will position itself with reference to the end of the result subset. The first element of the result
subset is at position one (1), while the last element is located at the position returned by
hdfgl_subcursor_get count. An attempt to move the subcursor before the first element will return an error
and set the position of the subcursor to zero, while an attempt to move the subcursor after the last element

will return an error and set the position of the subcursor to number of elements in the result subset plus one.

Parameter(s)

cursor — pointer to a cursor to move the subcursor in use to an absolute position within the result subset. If the

pointer is NULL, the cursor in use will move the subcursor to an absolute position instead.
position — absolute position to which to move the subcursor.

Return

HDFQL_SUCCESS

HDFQL_ERROR

Example(s)

// create a dataset named "my dataset" of type variable int of two dimensions (size 2x2)

hdfql execute ("CREATE DZ my dataset AS VARINT (2, 2)");
// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

Version 1.2.0 Page 57 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// move the cursor in use to the first position within the result set

hdfgl cursor first (NULL);

// move the subcursor in use to absolute position 3 within the result subset

hdfql subcursor absolute (NULL, 3);

// display current element of the subcursor in use within the result subset (should be 5)

printf("Current element of subcursor is 3%d", hdfql_cursor_get_int(NULL)),'

// move the subcursor in use to absolute position -2 within the result subset

hdfgl subcursor absolute (NULL, -7);

// display current element of the subcursor in use within the result subset (should be 8)

printf("Current element of subcursor is 2d", hdfgl cursor get int (NULL));

5.2.23 HDFQL_CURSOR_RELATIVE

Syntax

int hdfgl_cursor_relative(HDFQL_CURSOR *cursor, int position)

Description

Move the cursor in use to a relative position position with respect to its current position. If position is positive,
the cursor will go forward in the result set relative to its current position. If position is negative, the cursor will
go backward in the result set relative to its current position. The first element of the result set is at position one
(1), while the last element is located at the position returned by hdfgl_cursor_get _count. An attempt to move
the cursor before the first element will return an error and set the position of the cursor to zero, while an
attempt to move the cursor after the last element will return an error and set the position of the cursor to

number of elements in the result set plus one.

Parameter(s)

cursor — pointer to a cursor to move to a relative position with respect to its current position. If the pointer is

NULL, the cursor in use will be moved to a relative position instead.

position — relative position to which to move the cursor.

Version 1.2.0 Page 58 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Return
HDFQL_SUCCESS

HDFQL_ERROR

Example(s)

// create six HDF groups named "gl", "g2", "g3", '"g4" and "g5"
hdfgl execute ("CREATE GROUP gl, g2, g3, g4, gb");

// populate cursor in use with all existing groups (should be gl, g2, g3, g4, g5)
hdfql execute ("SHOW GROUP") ;

// move the cursor in use to the first position within the result set

hdfql cursor first(NULL);

// move the cursor in use to relative position 2 within the result set

hdfgl cursor relative (NULL, 2);

// display current element of the cursor within the result set (should be g3)

printf("Current element of cursor is %s'", hdfgl cursor get char (NULL));

// move the cursor in use to relative position -2 within the result set

hdfgl cursor relative(NULL, -7);

// display current element of the cursor within the result set (should be gl)

printf("Current element of cursor is %s", hdfgl cursor get char(NULL));

5.2.24 HDFQL_SUBCURSOR_RELATIVE
Syntax
int hdfgl_subcursor_relative(HDFQL_CURSOR *cursor, int position)

Description

Move the subcursor in use to a relative position position with respect to its current position. If position is

positive, the subcursor will go forward in the result set relative to its current position. If position is negative,

Version 1.2.0 Page 59 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

the subcursor will go backward in the result set relative to its current position. The first element of the result
subset is at position one (1), while the last element is located at the position returned by
hdfgl_subcursor_get _count. An attempt to move the subcursor before the first element will return an error
and set the position of the subcursor to zero, while an attempt to move the subcursor after the last element

will return an error and set the position of the subcursor to number of elements in the result set plus one.

Parameter(s)

cursor — pointer to a cursor to move the subcursor in use to a relative position with respect to its current

position. If the pointer is NULL, the cursor in use will move the subcursor to a relative position instead.
position — relative position to which to move the subcursor.

Return

HDFQL_SUCCESS

HDFQL_ERROR

Example(s)

// create a dataset named "my dataset" of type variable int of two dimensions (size 2x2)

hdfgl execute ("CREATE DATASET my dataset AS VARINT (2, 2)");

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfql cursor first (NULL);

// move the subcursor in use to the first position within the result subset

hdfql subcursor first (NULL);

// move the subcursor in use to relative position 2 within the result subset

hdfgl subcursor relative (NULL, 2);

// display current element of the subcursor in use within the result subset (should be 5)

Version 1.2.0 Page 60 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

printf("Current element of subcursor is 3%d", hdfql_cursor_get_int (NULL)) ;

// move the subcursor in use to relative position -1 within the result subset

hdfql subcursor relative(NULL, -1);

// display current element of the subcursor in use within the result subset (should be 8)

printf ("Current element of subcursor is $d", hdfgl cursor get int (NULL));

5.2.25 HDFQL_CURSOR_GET_SIZE

Syntax
int hdfql_cursor_get_size(HDFQL_CURSOR *cursor)

Description

Get the current element size (in bytes) of the cursor in use. If the result set it empty or the cursor is located

before or after the first or last element of the result set, the returned size is undefined (HDFQL_UNDEFINED).

Parameter(s)

cursor — pointer to a cursor to get the current element size (in bytes). If the pointer is NULL, the current

element size of the cursor in use is returned instead.
Return

int — current element size (in bytes) of the cursor.

Example(s)

// create an HDF group named "my group"

hdfgl execute ("CREATE GROUP my group");

// populate cursor in use with all existing groups (should be my group)

hdfgl execute ("SHOW GROUP") ;

// move the cursor in use to the first position within the result set

hdfqgl cursor first (NULL);

Version 1.2.0 Page 61 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// display current element size (in bytes) of the cursor in use within the result set
(should be 8 — i.e. 8x1)

printf("Current element size (in bytes) of cursor is %d\n", hdfgl cursor get size(NULL));

5.2.26 HDFQL_SUBCURSOR_GET_SIZE

Syntax

int hdfql_subcursor_get_size(HDFQL_CURSOR *cursor)

Description

Get the current element size (in bytes) of the subcursor in use. If the result subset it empty or the subcursor is
located before or after the first or last element of the result subset, the returned size is undefined

(HDFQL_UNDEFINED).

Parameter(s[

cursor — pointer to a cursor to get the current element size (in bytes) of the subcursor in use. If the pointer is

NULL, the current element size of the cursor in use is returned instead.
Return

int — current element size (in bytes) of the subcursor.

Example(s)

// create a dataset named "my dataset" of type variable char of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS VARCHAR(3)");

// insert (i.e. write) values into dataset "my dataset"”

hdfgl execute("INSERT INTO my dataset VALUES (Red, Green, Blue)");

// select (i.e. read) dataset "my dataset"” and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

Version 1.2.0 Page 62 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

hdfqgl cursor first (NULL);

// move the subcursor in use to the first position within the result subset

hdfqgl subcursor first (NULL);

// display current element size (in bytes) of the subcursor within the result subset
(should be 3 - i.e. 3x1)
printf("Current element size (in bytes) of subcursor is %d\n",

hdfql subcursor get size(NULL));

5.2.27 HDFQL_CURSOR_GET

Syntax

void *hdfgl_cursor_get(HDFQL_CURSOR *cursor)

Description

Get the current element of the cursor in use as a generic (typeless) pointer. It is up to the programmer to
interpret the returned pointer according to their needs. If the result set it empty or the cursor is located before

or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a generic (typeless) pointer. If the pointer is NULL,

the current element of the cursor in use is returned instead.
Return

void — generic (typeless) pointer to the current element of the cursor in use. If there is no current element, the

pointer is NULL.

Example(s)

// create a dataset named "my dataset" of type float of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS FLOAT(3)");

inser l1.e. write values 1nto atase m atase
// 1 t (1 i te) 1 into dataset "my dataset”

Version 1.2.0 Page 63 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

hdfql execute("INSERT INTO my dataset VALUES (5.5, 8.1, 4.9)");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as a float (should be 5.5)

printf("Current element of cursor is %f\n", (float *) hdfgl cursor get (NULL));

5.2.28 HDFQL_SUBCURSOR_GET

Syntax

void *hdfgl_subcursor_get(HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as a generic (typeless) pointer. It is up to the programmer to
interpret the returned pointer according to their needs. If the result subset it empty or the subcursor is located

before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as a generic (typeless) pointer. If

the pointer is NULL, the current element of the cursor in use is returned instead.
Return

void — generic (typeless) pointer to the current element of the subcursor in use. If there is no current element,

the pointer is NULL.

Example(s)

// create a dataset named "my dataset" of type variable float of one dimension (size 3)

hdfgl execute ("CREATE DATASET my dataset AS VARFLOAT(3)");

Version 1.2.0 Page 64 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES((5.5, 2.2), (8.1), (4.9, 3.4, 5.6))");

// select (i.e. read) dataset "my dataset"” and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a float (should be 5.5)

printf("Current element of subcursor is $f\n", (float *) hdfql subcursor get (NULL))

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a float (should be 2.2)

printf("Current element of subcursor is $f\n", (float *) hdfqgl subcursor get (NULL))

5.2.29 HDFQL_CURSOR_GET_TINYINT

Syntax

char *hdfql_cursor_get_tinyint(HDFQL_CURSOR *cursor)

Description

Get the current element of the cursor in use as a TINYINT. In other words, the current element is interpreted as
a “char” C type and returned as a pointer of such type. If the result set is empty or the cursor is located before

or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a TINYINT. If the pointer is NULL, the current element

of the cursor in use is returned instead.

Version 1.2.0 Page 65 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Return

char — pointer to the current element of the cursor in use. If there is no current element, the pointer will be

NULL.

Example(s)

// create a dataset named "my dataset" of type char of one dimension (size 3)

hdfgl execute("CREATE DATASET my dataset AS TINYINT(3)");

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute ("INSERT INTO my dataset VALUES (12, 34, 23)");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as a char (should be 12)

printf("Current element of cursor is 3%d\n", *hdfgl cursor get tinynt (NULL))

5.2.30 HDFQL_SUBCURSOR_GET_TINYINT

Syntax

char *hdfql_subcursor_get_tinyint(HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as a TINYINT. In other words, the current element is
interpreted as a “char” C type and returned as a pointer of such type. If the result subset is empty or the

subcursor is located before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as a TINYINT. If the pointer is

NULL, the current element of the cursor in use is returned instead.

Version 1.2.0 Page 66 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Return

char — pointer to the current element of the subcursor in use. If there is no current element, the pointer will be

NULL.

Example(s)

// create a dataset named "my dataset" of type variable char of one dimension (size 3)

hdfqgl execute("CREATE DATASET my dataset AS VARTINYINT (3)");

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as a char (should be 5)

printf("Current element of cursor is 3%d\n", *hdfgl cursor get tinynt (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a char (should be 5)

printf("Current element of subcursor is %d\n", *hdfqgl subcursor get tinyint (NULL))

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a char (should be 2)

printf("Current element of subcursor is $%d\n", *hdfql subcursor get tinyint (NULL));

Version 1.2.0 Page 67 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.31 HDFQL_CURSOR_GET_UNSIGNED_TINYINT

Syntax
unsigned char *hdfgl_cursor_get_unsigned_tinyint(HDFQL_CURSOR *cursor)

Description

Get the current element of the cursor in use as an UNSIGNED TINYINT. In other words, the current element is
interpreted as an “unsigned char” C type and returned as a pointer of such type. If the result set is empty or the

cursor is located before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a UNSIGNED TINYINT. If the pointer is NULL, the

current element of the cursor in use is returned instead.
Return

unsigned char — pointer to the current element of the cursor in use. If there is no current element, the pointer

will be NULL.

Example(s)

// create a dataset named "my dataset" of type unsigned char of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS UNSIGNED TINYINT(3)");

// insert (i.e. write) values into dataset "my dataset"

b

=
&
nn
—~
I~
N
N

hdfgl execute ("INSERT INTO my dataset VALU! 34, 23)");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned char (should be 12)

printf("Current element of cursor is ?%u\n", *hdfqgl cursor get unsigned tinyint (NULL));

Version 1.2.0 Page 68 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.32 HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINT

Syntax

unsigned char *hdfgl_subcursor_get_unsigned_tinyint(HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as an UNSIGNED TINYINT. In other words, the current element
is interpreted as an “unsigned char” C type and returned as a pointer of such type. If the result subset is empty
or the subcursor is located before or after the first or last element of the result subset, the returned element is

NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as an UNSIGNED TINYINT. If the

pointer is NULL, the current element of the cursor in use is returned instead.
Return

unsigned char — pointer to the current element of the subcursor in use. If there is no current element, the

pointer will be NULL.

Example(s)

// create a dataset named "my dataset" of type variable unsigned char of one dimension
(size 3)

hdfgl execute ("CREATE DATASET my dataset AS UNSIGNED VARTINYINT (3)");

// insert (i.e. write) values into dataset "my dataset"”

hdfgl execute ("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) dataset "my dataset"” and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned char (should be 5)

Version 1.2.0 Page 69 of 203

Hierarchical Data Format query language (HDFql)

Reference Manual

printf("Current element of cursor is 2%u\n", *hdfql cursor get unsigned tinynt (NULL))

// move the subcursor in use to next position within the
position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as an
printf("Current element of subcursor is %u\n",

*hdfgl subcursor get unsigned tinyint (NULL));

// move the subcursor in use to next position within the
position)

hdfql subcursor next (NULL);

// display current element of the subcursor in use as an
printf("Current element of subcursor is %u\n",

*hdfql subcursor get unsigned tinyint (NULL));

result subset (i.e. first

unsigned char (should be 5)

result subset (i.e. second

unsigned char (should be 2)

5.2.33 HDFQL_CURSOR_GET_SMALLINT

Syntax

short *hdfqgl_cursor_get_smallint(HDFQL_CURSOR *cursor)

Description

Get the current element of the cursor in use as a SMALLINT. In other words, the current element is interpreted

as a “short” C type and returned as a pointer of such type. If the result set is empty or the cursor is located

before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a SMALLINT. If the pointer is NULL, the current

element of the cursor in use is returned instead.

Version 1.2.0

Page 70 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Return

short — pointer to the current element of the cursor in use. If there is no current element, the pointer will be

NULL.

Example(s)

// create a dataset named "my dataset" of type short of one dimension (size 3)

hdfgl execute("CREATE DATASET my dataset AS SMALLINT(3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql_execute("INSERT INTO my dataset VALUES (12, 34, 23) ") ;

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as a short (should be 12)

printf("Current element of cursor is %d\n", *hdfqgl cursor get smallint (NULL));

5.2.34 HDFQL_SUBCURSOR_GET_SMALLINT

Syntax

short *hdfql_subcursor_get_smallint(HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as a SMALLINT. In other words, the current element is
interpreted as a “short” C type and returned as a pointer of such type. If the result subset is empty or the

subcursor is located before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as a SMALLINT. If the pointer is

NULL, the current element of the cursor in use is returned instead.

Version 1.2.0 Page 71 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Return

short — pointer to the current element of the subcursor in use. If there is no current element, the pointer will

be NULL.

Example(s)

// create a dataset named "my dataset" of type variable short of one dimension (size 3)

hdfqgl execute("CREATE DATASET my dataset AS VARSMALLINT (3)");

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as a short (should be 5)

printf("Current element of cursor is %d\n", *hdfqgl cursor get smallint (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a short (should be 5)

printf("Current element of subcursor is %d\n", *hdfql subcursor get smallint (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a short (should be 2)

printf("Current element of subcursor is %d\n", *hdfql subcursor get smallint (NULL))

Version 1.2.0 Page 72 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.35 HDFQL_CURSOR_GET_UNSIGNED_SMALLINT

Syntax
unsigned short *hdfgl_cursor_get_unsigned_smallint(HDFQL_CURSOR *cursor)

Description

Get the current element of the cursor in use as an UNSIGNED SMALLINT. In other words, the current element is
interpreted as an “unsigned short” C type and returned as a pointer of such type. If the result set is empty or

the cursor is located before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as an UNSIGNED SMALLINT. If the pointer is NULL, the

current element of the cursor in use is returned instead.
Return

unsigned short — pointer to the current element of the cursor in use. If there is no current element, the pointer

will be NULL.

Example(s)

// create a dataset named "my dataset" of type unsigned short of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS UNSIGNED SMALLINT (3)");

// insert (i.e. write) values into dataset "my dataset"

b

=
&
nn
—~
I~
N
N

hdfgl execute ("INSERT INTO my dataset VALU! 34, 23)");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned short (should be 12)

printf("Current element of cursor is %u\n", *hdfgl cursor get unsigned smallint (NULL))

Version 1.2.0 Page 73 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.36 HDFQL_SUBCURSOR_GET_UNSIGNED_SMALLINT

Syntax

unsigned short *hdfgl_subcursor_get_unsigned_smallint(HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as an UNSIGNED SMALLINT. In other words, the current
element is interpreted as an “unsigned short” C type and returned as a pointer of such type. If the result subset
is empty or the subcursor is located before or after the first or last element of the result subset, the returned

element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as an UNSIGNED SMALLINT. If

the pointer is NULL, the current element of the cursor in use is returned instead.
Return

unsigned short — pointer to the current element of the subcursor in use. If there is no current element, the

pointer will be NULL.

Example(s)

// create a dataset named "my dataset" of type variable unsigned short of one dimension
(size 3)

hdfgl execute ("CREATE DATASET my dataset AS UNSIGNED VARSMALLINT (3)");

// insert (i.e. write) values into dataset "my dataset"”

hdfgl execute ("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) dataset "my dataset"” and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned short (should be 5)

Version 1.2.0 Page 74 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

printf("Current element of cursor is 3%u\n", *hdfqgl cursor get unsigned smallint (NULL))

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as an unsigned short (should be 5)
printf("Current element of subcursor is %u\n",

*hdfgl subcursor get unsigned smallint (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfql subcursor next (NULL);

// display current element of the subcursor in use as an unsigned short (should be 2)
printf("Current element of subcursor is %u\n",

o
*hdfql subcursor get unsigned smallint (NULL));

5.2.37 HDFQL_CURSOR_GET_INT

Syntax

int *hdfgl_cursor_get_int(HDFQL_CURSOR *cursor)

Description

Get the current element of the cursor in use as an INT. In other words, the current element is interpreted as an
“int” C type and returned as a pointer of such type. If the result set is empty or the cursor is located before or

after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as an INT. If the pointer is NULL, the current element of

the cursor in use is returned instead.

Version 1.2.0 Page 75 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Return

int — pointer to the current element of the cursor in use. If there is no current element, the pointer will be

NULL.

Example(s)

// create a dataset named "my dataset" of type int of one dimension (size 3)

hdfgl execute("CREATE DATASET my dataset AS INT(3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql_execute("INSERT INTO my dataset VALUES (12, 34, 23) ") ;

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as an unsigned short (should be 12)

printf("Current element of cursor is 3%d\n", *hdfgl cursor get int (NULL));

5.2.38 HDFQL_SUBCURSOR_GET_INT

Syntax

int *hdfql_subcursor_get_int(HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as an INT. In other words, the current element is interpreted as
an “int” C type and returned as a pointer of such type. If the result subset is empty or the subcursor is located

before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as an INT. If the pointer is NULL,

the current element of the cursor in use is returned instead.

Version 1.2.0 Page 76 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Return

int — pointer to the current element of the subcursor in use. If there is no current element, the pointer will be

NULL.

Example(s)

// create a dataset named "my dataset" of type variable int of one dimension (size 3)

hdfql execute("CREATE DATASET my dataset AS VARINT (3)");

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as an int (should be 5)

printf("Current element of cursor is 3%d\n", *hdfgl cursor get int (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as an int (should be 5)

printf("Current element of subcursor is %d\n", *hdfql subcursor get int (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as an int (should be 2)

printf("Current element of subcursor is %d\n", *hdfql subcursor get int (NULL));

Version 1.2.0 Page 77 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.39 HDFQL_CURSOR_GET_UNSIGNED_INT

Syntax
unsigned int *hdfgl_cursor_get_unsigned_int(HDFQL_CURSOR *cursor)

Description

Get the current element of the cursor in use as an UNSIGNED INT. In other words, the current element is
interpreted as an “unsigned int” C type and returned as a pointer of such type. If the result set is empty or the

cursor is located before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as an UNSIGNED INT. If the pointer is NULL, the current

element of the cursor in use is returned instead.
Return

unsigned int — pointer to the current element of the cursor in use. If there is no current element, the pointer

will be NULL.

Example(s)

// create a dataset named "my dataset" of type unsigned int of one dimension (size 3)
hdfql execute ("CREATE DATASET my dataset AS UNSIGNED INT(3)");

// insert (i.e. write) values into dataset "my dataset"”

hdfql execute("INSERT INTO my dataset VALUES (12, 34, 23)");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned int (should be 12)

printf("Current element of cursor is ?%u\n", *hdfgl cursor get unsigned int (NULL));

Version 1.2.0 Page 78 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.40 HDFQL_SUBCURSOR_GET_UNSIGNED_INT

Syntax

unsigned int *hdfgl_subcursor_get_unsigned_int(HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as an UNSIGNED INT. In other words, the current element is
interpreted as an “unsigned int” C type and returned as a pointer of such type. If the result subset is empty or
the subcursor is located before or after the first or last element of the result subset, the returned element is

NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as an UNSIGNED INT. If the

pointer is NULL, the current element of the cursor in use is returned instead.
Return

unsigned int — pointer to the current element of the subcursor in use. If there is no current element, the

pointer will be NULL.

Example(s)

// create a dataset named "my dataset" of type variable unsigned int of one dimension
(size 3)

hdfgl execute ("CREATE DATASET my dataset AS UNSIGNED VARINT(3)");

// insert (i.e. write) values into dataset "my dataset"”

hdfgl execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) dataset "my dataset"” and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned int (should be 5)

Version 1.2.0 Page 79 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

printf("Current element of cursor is 2%u\n", *hdfqgl cursor get unsigned int (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as an unsigned int (should be 5)

printf("Current element of subcursor is %u\n", *hdfql subcursor get unsigned int (NULL))

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as an unsigned int (should be 2)

printf("Current element of subcursor is %u\n", *hdfql subcursor get unsigned int (NULL));

5.2.41 HDFQL_CURSOR_GET_BIGINT

Syntax

long long *hdfgl_cursor_get_bigint(HDFQL_CURSOR *cursor)

Description

Get the current element of the cursor in use as a BIGINT. In other words, the current element is interpreted as
a “long long” C type and returned as a pointer of such type. If the result set is empty or the cursor is located

before or after the first or last element of the result set, the returned element is NULL.

Parameter(sl

cursor — pointer to a cursor to get the current element as a BIGINT. If the pointer is NULL, the current element

of the cursor in use is returned instead.
Return

long long — pointer to the current element of the cursor in use. If there is no current element, the pointer will

be NULL.

Version 1.2.0 Page 80 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create a dataset named "my dataset" of type long long of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS BIGINT(3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES (12, 34, 23)");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a long long (should be 12)

printf("Current element of cursor is $%11d\n", *hdfgl cursor get bigint (NULL));

5.2.42 HDFQL_SUBCURSOR_GET_BIGINT

Syntax
long long *hdfql_subcursor_get bigint(HDFQL _CURSOR *cursor)

Description

Get the current element of the subcursor in use as a BIGINT. In other words, the current element is interpreted
as a “long long” C type and returned as a pointer of such type. If the result subset is empty or the subcursor is

located before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as a BIGINT. If the pointer is

NULL, the current element of the cursor in use is returned instead.
Return

long long — pointer to the current element of the subcursor in use. If there is no current element, the pointer

will be NULL.

Version 1.2.0 Page 81 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create a dataset named "my dataset" of type variable long long of one dimension (size
3)
hdfql execute("CREATE DATASET my dataset AS VARBIGINT (3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as a long long (should be 5)

printf("Current element of cursor is $%11d\n", *hdfgl cursor get bigint (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a long long (should be 5)

printf("Current element of subcursor is %11d\n", *hdfql subcursor get bigint (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a long long (should be 2)

printf("Current element of subcursor is %11d\n", *hdfql subcursor get bigint (NULL));

5.2.43 HDFQL_CURSOR_GET_UNSIGNED_BIGINT

Syntax

unsigned long long *hdfgl_cursor_get_unsigned_bigint(HDFQL_CURSOR *cursor)

Version 1.2.0 Page 82 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get the current element of the cursor in use as an UNSIGNED BIGINT. In other words, the current element is
interpreted as an “unsigned long long” C type and returned as a pointer of such type. If the result set is empty

or the cursor is located before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as an UNSIGNED BIGINT. If the pointer is NULL, the

current element of the cursor in use is returned instead.
Return

unsigned long long — pointer to the current element of the cursor in use. If there is no current element, the

pointer will be NULL.

Example(s)

// create a dataset named "my dataset" of type unsigned long long of one dimension (size
3)

hdfgl execute ("CREATE DATASET my dataset AS UNSIGNED BIGINT(3)");

// insert (i.e. write) values into dataset "my dataset"”

hdfgl execute("INSERT INTO my dataset VALUES (12, 34, 23)");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned long long (should be 12)

printf("Current element of cursor is $%l1lu\n", *hdfgl cursor get unsigned bigint (NULL));

Version 1.2.0 Page 83 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.44 HDFQL_SUBCURSOR_GET_UNSIGNED_BIGINT

Syntax

unsigned long long *hdfql_subcursor_get_unsigned_bigint(HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as an UNSIGNED BIGINT. In other words, the current element is
interpreted as an “unsigned long long” C type and returned as a pointer of such type. If the result subset is
empty or the subcursor is located before or after the first or last element of the result subset, the returned

element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as an UNSIGNED BIGINT. If the

pointer is NULL, the current element of the cursor in use is returned instead.
Return

unsigned long long — pointer to the current element of the subcursor in use. If there is no current element, the

pointer will be NULL.

Example(s)

// create a dataset named "my dataset" of type variable unsigned long long of one
dimension (size 3)

hdfgl execute ("CREATE DATASET my dataset AS UNSIGNED VARBIGINT (3)");

// insert (i.e. write) values into dataset "my dataset"”

hdfgl execute ("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) dataset "my dataset"” and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned long long (should be 5)

Version 1.2.0 Page 84 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

printf("Current element of cursor is %llu\n", *hdfql cursor get unsigned bigint (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as an unsigned long long (should be 5)
printf("Current element of subcursor is %llul\n",

*hdfgl subcursor get unsigned bigint (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfql subcursor next (NULL);

// display current element of the subcursor in use as an unsigned long long (should be 2)

printf("Current element of subcursor is $%l1lul\n",

)

*hdfql subcursor get unsigned bigint (NULL));

5.2.45 HDFQL_CURSOR_GET_FLOAT

Syntax

float *hdfgl_cursor_get float(HDFQL_CURSOR *cursor)

Description

Get the current element of the cursor in use as a FLOAT. In other words, the current element is interpreted as a
“float” C type and returned as a pointer of such type. If the result set is empty or the cursor is located before or

after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a FLOAT. If the pointer is NULL, the current element

of the cursor in use is returned instead.

Version 1.2.0 Page 85 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Return

float — pointer to the current element of the cursor in use. If there is no current element, the pointer will be

NULL.

Example(s)

// create a dataset named "my dataset" of type float of one dimension (size 3)

hdfgl execute ("CREATE DATASET my dataset AS FLOAT(3)");

// insert (i.e. write) values into dataset "my dataset"

=

hdfgl execute ("INSERT INTO my dataset VALUES (5.5, 8.1, 4.9)");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as a float (should be 5.5)

printf("Current element of cursor is %f\n", *hdfgl cursor get float (NULL))

5.2.46 HDFQL_SUBCURSOR_GET_FLOAT

Syntax

float *hdfgl_subcursor_get_float(HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as a FLOAT. In other words, the current element is interpreted
as a “float” C type and returned as a pointer of such type. If the result subset is empty or the subcursor is

located before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as a FLOAT. If the pointer is

NULL, the current element of the cursor in use is returned instead.

Version 1.2.0 Page 86 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Return

float — pointer to the current element of the subcursor in use. If there is no current element, the pointer will be

NULL.

Example(s)

// create a dataset named "my dataset" of type variable float of one dimension (size 3)

hdfqgl execute("CREATE DATASET my dataset AS VARFLOAT(3)");

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute ("INSERT INTO my dataset VALUES((7.5, 3.1), (4.5), (4.9, 3.2, 9.7, 8.8))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as a float (should be 7.5)

printf("Current element of cursor is %f\n", *hdfgl cursor get float (NULL))

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a float (should be 7.5)

printf("Current element of subcursor is 3f\n", *hdfql subcursor get float (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a float (should be 3.1)

printf("Current element of subcursor is $f\n", *hdfql subcursor get float (NULL))

Version 1.2.0 Page 87 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.47 HDFQL_CURSOR_GET_DOUBLE

Syntax

double *hdfql_cursor_get_double(HDFQL_CURSOR *cursor)

Description

Get the current element of the cursor in use as a DOUBLE. In other words, the current element is interpreted as
a “double” C type and returned as a pointer of such type. If the result set is empty or the cursor is located

before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a DOUBLE. If the pointer is NULL, the current element

of the cursor in use is returned instead.
Return

double — pointer to the current element of the cursor in use. If there is no current element, the pointer will be

NULL.

Example(s)

// create a dataset named "my dataset" of type double of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS DOUBLE (3)");

// insert (i.e. write) values into dataset "my dataset"”

hdfql execute("INSERT INTO my dataset VALUES (5.5, 8.1, 4.9)");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a double (should be 5.5)

printf("Current element of cursor is %f\n", *hdfgl cursor get double (NULL));

Version 1.2.0 Page 88 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.48 HDFQL_SUBCURSOR_GET_DOUBLE

Syntax

double *hdfql_subcursor_get_double(HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as a DOUBLE. In other words, the current element is
interpreted as a “double” C type and returned as a pointer of such type. If the result subset is empty or the

subcursor is located before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as a DOUBLE. If the pointer is

NULL, the current element of the cursor in use is returned instead.
Return

double — pointer to the current element of the subcursor in use. If there is no current element, the pointer will

be NULL.

Example(s)

// create a dataset named "my dataset" of type variable double of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS VARDOUBLE (3)");

// insert (i.e. write) values into dataset "my dataset"”

hdfql execute("INSERT INTO my dataset VALUES((7.5, 3.1), (4.5), (4.9, 3.2, 9.7, 8.8))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a double (should be 7.5)

printf("Current element of cursor is %f\n", *hdfgl cursor get double (NULL));

// move the subcursor in use to next position within the result subset (i.e. first

Version 1.2.0 Page 89 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a double (should be 7.5)

printf("Current element of subcursor is $f\n", *hdfql subcursor get double (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as a double (should be 3.1)

printf("Current element of subcursor is $f\n", *hdfql subcursor get double (NULL));

5.2.49 HDFQL_CURSOR_GET_CHAR

Syntax

char *hdfql_cursor_get_char(HDFQL _CURSOR *cursor)

Description

Get the current element of the cursor in use as a CHAR (string). In other words, the current element is
interpreted as a “char” C type and returned as a pointer of such type. If the result set is empty or the cursor is

located before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a CHAR (string). If the pointer is NULL, the current

element of the cursor in use is returned instead.
Return

char — pointer to the current element of the cursor in use. If there is no current element, the pointer will be

NULL.

Version 1.2.0 Page 90 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create a dataset named "my dataset" of type char of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS CHAR(3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES (Red)");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a char (should be Red)

printf("Current element of cursor is %s\n", hdfgl cursor get char(NULL));

5.2.50 HDFQL_SUBCURSOR_GET_CHAR

Syntax
char *hdfqgl_subcursor_get char(HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as a CHAR (string). In other words, the current element is
interpreted as a “char” C type and returned as a pointer of such type. If the result subset is empty or the

subcursor is located before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as a CHAR (string). If the pointer

is NULL, the current element of the cursor in use is returned instead.
Return

char — pointer to the current element of the subcursor in use. If there is no current element, the pointer will be

NULL.

Version 1.2.0 Page 91 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create a dataset named "my dataset" of type variable char of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS VARCHAR(3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES (Red, Green, Blue)'");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfqgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a char (should be Red)

printf("Current element of cursor is %s\n", hdfgl cursor get char(NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfql subcursor next (NULL);

// display current element of the subcursor in use as a char (should be Red)

printf("Current element of subcursor is $s\n", hdfql subcursor get char (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfql subcursor next (NULL);

// display current element of the subcursor in use as a char (should be Green)

printf("Current element of subcursor is $s\n", hdfql subcursor get char (NULL));

5.2.51 HDFQL_VARIABLE_REGISTER

Syntax

int hdfgl_variable_register(const void *variable)

Version 1.2.0 Page 92 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Register a variable named variable for subsequent use. In other words, for HDFql to be able to read or write
from/to a user-defined variable it must first be registered. If the operation was successful, the variable is
registered and a number is assigned to it. This number — calculated by HDFgl — starts with zero and is
incremented by one every time a new variable is registered. If a variable is registered more than once, only one
number is assigned to it (namely the number assigned upon the first registering). While in C/C++ any variable

may be registered, the following restrictions apply for other programming languages (supported by HDFql):

e InJava, only an array variable of primitive type (or its corresponding object wrapper class —i.e. boxed) may
be registered. In other words, any attempt to register a variable that is not an array of the following type

will return an error: byte, Byte, short, Short, int, Integer, long, Long, float, Float, double, Double or String.

e In Python, only a variable that is a NumPy array may be registered (if it is not a NumPy array, an error is

returned). Please refer to http://www.numpy.org for additional information.

e In C#, only an array variable of primitive type (or its corresponding object wrapper class — i.e. build-in type)
may be registered. In other words, any attempt to register a variable that is not an array of the following
type will return an error: sbyte, SByte, byte, Byte, short, Int16, ushort, UInt16, int, Int32, uint, UInt32, long,

Int64, ulong, UInt64, float, Single, double, Double, string or String.

In general, it is advisable to register a variable just before executing the HDFql operation which employs it, and
to unregister it as soon as it is no longer used (this is especially relevant in C# where variables are pinned when
registered and thus cannot be moved by the Garbage Collector). This can be done via the function

hdfql_variable_unregister.

Parameter(s)

variable — variable to register for subsequent use.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Version 1.2.0 Page 93 of 203

http://www.numpy.org/

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// declare variables
char script/[1-

short data[3];

// create a dataset named "my dataset" of type short of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS SMALLINT(3)");

// assign values to variable "data"

data[0] = 2
data[l] = ;
data[’] = ;

// register variable "data'" for subsequent use (by HDFql)
hdfql variable register (&data);

// prepare script to insert (i.e. write) values from variable "data" into dataset

"my dataset"

)

sprintf(script, "INSERT INTO my dataset FROM MEMORY 3%u SIZE 3%u'",

&

hdfgl variable get number (&data), (unsigned int) sizeof(data));

// execute script

hdfql execute(script);

5.2.52 HDFQL_VARIABLE_UNREGISTER

Syntax

int hdfgl_variable_unregister(const void *variable)

Description

Unregister a variable named variable. In other words, HDFgl will free up any memory that may have been
allocated to manage the variable as well as the number assigned to it (the number may then be assigned to a
new variable registered subsequently). In general, it is advisable to unregister a variable as soon as it is no

longer used by HDFql (this is especially relevant in C# as variables are unpinned when unregistered and thus

Version 1.2.0 Page 94 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

may again be moved by the Garbage Collector). If the variable has never been registered or has been

unregistered, an error is returned.
Parameter(s)

variable — variable to unregister.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Example(s)

// declare variables
char script[1024];

short data[3];

// create a dataset named "my dataset" of type short of one dimension (size 3)

hdfqgl execute("CREATE DATASET my dataset AS SMALLINT(3)");

// assign values to variable "data"

data[0] =
data[l] = 18;
data[”?] = 75;

// register variable "data" for subsequent use (by HDFql)
hdfql variable register(&data);

// prepare script to insert (i.e. write) values from variable "data" into dataset
"my dataset"
sprintf(script, "INSERT INTO my dataset FROM MEMORY %u SIZE 3%u'",

hdfgl variable get number (&data), (unsigned int) sizeof(data));

// execute script

hdfgl execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)

hdfgl variable unregister (&data);

Version 1.2.0 Page 95 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.53 HDFQL_VARIABLE_GET_NUMBER

Syntax

int hdfql_variable_get_number(const void *variable)

Description

Get the number of a variable named variable. This refers to the number that was calculated by HDFgl and
assigned to the variable upon registering it with the function hdfgl_variable_register. If the variable has never

been registered or has been unregistered, an error is returned.
Parameter(s)

variable — variable to get the number (calculated by HDFql) assigned to it.
Return

>=0

HDFQL_ERROR

Example(s)

// declare variables
short dataO[3],;
float datall[5];

// register variable "dataO" for subsequent use (by HDFql)
hdfgl variable register (&datal);

// register variable "datal" for subsequent use (by HDFqgl)
hdfgl variable register(&datal);

// display number of variable "dataO" (should be 0)

printf ("Number of variable is %d\n'", hdfql variable get number (&data0l));

// display number of variable '"datal" (should be 1)

printf ("Number of variable is %d\n'", hdfql variable get number (&datal));

Version 1.2.0 Page 96 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.54 HDFQL_VARIABLE_GET_DATATYPE

Syntax
int hdfql_variable_get_datatype(const void *variable)

Description

Get the datatype of a variable named variable. If the variable has never been registered, populated, or in case
it has been unregistered, the returned datatype is undefined (HDFQL_UNDEFINED). Please refer to Table 6.3

for a complete enumeration of HDFgl datatypes.

Parameter(s)

variable — variable to get the datatype from.
Return

HDFQL_TINYINT
HDFQL_UNSIGNED_TINYINT
HDFQL_SMALLINT
HDFQL_UNSIGNED_SMALLINT
HDFQL_INT
HDFQL_UNSIGNED_INT
HDFQL_BIGINT
HDFQL_UNSIGNED_BIGINT
HDFQL_FLOAT
HDFQL_DOUBLE
HDFQL_CHAR

HDFQL_VARTINYINT

Version 1.2.0 Page 97 of 203

Hierarchical Data Format query language (HDFql)

HDFQL_UNSIGNED_VARTINYINT
HDFQL_VARSMALLINT
HDFQL_UNSIGNED_VARSMALLINT
HDFQL_VARINT
HDFQL_UNSIGNED_VARINT
HDFQL_VARBIGINT
HDFQL_UNSIGNED_VARBIGINT
HDFQL_VARFLOAT
HDFQL_VARDOUBLE
HDFQL_VARCHAR

HDFQL_UNDEFINED

Example(s)

Reference Manual

// declare variables
char script[1024];

void *data;,

// register variable "data" for subsequent use (by HDFql)
hdfql variable register(&data);

// prepare script to get current working directory and populate variable "data" with it

sprintf(script, "SHOW USE DIRECTORY INTO MEMORY 3%u'", hdfqgl variable get number (&data));

// execute script

hdfqgl execute(script);

// display datatype of variable "data" (should be 1024 - i.e. HDFQL CHAR)
printf("Datatype of variable is $d\n", hdfqgl variable get datatype (&data));

Version 1.2.0

Page 98 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.55 HDFQL_VARIABLE_GET_COUNT

Syntax

int hdfql_variable_get_count(const void *variable)

Description

Get the number of elements (i.e. result set size) stored in a variable named variable. If the result set stores data
from a dataset or attribute that does not have a dimension (i.e. if it is scalar), the returned number of elements
is one. Otherwise, if the result set stores data from a dataset or attribute that has dimensions, the returned
number of elements equals the multiplication of all its dimensions’ sizes (e.g. if a variable stores a result set of
two dimensions of size 10x3, the number of elements is 30). If the variable has never been populated, the

returned number of elements is zero.

Parameter(s)

variable — variable to get the number of elements (i.e. resut set size) from.
Return

>=0

HDFQL_ERROR

Example(s)

// declare variables
char script/[1-

int *data;,

// create a dataset named "my dataset" of type int of two dimensions (size 5x3)

hdfql execute ("CREATE DA!

my dataset AS INT(5, 3)");

// register variable "data'" for subsequent use (by HDFql)
hdfgl variable register(&data);

// prepare script to select (i.e. read) dataset "my dataset"” and populate variable "data"

with it

Version 1.2.0 Page 99 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

sprintf(script, "SELECT FROM my dataset INTO MEMORY 3su',

hdfgl variable get number (&data));

// execute script

hdfqgl execute(script);

// display number of elements in variable "data" (should be 15 - i.e. 5x3)

printf ("Number of elements in variable is %d\n", hdfgl variable get count (&data));

5.2.56 HDFQL_VARIABLE_GET_SIZE

Syntax
int hdfgl_variable_get_size(const void *variable)

Description

Get the size (in bytes) of a variable named variable. If the variable has never been registered or has been
unregistered, an error is returned. If the variable has never been populated, the returned size is zero. Please

refer to Table 6.3 for a complete enumeration of HDFql datatypes and their corresponding sizes (in bytes).
Parameter(sl

variable — variable to get the size (in bytes) from.

Return

>=0

HDFQL_ERROR

Example(s)

// declare variables
char script/[1,

void *data;,

// create a dataset named "my dataset" of type double

Version 1.2.0 Page 100 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

hdfql execute ("CREATE DATASET my dataset AS DOUBLE");

// register variable '"data'" for subsequent use (by HDFql)
hdfql variable register (&data);

// prepare script to select (i.e. read) dataset "my dataset" and populate variable "data'
with it
sprintf(script, "SELECT FROM my dataset INTO MEMORY $u",

hdfqgl variable get number (&data)),;

// execute script

hdfgl execute(script);

// display size (in bytes) of variable '"data'" (should be 8)

printf("Size (in bytes) of variable is %d\n", hdfgl variable get size(&data));

5.2.57 HDFQL_VARIABLE_GET_DIMENSION_COUNT

Syntax

int hdfgl_variable_get_dimension_count(const void *variable)

Description

Get the number of dimensions of a variable named variable. If the variable has never been registered or has
been unregistered, an error is returned. If the variable has never been populated, the returned number of

dimensions is zero.

Parameter(sl
variable — variable to get the number of dimensions from.

Return

HDFQL_ERROR

Version 1.2.0 Page 101 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// declare variables
char script/[1-

int *data;

// create a dataset named "my dataset" of type int of two dimensions (size 5x3)

hdfql execute("CREATE DATASET my dataset AS INT (5, 3)");

// register variable '"data'" for subsequent use (by HDFql)
hdfql variable register (&data);

// prepare script to select (i.e. read) dataset "my dataset" and populate variable "data'
with it
sprintf(script, "SELECT FROM my dataset INTO MEMORY 3su'",

hdfql variable get number (&data)),;

// execute script

hdfgl execute(script);

// display number of dimensions of variable "data" (should be 2)
printf ("Number of dimensions in variable is %d\n",

hdfql variable get dimension count (&data));

5.2.58 HDFQL_VARIABLE_GET_DIMENSION

Syntax

int hdfql_variable_get dimension(const void *variable, int index)

Description

Get the size of a certain dimension specified in index of a variable named variable. The index of the first
dimension is zero (index must be between 0 and the value returned by hdfgl_variable_get dimension_count —
1 inclusive). If the variable has never been registered, populated, or in case it has been unregistered, an error is

returned.

Version 1.2.0 Page 102 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

variable — variable to get the size of one of its dimensions from.
index — index of the dimension to get its size from.

Return

>=0

HDFQL_ERROR

Example(s)

// declare variables
char script[1024];

int *data;

// create a dataset named "my dataset" of type int of two dimensions (size 5x3)

hdfql execute("CREATE DATASET my dataset AS INT(5, 3)");

// register variable "data'" for subsequent use (by HDFql)
hdfgl variable register (&data);

// prepare script to select (i.e. read) dataset "my dataset" and populate variable "data"
with it

sprintf(script, "SELECT FROM my dataset INTO MEMORY 3su'",

hdfql variable get number (&data));

// execute script

hdfql execute(script);

// display size of the first dimension of variable "data" (should be 5)

printf("Size of first dimension of variable is $d\n", hdfgl variable get dimension(0));

// display size of the second dimension of variable "data" (should be 3)

printf("Size of second dimension of variable is %d\n", hdfql variable get dimension(1));

Version 1.2.0 Page 103 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

5.3 EXAMPLES

The following subsections present practical examples on how to use (some of) the HDFql functions previously

described in the C/C++, Java, Python and C# programming languages.

5.3.1 C/C++

// include HDFql header file (make sure it can be found by the C/C++ compiler)
#include "HDFgl.h"

int main(int argc, char *argv[])

{

// declare variables
HDFQL CURSOR my cursor;
2417

int dataf[3][”];

char script[10

int x;

int y;

// display HDFql version in use
printf ("HDFgl version: %s\n", HDFQL VERSION);

// create an HDF file named "example c.hb" and use (i.e. open) it
hdfql execute("CREATE FILE example c.hb5");
hdfql execute("USE FILE example c.h5");

// populate HDFgl default cursor with name of the HDF file in use and display it
hdfql execute("SHOW USE FILE");

hdfgl cursor first (NULL);

printf("File in use: %s\n", hdfgl cursor get char (NULL));

// create an attribute named "example attribute" of type float with a value of 12.4

hdfgl execute("CREATE ATTRIBUTE example attribute AS FLOAT DEFAULT 12.4");

// select (i.e. read) attribute "example attribute" and display its value

hdfgl execute("SELECT FROM example attribute");

hdfql cursor first (NULL);

Version 1.2.0 Page 104 of 203

Hierarchical Data Format query language (HDFql)

Reference Manual

printf("Attribute value: ¢f\n", *hdfgl cursor get float (NULL))

hdfql execute ("CREATE DATASET example dataset AS INT (3, 2)");

// populate variable "data" with certain values

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
data[x][y] =x * 2 +y + 1;
}
}

// register variable "data'" for subsequent use (by HDFql)
hdfgl variable register (&data);

sprintf(script, "INSERT INTO example dataset VALUES FROM MEMORY %u SIZE
hdfql variable get number (&data), (unsigned int) sizeof(data));
hdfql execute(script);

// populate variable "data" with zeros (i.e. reset variable)

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
datal[x][y] = 0;
}
}

// select (i.e. read) dataset "example dataset" into variable "data"

sprintf(script, "SELECT FROM example dataset INTO MEMORY 3%u SIZE 3u",
hdfgl variable get number (&data), (unsigned int) sizeof(data));

hdfql execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)
hdfql variable unregister (&data);

// display content of variable "data"
printf("Variable:\n");

// create a dataset named "example dataset" of type int of two dimensions

Qo

ou

(size 3x2)

"
7

// insert (i.e. write) content of variable "data" into dataset "example dataset"

Version 1.2.0

Page 105 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
printf("2d\n", data[x][y]):
}
}

// another way to select dataset "example dataset" using HDFgl default cursor

hdfql execute("SELECT FROM example dataset");

// display content of HDFgl default cursor
printf("Cursor:\n");
while (hdfgl cursor next (NULL) == HDFQL SUCCESS)
{

printf("sd\n", *hdfql cursor get int (NULL));

// initialize cursor "my cursor" and use it
hdfql cursor initialize(&my cursor);

hdfql cursor use(&my cursor);

// populate cursor "my cursor" with size of dataset "example dataset" and display it
hdfql execute("SHOW SIZE example dataset");

hdfql cursor first(NULL);

printf("Dataset size: ¢d\n", #*hdfql cursor get int (NULL));

return 0;

5.3.2 JAVA

public class HDFglExample
{
public static void main(String args[])
{
// declare variables

HDFglCursor myCursor;

Version 1.2.0 Page 106 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

int datal][];
int x;

int y;

// load HDFql shared library (make sure it can be found by the JVM)
System.loadLibrary ("HDFgl") ;

// display HDFql version in use
System.out.println("HDFgl version: " 4+ HDFql.VERSION)

// create an HDF file named "example java.h5" and use (i.e. open) it
HDFql .execute ("CREATE FILE example java.hb5");
HDFqgl.execute ("USE FILE example java.h5");

// populate HDFql default cursor with name of the HDF file in use and display it
HDFqgl.execute ("SHOW USE FILE");
HDFgl.cursorFirst (null),

System.out.println("File in use: " + HDFql.cursorGetChar (null));,

// create an attribute named "example attribute" of type float with a value of 12.4

HDFqgl.execute ("CREATE ATTRIBUTE example attribute AS FLOAT DEFAULT 12.4");

// select (i.e. read) attribute "example attribute" and display its value
HDFqgl.execute ("SELECT FROM example attribute");
HDFql.cursorFirst (null),

System.out.println("Attribute value: " + HDFql.cursorGetFloat (null));,

// create a dataset named "example dataset" of type int of two dimensions (size

3x2)

HDFql.execute ("CREATE DATASET example dataset AS INT(3, 2)");
// create variable "data" and populate it with certain values
data = new int[3][”];
for(x = 0; x < 3; x++)
{

for(y = 0; y < 2; y++)

{

data[x][y] = x * 2 + y + 1;

}

}
Version 1.2.0 Page 107 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// register variable '"data" for subsequent use (by HDFql)

HDFgl.variableRegister (data),;

// insert (i.e. write) content of variable "data" into dataset "example dataset"
HDFql.execute ("INSERT INTO example dataset VALUES FROM MEMORY " +
HDFqgl.variableGetNumber (data) + " SIZE " + HDFql.variableGetSize (data))

// populate variable "data" with zeros (i.e. reset variable)

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
data[x][y] = 0;
}
}

// select (i.e. read) dataset "example dataset" into variable "data"
HDFqgl.execute ("SELECT FROM example dataset INTO MEMORY " +
HDFqgl.variableGetNumber (data) + " SIZE " + HDFql.variableGetSize (data))

// unregister variable "data" as it is no longer used/needed (by HDFql)

HDFqgl.variableUnregister (data)

// display content of variable "data"
System.out.println("Variable:");
for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
System.out.println(data[x][y]);
}
}

// another way to select dataset "example dataset" using HDFql default cursor

HDFql.execute ("SELECT FROM example dataset");

// display content of HDFql default cursor
System.out.println("Cursor:");
while (HDFql.cursorNext (null) == HDFql.SUCCESS)

{
System.out.println (HDFql.cursorGetInt (null));,

Version 1.2.0 Page 108 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// create cursor "myCursor" and use it
myCursor = new HDFglCursor();

HDFql.cursorUse (myCursor) ;

// populate cursor "myCursor" with size of dataset "example dataset" and display it
HDFql.execute ("SHOW SIZE example dataset");

HDFql.cursorFirst (null),

System.out.println("Dataset size: " + HDFql.cursorGetInt (null));,

5.3.3 PYTHON

import HDFgl module (make sure it can be found by the Python interpreter)
import HDFql

import other relevant modules
import sys

import numpy

display HDFql version in use
print "HDFql version: $¢s'" $ HDFql.VERSION

create an HDF file named "example python.h5" and use (i.e. open) it
HDFqgl.execute ("CREATE FILE example python.h5")
HDFqgl.execute ("USE FILE example python.h5")

populate HDFqgl default cursor with name of the HDF file in use and display it
HDFql.execute ("SHOW USE FILE")
HDFqgl.cursor first (None)

print "File in use: 5s'" & HDFql.cursor get char (None)

create an attribute named "example attribute" of type float with a value of 12.4

HDFqgl.execute ("CREATE ATTRIBUTE example attribute AS FLOAT DEFAULT 12.4")

select (i.e. read) attribute "example attribute" and display its value

HDFgl.execute ("SELECT FROM example attribute")

Version 1.2.0 Page 109 of 203

Hierarchical Data Format query language (HDFql)

Reference Manual

HDFqgl.cursor first (None)
print "Attribute value: 5f" % HDFqgl.cursor get float (None)

create a dataset named "example dataset" of type int of two dimensions (size 3x2)

HDFql.execute ("CREATE DATASET example dataset AS INT (3, 2)")

create variable "data" and populate it with certain values
data = numpy.zeros((3, 2), dtype = numpy.int32)
for x in range(3):
for y in range(2):
data[x][y] = x * 2 + y + 1

register variable "data" for subsequent use (by HDFgl)
HDFql.variable register (data)

insert (i.e. write) content of variable "data" into dataset "example dataset"

HDFqgl.execute ("INSERT INTO example dataset VALUES FROM MEMORY 3%d SIZE 3d" %
(HDFgl.variable get number (data), HDFql.variable get size(data)))

populate variable '"data" with zeros (i.e. reset variable)
for x in range(3):
for y in range(Z2):
data[x][y] = 0

select (i.e. read) dataset "example dataset" into variable "data"
HDFqgl.execute ("SELECT FROM example dataset INTO MEMORY 3%d SIZE 3d" %
(HDFgl.variable get number (data), HDFql.variable get size(data)))

unregister variable "data" as it is no longer used/needed (by HDFql)

HDFgl.variable unregister (data)

display content of variable "data"
print "Variable:"
for x in range(3):

for y in range(2):

print datal[x][y]

another way to select dataset "example dataset" using HDFgl default cursor

HDFql.execute ("SELECT FROM example dataset")

display content of HDFgl default cursor

Version 1.2.0

Page 110 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

print "Cursor:"
while HDFgl.cursor next (None) == HDFql.SUCCESS:

print HDFgl.cursor get int (None)

create cursor "my cursor" and use it
my cursor = HDFql.Cursor()

HDFqgl.cursor use(my cursor)

populate cursor "my cursor" with size of dataset "example dataset" and display it
HDFqgl.execute ("SHOW SIZE example dataset")
HDFqgl.cursor first (None)

print "Dataset size: d" % HDFql.cursor get int (None)

5.3.4 C#

public class HDFglExample
{
public static void Main(string []args)
{
// declare variables
HDFglCursor myCursor;
int [,]data,;
int x;

int y;

// display HDFgl version in use
System.Console.WriteLine ("HDFql version: {0}", HDFql.Version);

// create an HDF file named "example csharp.h5" and use (i.e. open) it
HDFqgl .Execute ("CREATE FILE example csharp.h5");
HDFql.Execute ("USE FILE example csharp.hb5");

// populate HDFql default cursor with name of the HDF file in use and display it
HDFql.Execute ("SHOW USE FILE"),

HDFgl.CursorFirst (null),

System.Console.WriteLine ("File in use: {0}", HDFql.CursorGetChar (null)),;

// create an attribute named "example attribute" of type float with a value of 12.4

HDFql .Execute ("CREATE ATTRIBUTE example attribute AS FLOAT DEFAULT 12.4");

Version 1.2.0 Page 111 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// select (i.e. read) attribute "example attribute" and display its value
HDFql .Execute ("SELECT FROM example attribute");

HDFql.CursorFirst (null),

System.Console.WriteLine ("Attribute value: {0}'", HDFqgl.CursorGetFloat (null));

// create a dataset named "example dataset" of type int of two dimensions (size
3x2)
HDFql.Execute ("CREATE DATASET example dataset AS INT (3, 2)");

// create variable "data" and populate it with certain values
data = new int[3, Z];

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
data[x, v] =x * 2 + vy + 1I;
}
}

// register variable "data" for subsequent use (by HDFql)
HDFqgl.VariableRegister (data),;

// insert (i.e. write) content of variable '"data" into dataset "example dataset"
HDFqgl.Execute ("INSERT INTO example dataset VALUES FROM MEMORY " +
HDFqgl.VariableGetNumber (data) + " SIZE " + HDFql.VariableGetSize (data))

// populate variable "data" with zeros (i.e. reset variable)

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
data[x, y] = 0;
}
}

// select (i.e. read) dataset "example dataset" into variable "data"
HDFql.Execute ("SELECT FROM example dataset INTO MEMORY " +
HDFql.VariableGetNumber (data) + " SIZE " + HDFql.VariableGetSize(data)),

// unregister variable "data" as it is no longer used/needed (by HDFql)

Version 1.2.0 Page 112 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

HDFql.VariableUnregister (data);

// display content of variable "data"
System.Console.WriteLine ("Variable:");

for(x = 0; x < 3; x++)

{
for(y = 0; yv < 2; y++)
{
System.Console.WriteLine (datal[x, y]);
}
}

// another way to select dataset "example dataset" using HDFql default cursor

HDFqgl.Execute ("SELECT FROM example dataset");

// display content of HDFgl default cursor
System.Console.WriteLine ("Cursor:"),;
while (HDFql.CursorNext (null) == HDFql.Success)

{
System.Console.WriteLine (HDFql.CursorGetInt (null))

// create cursor "myCursor" and use it
myCursor = new HDFglCursor();

HDFql.CursorUse (myCursor) ;

// populate cursor "myCursor" with size of dataset "example dataset" and display it
HDFqgl .Execute ("SHOW SIZE example dataset");

HDFgl.CursorFirst (null),

System.Console.WriteLine ("Dataset size: {0}'", HDFql.CursorGetInt (null));,;

Version 1.2.0

Page 113 of 203

6. LANGUAGE

HDFql is a high-level language to manage HDF files in a simple and natural way. It was designed to be similar to
SQL (wherever possible) so that its learning effort is kept at minimum while still providing great power and
flexibility to the programmer. This chapter describes datatypes, post-processing options to further process
result sets, and operations (i.e. the language itself) available in HDFql. It also introduces text formatting
conventions used throughout this chapter to describe HDFgl operations (Table 6.1), and a summary of existing
operations (Table 6.2). Before continuing, it is highly recommended to first read the HDF User’s Guide available
at http://www.hdfgroup.org/HDF5/doc/UG/HDF5_Users_Guide.pdf to facilitate the understanding of the

current chapter.

Convention Description Example
Bold Keyword that must be typed exactly as shown CREATE
Italic Value that the programmer must supply dataset_name
Between brackets ([]) Optional keyword/value [DATASET]
Between braces ({}) Logical grouping of keywords/values {[TRUNCATE] BINARY FILE file_name}
Separated by pipe (]) Set of keywords/values from which one must be chosen [GROUP | DATASET | ATTRIBUTE]
Ellipsis (...) Keyword/value that can be repeated several times dimi, ..., dimX

Table 6.1 — HDFql operations text formatting conventions

Operation Description
CREATE DIRECTORY Create a directory
CREATE FILE Create an HDF file
CREATE GROUP Create an HDF group

Version 1.2.0 Page 114 of 203

http://www.hdfgroup.org/HDF5/doc/UG/HDF5_Users_Guide.pdf

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE DATASET Create an HDF dataset
CREATE ATTRIBUTE Create an HDF attribute
CREATE [SOFT | HARD] LINK Create an HDF soft or hard link
CREATE EXTERNAL LINK Create an HDF external link
ALTER DIMENSION Alter (i.e. change) dimensions of an existing HDF dataset
RENAME FILE Rename (or move) an existing file
RENAME [GROUP | DATASET | ATTRIBUTE] Rename (or move) an existing HDF group, dataset or attribute
COPY FILE Copy an existing file
COPY [GROUP | DATASET | ATTRIBUTE] Copy an existing HDF group, dataset or attribute
DROP DIRECTORY Drop (i.e. delete) an existing directory
DROP FILE Drop (i.e. delete) an existing file
DROP [GROUP | DATASET | ATTRIBUTE] Drop (i.e. delete) an existing HDF group, dataset or attribute
INSERT Insert (i.e. write) data into an HDF dataset or attribute
UPDATE To be defined
DELETE To be defined
SELECT Select (i.e. read) data from an HDF dataset or attribute
SHOW FILE VALIDITY Get validity of a file (i.e. whether it is a valid HDF file or not)
SHOW USE DIRECTORY Get working directory currently in use
SHOW USE FILE Get HDF file currently in use
SHOW ALL USE FILE Get all HDF files in use (i.e. open)
SHOW USE GROUP Get HDF group currently in use
Get HDF objects (i.e. groups, datasets or attributes) or check existence of an
SHOW [GROUP | DATASET | ATTRIBUTE]
object
SHOW TYPE Get type of an HDF object (i.e. group, dataset or attribute)
SHOW STORAGE TYPE Get storage type of an HDF dataset

Version 1.2.0 Page 115 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

SHOW [DATASET | ATTRIBUTE] DATATYPE Get datatype of an HDF dataset or attribute
SHOW [DATASET | ATTRIBUTE] ENDIANNESS Get endianness of an HDF dataset or attribute
SHOW [DATASET | ATTRIBUTE] CHARSET Get charset of an HDF dataset or attribute
SHOW STORAGE DIMENSION Get storage dimensions of an HDF dataset
SHOW [DATASET | ATTRIBUTE] DIMENSION Get dimensions of an HDF dataset or attribute
SHOW [DATASET | ATTRIBUTE] MAX DIMENSION Get maximum dimensions of an HDF dataset or attribute
SHOW FILE SIZE Get size (in bytes) of a file
SHOW [DATASET | ATTRIBUTE] SIZE Get size (in bytes) of an HDF dataset or attribute
SHOW RELEASE DATE Get release date of HDFql library
SHOW HDFQL VERSION Get version of HDFql library
SHOW HDF VERSION Get version of HDF library used by HDFql
SHOW PCRE VERSION Get version of PCRE library used by HDFql
SHOW ZLIB VERSION Get version of ZLIB library used by HDFq|
SHOW DIRECTORY Get directory names within a directory
SHOW FILE Get file names within a directory or check existence of a file
SHOW MAC ADDRESS Get MAC address(es) of the machine where HDFql is executed
SHOW EXECUTE STATUS Get execution status of the last operation
SHOW [[USE] FILE | DATASET] CACHE Get cache parameters for accessing HDF files or datasets
SHOW FLUSH Get status of the automatic flushing
SHOW DEBUG Get status of the debug mechanism
USE DIRECTORY Use a directory for subsequent operations
USE FILE Use (i.e. open) an HDF file for subsequent operations
USE GROUP Use (i.e. open) an HDF group for subsequent operations
Flush the entire virtual HDF file (global) or only the HDF file (local) currently in
FLUSH [GLOBAL | LOCAL]
use

Version 1.2.0 Page 116 of 203

Hierarchical Data Format query language (HDFql)

Reference Manual

CLOSE FILE

Close HDF file currently in use

CLOSE ALL FILE

Close all HDF files in use

CLOSE GROUP

Close HDF group currently in use

SET [FILE | DATASET] CACHE

Set cache for accessing HDF files or datasets

ENABLE FLUSH [GLOBAL | LOCAL]

Enable automatic flushing of the entire virtual HDF file or only the HDF file

ENABLE DEBUG

Enable debug mechanism

DISABLE FLUSH

Disable automatic flushing of the entire virtual HDF file or only the HDF file

DISABLE DEBUG

Disable debug mechanism

RUN

Run (i.e. execute) an external command

6.1 DATATYPES

Table 6.2 — HDFql operations

A datatype is a classification identifying one of various types of data such as integer, real or string, which

determines the possible values for that type, the operations that can be done on values of that type, the

meaning of the data, and the way values of that type can be stored. In other words, a datatype is a

classification of data that tells HDFgl how the user intends to use it. The following table summarizes all existing

HDFqgl datatypes.

HDFql HDF5 C Range of Values
-128 to 127
TINYINT H5T_NATIVE_CHAR char
(1 byte)
0to 255
UNSIGNED TINYINT H5T_NATIVE_UCHAR unsigned char
(1 byte)
-32,768 to 32,767
SMALLINT H5T_NATIVE_SHORT short
(2 bytes)
0to 65,535
UNSIGNED SMALLINT H5T_NATIVE_USHORT unsigned short
(2 bytes)
Version 1.2.0 Page 117 of 203

Hierarchical Data Format query language (HDFql)

Reference Manual

-2,147,483,648 to 2,147,483,647

INT H5T_NATIVE_INT int
(4 bytes)
0to 4,294,967,295
UNSIGNED INT H5T_NATIVE_UINT unsigned int
(4 bytes)
-9,223,372,036,854,775,808 to
BIGINT H5T_NATIVE_LLONG long long 9,223,372,036,854,775,807

(8 bytes)

UNSIGNED BIGINT

H5T_NATIVE_ULLONG

unsigned long long

0to 18,446,744,073,709,551,615

(8 bytes)
-3.4E + 38 to 3.4E + 38
FLOAT H5T_NATIVE_FLOAT float
(4 bytes)
-1.79E + 308 to 1.79E + 308
DOUBLE H5T_NATIVE_DOUBLE double
(8 bytes)
-128 to 127
CHAR [(size)] H5T_C_S1 char [size]
(size * 1 byte)
-128 to 127
VARTINYINT H5T_NATIVE_CHAR char [size]
(size * 1 byte)
0to 255
UNSIGNED VARTINYINT H5T_NATIVE_UCHAR unsigned char [size]
(size * 1 byte)

VARSMALLINT

H5T_NATIVE_SHORT

short [size]

-32,768 to 32,767

(size * 2 bytes)

UNSIGNED VARSMALLINT

H5T_NATIVE_USHORT

unsigned short [size]

0to 65,535
(size * 2 bytes)

VARINT

H5T_NATIVE_INT

int [size]

-2,147,483,648 to 2,147,483,647

(size * 4 bytes)

UNSIGNED VARINT

H5T_NATIVE_UINT

unsigned int [size]

0to 4,294,967,295

(size * 4 bytes)

VARBIGINT

H5T_NATIVE_LLONG

long long [size]

-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

(size * 8 bytes)

UNSIGNED VARBIGINT

H5T_NATIVE_ULLONG

unsigned long long [size]

0to 18,446,744,073,709,551,615

(size * 8 bytes)

VARFLOAT

H5T_NATIVE_FLOAT

float [size]

-3.4E+38t03.4E+38

(size * 4 bytes)

Version 1.2.0

Page 118 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

-1.79E + 308 to 1.79E + 308
VARDOUBLE H5T_NATIVE_DOUBLE double [size]
(size * 8 bytes)

-128 to 127
VARCHAR H5T_C_S1 char **
(variable bytes)

Table 6.3 — HDFql datatypes and their corresponding definitions in HDF5 and C (ISO C99)

6.2 POST-PROCESSING

Post-processing options enable processing (i.e. transformation) results of a query according to the
programmer’s needs such as ordering or redirecting. These options are optional and may be used to create a
(linear) pipeline to further process result sets returned by DATA QUERY LANGUAGE (DQL) and DATA
INTROSPECTION LANGUAGE (DIL) operations. In case a pipeline is composed of two or more options, the order
in which they are used is important and should always follow this sequence: ORDER, TOP, BOTTOM, STEP and
INTO (e.g. usage of TOP followed by INTO is permitted, while the inverse — i.e. usage of INTO followed by TOP —

is not permitted). The next subsections describe the post-processing options provided by HDFql.

6.2.1 ORDER

Syntax

ORDER {ASC | DESC | {REV, .., REV}}

Description

Order (i.e. sort) a result set in an ascending, descending or reverse way using either the keyword ASC, DESC or
REV respectively. When in an ascending or descending order, HDFgl automatically uses all available CPU cores
to speed-up the task completion. Additionally, when performing this type of ordering on a result set coming
from a dataset or attribute with two or more dimensions, the ordering is done only on the last dimension.
When reverse ordering a result set coming from a dataset or attribute with two or more dimensions, multiple

REV keywords may be specified to enable the ordering of specific dimensions (e.g. if “ORDER REV, , REV” is

Version 1.2.0 Page 119 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

specified, reverse ordering is done both on the first and third dimensions while the second remains

unchanged).
Cursor

If the INTO post-processing option is not specified, the cursor in use (which stores the result set) is ordered in
function of the keyword used, namely ASC, DESC or REV. If the INTO post-processing option is specified
(besides the ORDER post-processing option), the cursor in use remains unchanged. Please refer to the chapter

CURSOR and subsection INTO for additional information.

Example(s)

// create a dataset named "my dataset0" of type float of one dimension (size 3)

hdfql execute("CREATE DATASET my datasetO AS FLOAT (3)");

// insert (i.e. write) values into dataset "my datasetO"

hdfqgl execute("INSERT INTO my dataset(O VALUES (5.5, 8.1, 4.9)");

// populate cursor in use with data from dataset "my dataset0" (should be 5.5, 8.1, 4.9)
hdfgl execute ("SELECT FROM my dataset(0");

// populate cursor in use with data from dataset "my dataset0" in ascending order (should
be 4.9, 5.5, 8.1)
hdfgl execute ("SELECT FROM my dataset(ORDER ASC");

// populate cursor in use with data from dataset "my datasetO" in descending order
(should be 8.1, 5.5, 4.9)
hdfql execute("SELECT FROM my dataset(O ORDER DESC");

// populate cursor in use with data from dataset "my dataset0" in reversed order (should
be 4.9, 8.1, 5.5)
hdfql execute("SELECT FROM my dataset(0 ORDER REV");

// create a dataset named "my datasetl" of type double of two dimensions (size 3x2)

hdfql execute ("CREATE DATASET my datasetl AS DOUBLE (3, 2)");

// insert (i.e. write) values into dataset "my datasetl"

hdfql execute("INSERT INTO my datasetl VALUES((3.2, 1.3), (0, 0.2), (9.1, 6.5))");

Version 1.2.0 Page 120 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// populate cursor in use with data from dataset "my datasetl" (should be 3.2, 1.3, 0,
0.2, 9.1, 6.5)
hdfql execute("SELECT FROM my datasetl");

// populate cursor in use with data from dataset "my datasetl" in ascending order (should
be 1.3, 3.2, 0, 0.2, 6.5, 9.1)
hdfqgl execute("SELECT FROM my datasetl ORDER ASC");

// populate cursor in use with data from dataset "my datasetl" in descending order
(should be 3.2, 1.3, 0.2, 0, 9.1, 6.5)
hdfqgl execute("SELECT FROM my datasetl ORDER DESC");

// populate cursor in use with data from dataset "my datasetl" in reversed order on the
first dimension only (should be 9.1, 6.5, 0, 0.2, 3.2, 1.3)
hdfqgl execute("SELECT FROM my datasetl ORDER REV");

// populate cursor in use with data from dataset "my datasetl" in reversed order on the
second dimension only (should be 1.3, 3.2, 0.2, 0, 6.5, 9.1)
hdfgl execute("SELECT FROM my datasetl ORDER , REV");

// populate cursor in use with data from dataset "my datasetl" in reversed order on both
the first and second dimensions (should be 6.5, 9.1, 0.2, 0, 1.3, 3.2)
hdfql_execute("SF,T,F,CT FROM myfdataset7 ORDER REV, REV");

6.2.2 TOP

Syntax

TOP top_value

Description

Truncate a result set after position top_value in a topmost way. In other words, all elements after position
top_value are discarded from the result set. When truncating a result set coming from a dataset or attribute
with two or more dimensions, multiple position values may be specified to enable the truncation of specific

dimensions (e.g. if “TOP 2, , 5” is specified, truncation is done both on the first and third dimensions while the

Version 1.2.0 Page 121 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

second remains unchanged). If top_value is negative, the TOP option will behave as the BOTTOM option with a

positive top_value.
Cursor

If the INTO post-processing option is not specified, the cursor in use (which stores the result set) is truncated in
a topmost way in function of the position provided. If the INTO post-processing option is specified (besides the
TOP post-processing option), the cursor in use remains unchanged. Please refer to the chapter CURSOR and

subsection INTO for additional information.

Example(s)

// create a dataset named "my dataset0" of type float of one dimension (size 3)

hdfql execute("CREATE DATASET my datasetO AS FLOAT (3)");

// insert (i.e. write) values into dataset "my datasetO"

hdfqgl execute("INSERT INTO my dataset(O VALUES (5.5, 8.1, 4.9)");

// populate cursor in use with data from dataset "my dataset0" (should be 5.5, 8.1, 4.9)
hdfgl execute ("SELECT FROM my dataset(0");

// populate cursor in use with with the two topmost elements of dataset "my dataset0"
(should be 5.5, 8.1)
hdfgl execute("SELECT FROM my dataset(O TOP 2");

// populate cursor in use with with the two bottommost elements of dataset "my dataset0"
(should be 8.1, 4.9)
hdfql execute ("SELECT FROM my dataset(0 TOP -2");

// create a dataset named "my datasetl" of type double of two dimensions (size 3x2)

hdfql execute ("CREATE DATASET my datasetl AS DOUBLE (3, 2)");

// insert (i.e. write) values into dataset "my datasetl"

hdfql execute("INSERT INTO my datasetl VALUES((3.2, 1.3), (0, 0.2), (9.1, 6.5))");

// populate cursor in use with data from dataset "my datasetl" (should be 3.2, 1.3, 0,
0.2, 9.1, 6.5)
hdfql execute("SELECT FROM my datasetl");

Version 1.2.0 Page 122 of 203

Hierarchical Data Format query language (HDFql)

Reference Manual

// populate cursor in
"my datasetl" (should

hdfql execute ("SELECT

// populate cursor in
dataset "my datasetl"

hdfql execute ("SELECT

// populate cursor in
"my datasetl" (should

hdfql execute ("SELECT

// populate cursor in

topmost elements of first dimension of dataset "my datasetl"

hdfql execute ("SELECT

use with the two topmost elements of the first dimension of dataset
0, 0.2)

TOP 2");

be 3.2, 1.3,

use with the two bottommost elements of the first dimension of
1, 6.5)
,2”);

(should be 0, 0.2, 9.

FROM my datasetl

use with the topmost element of the second dimension of dataset
be 3.2, 0, 9.1)

FROM my datasetl

use with the bottommost element of the second dimension of the two
(should be 1.3, 0.2)

FROM my datasetl TOP 2,

,l N),.

6.2.3 BOTTOM

Syntax

BOTTOM bottom_value

Description

Truncate a result set after position bottom value in a bottommost way. In other words, all elements before
position bottom_value are discarded from the result set. When truncating a result set coming from a dataset or
attribute with two or more dimensions, multiple position values may be specified to enable the truncation of
specific dimensions (e.g. if “BOTTOM 2, , 5” is specified, truncation is done both on the first and third
dimensions while the second remains unchanged). If bottom_value is negative, the BOTTOM option will behave

as the TOP option with a positive bottom_value.

Cursor

If the INTO post-processing option is not specified, the cursor in use (which stores the result set) is truncated in

a bottommost way in function of the position provided. If the INTO post-processing option is specified (besides

Version 1.2.0 Page 123 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

the BOTTOM post-processing option), the cursor in use remains unchanged. Please refer to the chapter

CURSOR and subsection INTO for additional information.

Example(s)

// create a dataset named "my datasetO" of type float of one dimension (size 3)
hdfql execute ("CREATE DATASET my dataset(0 AS FLOAT(3)");
// insert (i.e. write) values into dataset "my dataset(O"

hdfql execute("INSERT INTO my dataset(0 VALUES (5.5, 8.1, 4.9)");

// populate cursor in use with data from dataset "my dataset0" (should be 5.5, 8.1, 4.9)
hdfqgl execute("SELECT FROM my dataset0");

// populate cursor in use with the two bottommost elements of dataset "my dataset("
(should be 8.1, 4.9)

hdfgl execute ("SELECT FROM my dataset(O BOTTOM 2");

// populate cursor in use with the two topmost elements of dataset "my dataset0" (should
be 5.5, 8.1)

hdfgl execute ("SELECT FROM my dataset(O BOTTOM -2");

// create a dataset named "my datasetl" of type double of two dimensions (size 3x2)

hdfgl execute ("CREATE DATASET my datasetl AS DOUBLE (3, 2)");

// insert (i.e. write) values into dataset "my datasetl"

hdfgl execute ("INSERT INTO my datasetl VALUES((3.2, 1.3), (0, 0.2), (9.1, 6.5))");

// populate cursor in

0.2, 9.1, 6.5)

use with data from dataset "my datasetl" (should be 3.2, 1.3, 0,

hdfqgl execute("SELECT

// populate cursor in
dataset "my datasetl"
hdfgl execute("SELECT

// populate cursor in
"my datasetl" (should

hdfql execute ("SELECT

FROM my datasetl");

use with the two bottommost elements of the first dimension of
(should be 0, 0.2, 9.1, 6.5)
FROM my datasetl BOTTOM 2");

use with the two topmost elements of the first dimension of dataset
be 3.2, 1.3, 0, 0.2)
FROM my datasetl BOTTOM -2");

Version 1.2.0

Page 124 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// populate cursor in use with the bottommost element of the second dimension of dataset
"my datasetl" (should be 1.3, 0.2, 6.5)

hdfgl execute("SELECT FROM my datasetl BOTTOM , 1");

// populate cursor in use with the topmost element of the second dimension of the two
bottommost elements of first dimension of dataset "my datasetl" (should be 0, 9.1)

hdfgl execute("SELECT FROM my datasetl BOTTOM 2, -1");

6.2.4 STEP

Syntax

STEP step _value

Description

Step (i.e. jump) the result set every step value position. In other words, all elements between steps are
discarded from the result set. When stepping a result set coming from a dataset or attribute with two or more
dimensions, multiple position values may be specified to enable the stepping of specific dimensions (e.g. if
“STEP 2, , 5” is specified, stepping is done both on the first and third dimensions while the second remains

unchanged).
Cursor

If the INTO post-processing option is not specified, the cursor in use (which stores the result set) is stepped in
function of the position provided. If the INTO post-processing option is specified (besides the STEP post-
processing option), the cursor in use remains unchanged. Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// create a dataset named "my dataset0" of type float of one dimension (size 3)

hdfgl execute ("CREATE DATASET my dataset(0 AS FLOAT(3)");

// insert (i.e. write) values into dataset "my dataset0"

hdfgl execute ("INSERT INTO my dataset(O VALUES (5.5, 8.1, 4.9)");

Version 1.2.0 Page 125 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// populate cursor in use with data from dataset "my dataset0" (should be 5.5, 8.1, 4.9)
hdfql execute("SELECT FROM my dataset0");

// populate cursor in use with every second element of dataset "my datasetO" (should be
5.5, 4.9)

hdfql execute("SELECT FROM my dataset(0 STEP 2");

// populate cursor in use with every third element of dataset "my dataset0" (should be

S0 5)

hdfqgl execute("SELECT FROM my dataset(O STEP 3");

// create a dataset named "my datasetl" of type double of two dimensions (size 3x2)

hdfqgl execute("CREATE DATASET my datasetl AS DOUBLE (3, 2)");

// insert (i.e. write) values into dataset "my datasetl”

hdfql execute("INSERT INTO my datasetl VALUES((3.2, 1.3), (0, 0.2), (9.1, 6.5))");

// populate cursor in
0.2, 9.1, 6.5)
hdfql execute("SELECT

use with data from dataset "my datasetl" (should be 3.2, 1.3, 0,

FROM my datasetl");

// populate cursor in use with every second element of the first dimension of dataset
be 3.2, 1.3, 9.1, 6.5)

FROM my datasetl STEP 2");

(should
hdfql execute("SELECT

"my datasetl"

// populate cursor in use with every third element of the first dimension of dataset
be 3.2, 1.3)

FROM my datasetl STEP 3");

"my datasetl" (should

hdfql execute("SELECT

// populate cursor in
"my datasetl" (should

hdfql execute("SELECT

// populate cursor in

use with every second
be 3.2, 0, 9.1)
FROM my datasetl STEP

use with every second

third element of first dimension of dataset

hdfqgl execute("SELECT

FROM my datasetl STEP

element of the second dimension of dataset

s 21

element of the second dimension of every

"my datasetl"
3, 2");

(should be 3.2)

Version 1.2.0

Page 126 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

6.2.5 INTO

Syntax

INTO {[TRUNCATE] [DOS | UNIX] [TEXT] FILE file_name [SEPARATOR separator_value] [SPLIT
split_valuel]} | {{TRUNCATE] BINARY FILE file name} | {MEMORY memory_number [SIZE memory_size]}]

Description

Redirect (i.e. write) result sets returned by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION
LANGUAGE (DIL) operations into a file or memory (by default —i.e. when the INTO post-processing option is not
specified — a result set is stored in the cursor in use at the moment of executing the operation). More

specifically, the redirection can be done into:

e A text file using optional parameters such as which terminator to use — DOS (CR+LF) or UNIX (LF) — for the
end of line (EOL), which separator to use between elements (of the result set), or the number of elements

to write per line before starting writing remaining elements in a new line.
e Abinary file.
e Avariable that was previously registered through the function hdfgl_variable_register.

When redirecting a result set into a file that already exists, the result set is appended to it. To overwrite an

existing file, specify the keyword TRUNCATE (ALL DATA STORED IN THE FILE WILL BE PERMANENTLY LOST).
Cursor

The cursor in use remains unchanged when using the INTO post-processing option. Please refer to the chapter

CURSOR for additional information.

Example(s)

// create a dataset named "my dataset0" of type short of one dimension (size 3)

NT (3)");

n N ~nt+() AS QM7
my datasetlU Ao OlM/

hdfql execute ("CREATE DATASEI

// insert (i.e. write) values into dataset "my dataset0"

o o5 oy

hdfqgl execute ("INSERT INTO my dataset0 VALUES (65, 66, 67)");

Version 1.2.0 Page 127 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// populate cursor in use with data from dataset "my dataset0" (should be 65, 66, 67)
hdfql execute("SELECT FROM my dataset0");

// select (i.e. read) data from dataset "my dataset(0" and write it into a text file named
"my file.txt" using default separator "," (should be "65,66,67" in one single line)

hdfql execute("SELECT FROM my dataset(O INTO FILE my file.txt");

// select (i.e. read) data from dataset "my dataset(0" and write it into a text file named
"my file.txt" using separator "**" (should be "65**66**67" in one single line)

hdfql execute("SELECT FROM my dataset(O INTO TEXT FILE my file.txt SEPARATOR **");

// select (i.e. read) data from dataset "my dataset(0" and write it into a text file named
"my file.txt" splitting every two values in a new line using a UNIX-based EOL terminator
(should be "65,65" in the first line and "67" in the second line)

hdfqgl execute("SELECT FROM my dataset(O INTO UNIX TEXT FILE my file.txt SPLIT 2");

// select (i.e. read) data from dataset "my datasetO" and write it into a binary file
(truncate it if it already exists) named "my file.bin" (should be "ABC")
hdfqgl execute("SELECT FROM my dataset(O INTO TRUNCATE BINARY FILE my file.bin");

// declare variables
char script[1024];
double data[3][2];
int x;

int y;

// create a dataset named "my datasetl" of type double of two dimensions (size 3x2)

hdfql execute("CREATE DATASET my datasetl AS DOUBLE (3, 2)");

// insert (i.e. write) values into dataset "my datasetl"

hdfgl execute("INSERT INTO my datasetl VALUES((3.2, 1.3), (0, 0.2), (9.1, 6.5))");

// register variable "data" for subsequent use (by HDFql)
hdfgl variable register (&data);

// prepare script to select (i.e. read) dataset "my datasetl" and populate variable
"data" with it
sprintf(script, "SELECT FROM my datasetl INTO MEMORY %u SIZE 3u",

hdfql variable get number (&data), (unsigned int) sizeof(data));

Version 1.2.0 Page 128 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

// execute script

hdfgl execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)
hdfgl variable unregister (&data);

// display content of variable "data" (should be 3.2, 1.3, 0, 0.2, 9.1, 6.5)

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{

printf("2d\n", datalx][y]):

6.3 DATA DEFINITION LANGUAGE (DDL)

Data Definition Language (DDL) is, generally speaking, syntax for defining and modifying structures that store
data. In HDFql, the DDL assembles the operations that enable the creation, alteration, renaming, copying and
deletion of HDF files, groups, datasets, attributes and links. These operations begin either with the keyword

CREATE, ALTER, RENAME, COPY or DROP.

6.3.1 CREATE DIRECTORY
Syntax
CREATE DIRECTORY directory_name

Description

Create a directory named directory_name. Multiple directories can be created at once by separating these with

a comma (,). If directory_name already exists, it will not be overwritten and an error is returned.

Version 1.2.0 Page 129 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Return
HDFQL_SUCCESS
HDFQL_ERROR
Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

create a directory named "my directory0" (the directory will not be overwritten if it
already exists)

CREATE DIRECTORY my directory(

create a directory named "my directoryl" in a root directory named "data" (neither
directory will be overwritten if they already exist; directory "data" will be created on
the fly if it does not exist)

CREATE DIRECTORY /data/my directoryl

create two directories named "my directory2" and "my directory3" (neither directory
will be overwritten if they already exist)

CREATE DIRECTORY my directory2, my directory3

6.3.2 CREATE FILE

Syntax

CREATE [TRUNCATE] FILE file_name

Description

Create an HDF file named file_name. Multiple files can be created at once by separating these with a comma
(,). If file_name already exists, it will not be overwritten and an error is returned. To overwrite an existing file,

specify the keyword TRUNCATE (ALL DATA STORED IN THE FILE WILL BE PERMANENTLY LOST).

Version 1.2.0 Page 130 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Return
HDFQL_SUCCESS
HDFQL_ERROR
Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

create an HDF file named "my file(0.h5" (the file will not be overwritten if it already

exists)

CREATE FILE my file(0.h5

create an HDF file named "my filel.h5" in a root directory named "data" (the file will
not be overwritten if it already exists)

CREATE FILE /data/my filel.hb

create two HDF files named "my file2.h5" and "my file3.h5" (both files will be
overwritten if they already exist)

CREATE TRUNCATE FILE my file2.h5, my file3.h5

6.3.3 CREATE GROUP

Syntax
CREATE [TRUNCATE] GROUP group_name
[ORDER {TRACKED | INDEXED}]
[STORAGE COMPACT object_max_compact DENSE object_min_dense]

[ATTRIBUTE [ORDER {TRACKED | INDEXED}] [STORAGE COMPACT attribute_max_compact DENSE

attribute_min_densel]]

Version 1.2.0 Page 131 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Create an HDF group named group_name. Multiple groups can be created at once by separating these with a
comma (,). If group_name already exists, it will not be overwritten and an error is returned. To overwrite an
existing group, specify the keyword TRUNCATE (ALL DATA STORED IN THE GROUP WILL BE PERMANENTLY
LOST).

Return
HDFQL_SUCCESS
HDFQL_ERROR
Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

create an HDF group named "my groupO" (the group will not be overwritten if it already
exists)

CREATE GROUP my group0

create an HDF group named "my groupl" in a root group named "data" (neither group will
be overwritten if they already exist; group '"data" will be created on the fly if it does
not exist)

CREATE GROUP /data/my groupl

create two HDF groups named "my group2" and "my group3" (both groups will be
overwritten if they already exist)

CREATE TRUNCATE GROUP my groupZ2, my group3

create an HDF group named "my group4" that tracks the objects’ (i.e. groups and
datasets) creation order within the group and using compact storage

CREATE GROUP my group4 ORDER TRACKED STORAGE COMPACT |(DENSE

create an HDF group named "my groupb" that indexes the attributes’ creation order

Version 1.2.0 Page 132 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE GROUP my group5 ATTRIBUTE ORDER INDEXED

6.3.4 CREATE DATASET

Syntax

CREATE [TRUNCATE] [CONTIGUOUS | COMPACT | {CHUNKED [(dim1, ... dimX)]}] DATASET
dataset_name AS [NATIVE | LITTLE ENDIAN | BIG ENDIAN | ASCIl | UTF8] datatype [(UNLIMITED |
{dim1 [TO {max_dim1 | UNLIMITED}]}, ..., UNLIMITED | {dimX [TO {max_dimX | UNLIMITED}]})]

[DEFAULT default_value]

[ATTRIBUTE [ORDER {TRACKED | INDEXED}] [STORAGE COMPACT attribute_max_compact DENSE

attribute_min_densel]]

[ENABLE [SHUFFLE] [SCALEOFFSET [scaleoffset value]] [NBIT PRECISION precision _value OFFSET
offset_value] [ZLIB [LEVEL level value]] [FLETCHER32]]

Description

Create an HDF dataset named dataset_name. Multiple datasets can be created at once by separating these
with a comma (,). If dataset name already exists, it will not be overwritten and an error is returned. To
overwrite an existing dataset, specify the keyword TRUNCATE (ALL DATA STORED IN THE DATASET WILL BE
PERMANENTLY LOST).

Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Version 1.2.0 Page 133 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

create an HDF dataset named "my dataset(0" of type int (the dataset will not be
overwritten if it already exists)

CREATE DATASET my dataset(O AS INT

create an HDF dataset named '"my datasetl" of type char in a root group named "data"
(the dataset will not be overwritten 1f it already exists)

CREATE DATASET /data/my datasetl AS CHAR

create two HDF datasets named "my dataset2" and "my dataset3" of type short (both
datasets will be overwritten if they already exist)

CREATE TRUNCATE DATASET my datasetZ, my dataset3 AS SMALLINT

create an HDF dataset named '"my dataset4" of type unsigned long long using a big endian

representation

CREATE DATASET my dataset4 AS BIG ENDIAN UNSIGNED BIGINT

create an HDF dataset named '"my dataset5" of type int using a little endian
representation with a default value 80178

CREATE DATASET my dataset5 AS LITTLE ENDIAN INT DEFAULT 50178

create an HDF dataset named '"my dataset6" of type char using an ASCII representation

CREATE DATASET my dataset6 AS ASCII CHAR

create an HDF dataset named "my dataset7" of type float of one dimension (size 1024)

CREATE DATASET my dataset?7 AS FLOAT (1024)

create a compact HDF dataset named "my dataset8" of type double of three dimensions
(size 2x5x10)
CREATE COMPACT DATASET my dataset8 AS DOUBLE (2, 5, 10)

create a chunked (20x100) HDF dataset named "my dataset9" of type unsigned char of two
dimensions (size 500x1000)
CREATE CHUNKED (20, 100) DATASET my dataset9 AS UNSIGNED TINYINT (500, 1000)

Version 1.2.0 Page 134 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

create an HDF dataset named '"my datasetl(0" of type int of two dimensions (size 20x400)
using the N-bit data compression filter

CREATE DATASET my datasetl(0 AS INT (20, 400) ENABLE NBIT PRECISION |6 OFFSET 4

create an HDF dataset named '"my datasetll" of type float of one dimension (size 500000)
using both the ZLIB data compression and Fletcher32 checksum error detection filters

CREATE DATASET my datasetll AS FLOAT (500000) ENABLE ZLIB LEVEL 5 FLETCHER32

create an HDF dataset named "my datasetl2" of type variable float
CREATE DATASET my datasetl2 AS VARFLOAT

create an HDF dataset named "my datasetl3" of type variable short of one dimension
(size 5) with a default value 876
CREATE DATASET my datasetl3 AS VARSMALLINT (5) DEFAULT 576

create an HDF dataset named "my datasetl4" of type variable char with a default value
"Hierarchical Data Format"

CREATE DATASET my datasetl4 AS VARCHAR DEFAULT "Hierarchical Data Format'

create an HDF dataset named "my datasetl5" of type float of one dimension (size 5 and
extendible up to 10)
CREATE CHUNKED DATASET my datasetl5 AS FLOAT (5 TO 10)

create an HDF dataset named "my datasetl6" of type variable int of one dimension (size
1 and extendible to an unlimited size)

CREATE CHUNKED DATASET my datasetl6 AS VARINT (UNLIMITED)

create an HDF dataset named "my datasetl?7" of type double of three dimensions (first
dimension with size 3 and extendible up to 5; second dimension with size 7; third
dimension with size 20 and extendible to an unlimited size)

CREATE CHUNKED DATASET my datasetl?7 AS DOUBLE (3 TO 5, /, 20 TO UNLIMITED)

Version 1.2.0 Page 135 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

6.3.5 CREATE ATTRIBUTE

Syntax

CREATE [TRUNCATE] ATTRIBUTE attribute_name AS [NATIVE | LITTLE ENDIAN | BIG ENDIAN | ASCII |
UTF8] datatype [(dim1, ..., dimX)]

[DEFAULT default_value]

Description

Create an HDF attribute named attribute_name. Multiple attributes can be created at once by separating these
with a comma (,). If attribute_name already exists, it will not be overwritten and an error is returned. To
overwrite an existing attribute, specify the keyword TRUNCATE (ALL DATA STORED IN THE ATTRIBUTE WILL BE
PERMANENTLY LOST).

Return
HDFQL_SUCCESS
HDFQL_ERROR
Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

create an HDF attribute named "my attributeO" of type int (the attribute will not be
overwritten if it already exists)

CREATE ATTRIBUTE my attribute(O AS INT
create an HDF attribute named "my attributel"” of type char in a root group named '"data"
(the attribute will not be overwritten if it already exists)

CREATE ATTRIBUTE /data/my attributel AS CHAR

create two HDF attributes named "my attribute2" and "my attribute3" of type short (both

attributes will be overwritten if they already exist)

Version 1.2.0 Page 136 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE TRUNCATE ATTRIBUTE my attribute2, my attribute3 AS SMALLINT

create an HDF attribute named "my attribute4" of type unsigned long long using a big
endian representation

CREATE ATTRIBUTE my attribute4 AS BIG ENDIAN UNSIGNED BIGINT

create an HDF attribute named "my attributeb" of type int using a little endian
representation with a default value 80178

CREATE ATTRIBUTE my attribute5 AS LITTLE ENDIAN INT DEFAULT 50178

create an HDF attribute named "my attribute6" of type char using an UTF8 representation

CREATE ATTRIBUTE my attribute6 AS UTF8 CHAR

create an HDF attribute named "my attribute7" of type float of one dimension (size 512)

CREATE ATTRIBUTE my attribute?7 AS FLOAT(512)

create an HDF attribute named "my attribute8" of type unsigned char of two dimensions
(size 500x1000)
CREATE ATTRIBUTE my_attribute8 AS UNSIGNED TINYINT (500, 1000)

create an HDF attribute named "my attribute9" of type variable float
CREATE ATTRIBUTE my attribute9 AS VARFLOAT

create an HDF attribute named "my attributel(O" of type variable short of one dimension
(size 5) with a default value 876
CREATE ATTRIBUTE my_attributelO AS VARSMALLINT (5) DEFAULT 876

create an HDF attribute named "my attributell" of type variable char with a default
value "Hierarchical Data Format"

CREATE ATTRIBUTE my attributell AS VARCHAR DEFAULT "Hierarchical Data Format"

Version 1.2.0 Page 137 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

6.3.6 CREATE [SOFT | HARD] LINK

Syntax

CREATE [TRUNCATE] [SOFT | HARD] LINK /ink_name TO object name

Description

Create an HDF soft or hard link named link_name to a group or dataset named object_name. Multiple links can
be created at once by separating these with a comma (,). If link_name already exists, it will not be overwritten
and an error is returned. To overwrite an existing link, specify the keyword TRUNCATE. If neither the keyword
SOFT nor HARD is specified, a soft link is created by default. To create a hard link, the keyword HARD must be

specified.
Return
HDFQL_SUCCESS
HDFQL_ERROR
Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

create an HDF group named "my groupO"
CREATE GROUP my group(

create an HDF dataset named "my datasetO" of type variable unsigned int

CREATE DATASET my dataset(O AS UNSIGNED VARINT

create an HDF soft 1link named "my 1ink0" to group "my group0" (the soft link will not
be overwritten if it already exists)

CREATE LINK my 1ink0O TO my group0

create an HDF soft 1link named "my 1inkl" to dataset "my dataset0" (the soft link will

not be overwritten if it already exists)

Version 1.2.0 Page 138 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE SOFT LINK my linkl TO my dataset(

create two HDF soft links named "my 1ink2" and "my 1ink3" to dataset "my dataset0" and
group "my group0" respectively (both soft links will be overwritten if they already
exist)

CREATE TRUNCATE SOFT LINK my link2, my 1ink3 TO my dataset(O, my group0

create an HDF group named "my groupl"

CREATE GROUP my groupl

create an HDF dataset named "my datasetl" of type variable unsigned int

CREATE DATASET my datasetl AS UNSIGNED VARINT

create an HDF hard link named "my link4" to group "my groupl" (the hard link will not
be overwritten 1if it already exists)

CREATE HARD LINK my link4 TO my groupl

create an HDF hard 1ink named "my 1inkb5" to dataset "my datasetl" (the hard link will
not be overwritten if it already exists)

CREATE HARD LINK my link5 TO my datasetl

create two HDF hard links named "my 1ink6" and "my 1ink7" to dataset "my datasetl"”" and
group "my groupl" respectively (both hard links will be overwritten if they already
exist)

CREATE TRUNCATE HARD LINK my 1link6é, my 1link7 TO my datasetl, my groupl

6.3.7 CREATE EXTERNAL LINK

Syntax

CREATE [TRUNCATE] EXTERNAL LINK /ink_ name TO file_name object name

Description

Create an HDF external link named link_name to a group or dataset named object_name belonging to another

HDF file named file_name. Multiple external links can be created at once by separating these with a comma (,).

Version 1.2.0 Page 139 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

If link_name already exists, it will not be overwritten and an error is returned. To overwrite an existing external

link, specify the keyword TRUNCATE.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

use (i.e. open) an HDF file named "my file(0.h5"
USE FILE my fileO.hb

create an HDF group named "my group"

CREATE GROUP my group

create an HDF dataset named "my dataset" of type variable unsigned int

CREATE DATASET my dataset AS UNSIGNED VARINT

use (i.e. open) an HDF file named "my_file.hE"
USE FILE my filel.hb

create an HDF external link named "my 1inkO" to group "my group" in file "my file(0.h5"
(the external 1ink will not be overwritten if it already exists)

CREATE EXTERNAL LINK my 1ink(O TO my file(O.h5 my group

create an HDF external link named "my 1linkl" to dataset "my dataset" in file
"my fileO.h5" (the external link will be overwritten if it already exists)

CREATE TRUNCATE EXTERNAL LINK my linkl TO my file0.h5 my dataset

create two HDF external links named "my 1ink2" and "my 1ink3" to dataset "my dataset"
and group "my group" in file "my file0O.h5" (neither external links will be overwritten if
they already exist)

CREATE EXTERNAL LINK my 1link2, my 1ink3 TO my file(O.h5 my dataset, my file(O.h5 my group

Version 1.2.0 Page 140 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

6.3.8 ALTER DIMENSION

Syntax

ALTER DIMENSION dataset name TO (dim1, ..., dimX)

Description

Alter (i.e. change) the dimensions of an existing dataset named dataset_name. Multiple datasets can have their
dimensions altered at once by separating these with a comma (,). Depending on the prefix of the value

specified (dim1, ..., dimX), one of the following behaviors applies:
o Ifits prefixis “+”, the dimension will have its size increased by this value.

o n

e Ifits prefixis “-”, the dimension will have its size decreased by this value.

o n

e In case its prefix is neither “+” nor “-”, the dimension will carry the size of this value.

To preserve the value of a certain dimension (i.e. for its size not to be altered), it should be skipped with a

comma (,).
Return
HDFQL_SUCCESS
HDFQL_ERROR
Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

create an HDF dataset named '"my dataset" of type double of three dimensions (first
dimension with size 2 and extendible up to 10; second dimension with size 7, third

dimension with size 20 and extendible to an unlimited size)

Version 1.2.0 Page 141 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE CHUNKED DATASET my dataset AS DOUBLE (Z TO v Vg TO UNLIMITED)

get current dimensions of dataset "my dataset" (should be 2, 7, 20)

SHOW DIMENSION my dataset

alter (i.e change) dimensions of dataset "my dataset" to set its first dimension size
to 6, and increase the third dimension size by 10 (the second dimension size remains
intact)

ALTER DIMENSION my dataset TO (6, , +10)

get current dimensions of dataset "my dataset" (should be 6, 7, 30)

SHOW DIMENSION my dataset

alter (i.e change) dimensions of dataset "my dataset" to increase its first dimension
size by 2, to set the second dimension size to 3, and to decrease the third dimension
size by 5

ALTER DIMENSION my dataset TO (+2, 3, =-5)

get current dimensions of dataset "my dataset" (should be 8, 3, 25)

SHOW DIMENSION my dataset

6.3.9 RENAME FILE

Syntax

RENAME [TRUNCATE] FILE file_name AS new_file_name

Description

Rename (or move) an existing file named file_ name as new_file_name. Multiple files can be renamed (or
moved) at once by separating these with a comma (,). If new_file_name already exists, it will not be
overwritten and an error is returned. To overwrite an existing file, specify the keyword TRUNCATE (ALL DATA

STORED IN THE FILE WILL BE PERMANENTLY LOST).

Return

HDFQL_SUCCESS

HDFQL_ERROR

Version 1.2.0 Page 142 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

rename a file named "my file(0.h5" as "my filel.h5" (the file "my filel.h5" will not be
overwritten if it already exists)

RENAME FILE my file(O.h5 AS my filel.hb

rename a file named "my file2.h5" as "my file3.h5" in file "my file0.h5" (the external
link will not be overwritten if it already exists)

RENAME TRUNCATE FILE my fileZ2.h5 AS my file3.h5

rename two files named "my filed4.h5" and "my file5.h5" as "my file6.h5" and
"my file7.h5" respectively (both files will be overwritten if they already exist)
RENAME TRUNCATE FILE my file4.h5, my file5.h5 AS my file6.h5, my file7.hb

move a file named "my file8.h5" into a root directory named "data" and rename it as
"my file9.h5" (the file "my file9.h5" will not be overwritten if it already exists)
RENAME FILE my file8.h5 AS /data/my file9.h5

6.3.10 RENAME [GROUP | DATASET | ATTRIBUTE]

Syntax

RENAME [TRUNCATE] [GROUP | DATASET | ATTRIBUTE] object name AS new_object name

Description

Rename (or move) an existing HDF group, dataset or attribute named object name as new_object_name.
Multiple groups, datasets or attributes can be renamed (or moved) at once by separating these with a comma
(,). If new_object name already exists, it will not be overwritten and an error is returned. To overwrite an
existing object, specify the keyword TRUNCATE (ALL DATA STORED IN THE OBJECT WILL BE PERMANENTLY
LOST). In case (1) a group and an attribute or (2) a dataset and an attribute with identical names (object_name)

are stored in the same location (i.e. group) and neither the keyword GROUP, DATASET nor ATTRIBUTE is

Version 1.2.0 Page 143 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

specified, the object to be renamed is the group or dataset (the attribute will not be renamed — to rename it,
the operation must be executed again). To explicitly rename an object according to its type, the keyword

GROUP, DATASET or ATTRIBUTE must be specified.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

rename a file named "my file(0.h5" as "my filel.h5" (the file "my filel.h5" will not be
overwritten if it already exists)

RENAME FILE my file(O.h5 AS my filel.hb

rename a file named "my file2.h5" as "my file3.h5" (the file "my file3.h5" will be
overwritten if it already exists)

RENAME TRUNCATE FILE my file2.h5 AS my file3.hb

rename two files named "my file4.h5" and "my file5.h5" as "my file6.h5" and
"my file7.h5" respectively (both files will be overwritten if they already exist)
RENAME TRUNCATE FILE my file4.h5, my file5.h5 AS my file6.h5, my file7.h5

move a file named "my file8.h5" into a root directory named '"data" and rename it as
"my file9.h5" (the file "my file9.h5" will not be overwritten if it already exists)
RENAME FILE my file8.h5 AS /data/my file9.h5

6.3.11 COPY FILE

Syntax

COPY [TRUNCATE] FILE file_name TO new_file_name

Version 1.2.0 Page 144 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Copy an existing file named file_name to new_file_name. Multiple files can be copied at once by separating
these with a comma (,). If new_file_name already exists, it will not be overwritten and an error is returned. To
overwrite an existing file, specify the keyword TRUNCATE (ALL DATA STORED IN THE FILE WILL BE
PERMANENTLY LOST).

Return
HDFQL_SUCCESS
HDFQL_ERROR
Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

// TO BE DEFINED

6.3.12 COPY [GROUP | DATASET | ATTRIBUTE]

Syntax

COPY [TRUNCATE] [GROUP | DATASET | ATTRIBUTE] object_name TO new_object_name

Description

Copy an existing HDF group, dataset or attribute named object_name to new_object_name. Multiple groups,
datasets or attributes can be copied at once by separating these with a comma (,). If new_object_name already
exists, it will not be overwritten and an error is returned. To overwrite an existing object, specify the keyword
TRUNCATE (ALL DATA STORED IN THE OBJECT WILL BE PERMANENTLY LOST). In case (1) a group and an
attribute or (2) a dataset and an attribute with identical names (object_name) are stored in the same location

(i.e. group) and neither the keyword GROUP, DATASET nor ATTRIBUTE is specified, the object to be copied is

Version 1.2.0 Page 145 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

the group or dataset. To explicitly copy an object according to its type, the keyword GROUP, DATASET or
ATTRIBUTE must be specified.

Return
HDFQL_SUCCESS
HDFQL_ERROR
Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

// TO BE DEFINED

6.3.13 DROP DIRECTORY

Syntax

DROP DIRECTORY directory_name

Description

Drop (i.e. delete) an existing directory named directory_name. Multiple directories can be dropped at once by
separating these with a comma (,). If directory_name contains directories or files (i.e. if it is not empty), it will

not be dropped and an error is returned.

Return

HDFQL_SUCCESS

HDFQL_ERROR

Version 1.2.0 Page 146 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

// TO BE DEFINED

6.3.14 DROP FILE

Syntax

DROP FILE file_name

Description

Drop (i.e. delete) an existing file named file_name. Multiple files can be dropped at once by separating these

with a comma (,).
Return
HDFQL_SUCCESS
HDFQL_ERROR
Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

// TO BE DEFINED

Version 1.2.0 Page 147 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

6.3.15 DROP [GROUP | DATASET | ATTRIBUTE]

Syntax

DROP {GROUP | DATASET | ATTRIBUTE} | {{GROUP | DATASET | ATTRIBUTE] [object_name

{[object_name] LIKE regular_expression [DEEP deep value]}]}

Description

Drop (i.e. delete) an existing HDF group, dataset or attribute named object_name. Multiple groups, datasets or
attributes can be dropped at once by separating these with a comma (,). In case (1) a group and an attribute or
(2) a dataset and an attribute with identical names (object_name) are stored in the same location (i.e. group)
and neither the keyword GROUP, DATASET nor ATTRIBUTE is specified, the object to be dropped is the group or
dataset (the attribute will not be dropped — to drop it, the operation must be executed again). To explicitly

drop an object according to its type, the keyword GROUP, DATASET or ATTRIBUTE must be specified.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

// TO BE DEFINED

6.4 DATA MANIPULATION LANGUAGE (DML)

Data Manipulation Language (DML) is, generally speaking, syntax for defining and modifying data stored in

structures. In HDFql, the DML assembles the operations that enable the insertion (i.e. writing), modification

Version 1.2.0 Page 148 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

and deletion of data stored in HDF datasets or attributes. These operations begin either with the keyword

INSERT, UPDATE or DELETE.

6.4.1 INSERT

Syntax

INSERT INTO [DATASET | ATTRIBUTE] object name [(startl:stridel:countl:blockl, ...,
startX:strideX:countX:blockX)]

[VALUES {(val1, ..., valX) | FROM {{[DOS | UNIX] [TEXT] FILE file_name [SEPARATOR

separator_value]} | {BINARY FILE file_name} | {MEMORY memory_number [SIZE memory_size]}}]

Description

Insert (i.e. write) data into an HDF dataset or attribute named object _name. Multiple datasets or attributes can
be written at once by separating these with a comma (,). HDFqgl provides several ways of inserting data into a

dataset or attribute from disparate sources, namely:

Direct values.

e Acursor.

e A text file using optional parameters such as which terminator to use — DOS (CR+LF) or UNIX (LF) — for the

end of line (EOL) or which separator to use between elements (of the result set).

e Abinary file.

e Avariable that was previously registered through the function hdfgl_variable_register.

In case a dataset and an attribute with identical names (object_name) are stored in the same location (i.e.
group) and neither the keyword DATASET nor ATTRIBUTE is specified, the object that will have data inserted
into it is the dataset. To explicitly insert data into an object according to its type, the keyword DATASET or
ATTRIBUTE must be specified.

Version 1.2.0 Page 149 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

By default, the entire object_name is written when performing an insert operation. To write only a subset (i.e.
portion) of object_name, hyperslab® functionalities can be used (these functionalities are only available for
datasets; i.e. not for attributes). To enable hyperslab, the start, stride, count and block parameters may be
specified and separated by a colon (:). For each dimension of object_name, a set of such parameters may be
specified and each set should be separated by a comma (,). In case start is not specified, its default value is 0
(i.e. the first position of the dimension in question); In case start is negative, its value will be the last position of
the dimension in question minus the value of start. In case stride is not specified, its default value is equal to
the value of block. In case count is not specified, its default value is 1. In case block is not specified, its default

value is the size of the dimension in question minus the value of start.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

create dataset named "my datasetO" of type short of one dimension (size 3)

CREATE DATASET my dataset(O AS SMALLINT (3)

create dataset named "my datasetl" of type int of one dimension (size 5)

CREATE DATASET my datasetl AS INT(5)

insert (i.e. write) values into dataset "my dataset0"

INSERT INTO my dataset(O VALUES (65, ’)

populate cursor in use with data from dataset "my datasetO" (should be 65, 66, 67)
SELECT FROM my dataset0

! At the time of writing, only regular hyperslabs are supported by HDFql. Additional hyperslabs will be supported in the near future, namely irregular
hyperslabs and per element hyperslabs.

Version 1.2.0 Page 150 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

insert (i.e. write) values into dataset "my datasetl" from cursor in use (should be 65,
66, 67, 0, 0)
INSERT INTO my datasetl

create dataset named "my dataset2" of type float of one dimension (size 512)

CREATE DATASET my dataset2 AS FLOAT(512)

insert (i.e. write) values into dataset "my dataset2" from a text file named
"my fileO.txt" that has values separated with "," (i.e. default separator)

INSERT INTO my dataset2 FROM FILE my file0.txt

insert (i.e. write) values into dataset "my dataset2" from a text file named
"my filel.txt" that has a DOS-based end of line (EOL) terminator and values separated
With mxxn

INSERT INTO my dataset? FROM DOS TEXT FILE my filel.txt SEPARATOR **

// insert (i.e. write) values into dataset "my dataset2" from a binary file named
"my file.bin"
INSERT INTO my dataset2 FROM BINARY FILE my file.bin

create dataset named "my dataset3" of type short of one dimension (size 5)

CREATE DATASET my dataset3 AS SMALLINT (5)

insert (i.e. write) value 9 into position #3 of dataset "my dataset3" using hyperslabs

INSERT INTO my dataset3(3) VALUES (9)

populate cursor in use with data from dataset "my dataset3" (should be 0, 0, 0, 9, 0)
SELECT FROM my dataset3

insert (i.e. write) value 9 into position #4 of dataset "my dataset3" using hyperslabs

INSERT INTO my dataset3(-1) VALUES(7/)

populate cursor in use with data from dataset "my dataset3" (should be 0, 0, 0, 9, 7)
SELECT FROM my dataset3

insert (i.e. write) values 5 and 3 into position #0 and #1 of dataset "my dataset3"

using hyperslabs

Version 1.2.0 Page 151 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

INSERT INTO my dataset3(:::”) VALUES (5, 3)

populate cursor in use with data from dataset "my dataset3" (should be 5, 3, 0, 9, 7)
SELECT FROM my dataset3

create dataset named "my dataset4" of type int of two dimensions (size 3x3)

CREATE DATASET my dataset4 AS INT (3, 3)

insert (i.e. write) value 8 into position #2 of the first dimension and position #1 of
the second dimension of dataset "my dataset4" using hyperslabs

INSERT INTO my dataset4(”, 1) VALUES (&)

populate cursor in use with data from dataset "my dataset4" (should be 0, 0, 0, 0, 0,
@, 0, 8, @)
SELECT FROM my dataset4

insert (i.e. write) values 4 and 6 into position #2 of the first dimension and position
#1 of the second dimension of dataset "my dataset4" using hyperslabs

INSERT INTO my dataset4 (1, 1:) VALUES(4, ©)

populate cursor in use with data from dataset "my dataset4" (should be 0, 0, 0, 0, 4,
6, 0, 8, @)
SELECT FROM my dataset4

// declare variables
char script[1024];
double data[2][2];

// create a dataset named "my dataset3" of type double of two dimensions (size 2x2)

hdfgl execute ("CREATE DATASET my dataset3 AS DOUBLE (2, 2)");

// assign values to variable "data"

data[0][0] = 21.1;
data[0][1] = 18.8;
dataf[l1][0] = 75.6;
data[l][1] = 56.3;

// register variable "data" for subsequent use (by HDFql)

hdfql variable register(&data);

Version 1.2.0 Page 152 of 203

Hierarchical Data Format query language (HDFql)

Reference Manual

// prepare script to insert (i.e. write) values from variable "data" into dataset

"my dataset3"
sprintf(script, "INSERT INTO my dataset3 FROM MEMORY %u SIZE 3su'",

hdfql variable get number (&data), (unsigned int) sizeof(data));

// execute script

hdfql execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)
hdfql variable unregister (&data);

6.4.2 UPDATE

Syntax

To be defined.
Description
To be defined.
Return

To be defined.
Cursor

To be defined.

Example(s)

// TO BE DEFINED

Version 1.2.0

Page 153 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

6.4.3 DELETE

Syntax

To be defined.
Description
To be defined.
Return

To be defined.
Cursor

To be defined.

Example(s)

// TO BE DEFINED

6.5 DATA QUERY LANGUAGE (DQL)

Data Query Language (DQL) is, generally speaking, syntax for retrieving data stored in structures. In HDFq]l, the
DQL is composed of only one operation (SELECT). It enables retrieval (i.e. reading) of data stored in HDF
datasets or attributes according to certain criteria. Moreover, it supports POST-PROCESSING options to further

process/transform results of the operation according to the programmer’s needs.

6.5.1 SELECT

Syntax

SELECT FROM [DATASET | ATTRIBUTE] object_name [(startl:stridel:countl:blockl, ...,

startX:strideX:countX:blockX))

Version 1.2.0 Page 154 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

[CACHE [SLOTS {slots value | DEFAULT | FILE}] [SIZE {size_value | DEFAULT | FILE}] [PREEMPTION
{preemption_value | DEFAULT | FILE}]]

[post_processing _optionl] ... [post _processing_optionX]

Description

Select (i.e. read) data from an HDF dataset or attribute named object_name. In case the keyword CACHE is
specified, the dataset is read using cache parametrized with the values slots value, size value and
preemption_value (this will overwrite any dataset cache that may have been set through the operation SET
[FILE | DATASET] CACHE). Post-processing options may be applied to the result of the operation such as

ordering, redirecting, etc. Please refer to the section POST-PROCESSING for additional information.

By default, the entire object name is read when performing a select operation. To read only a subset (i.e.
portion) of object_name, hyperslab® functionalities can be used (these functionalities are only available for
datasets; i.e. not for attributes). To enable hyperslab, the start, stride, count and block parameters may be
specified and separated by a colon (:). For each dimension of object_name, a set of such parameters may be
specified and each set should be separated by a comma (,). In case start is not specified, its default value is 0
(i.e. the first position of the dimension in question); In case start is negative, its value will be the last position of
the dimension in question minus the value of start. In case stride is not specified, its default value is equal to
the value of block. In case count is not specified, its default value is 1. In case block is not specified, its default

value is the size of the dimension in question minus the value of start.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with data of the dataset or

attribute in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO

2 At the time of writing, only regular hyperslabs are supported by HDFql. Additional hyperslabs will be supported in the near future, namely irregular
hyperslabs and per element hyperslabs.

Version 1.2.0 Page 155 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6 DATA INTROSPECTION LANGUAGE (DIL)

HDFql has certain operations that retrieve information about the internals of HDF files but also about HDFq|
itself and the runtime environment. These operations are part of the Data Introspection Language (DIL) and
they all begin with the keyword SHOW. Moreover, these operations support POST-PROCESSING options to
further process/transform the result of operations according to the programmer’s needs. Typically, a DIL

operation has the following syntactical form:

SHOW operation_name [post_processing_optionl] ... [post_processing_optionX]

6.6.1 SHOW FILE VALIDITY

Syntax
SHOW FILE VALIDITY file_name
[post_processing_optionl] ... [post_processing_optionX]

Description

Get the validity of a file named file_name. Multiple files’ validity can be checked at once by separating these
with a comma (,). The result of the operation can either be HDFQL_YES or HDFQL_NO depending on whether it
is a valid HDF file or not. Post-processing options may be applied to the result of the operation such as

ordering, redirecting, etc. Please refer to the section POST-PROCESSING for additional information.

Version 1.2.0 Page 156 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Return
HDFQL_SUCCESS
HDFQL_ERROR
Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.2 SHOW USE DIRECTORY

Syntax

SHOW USE DIRECTORY

[post_processing_optionl] ... [post_processing optionX]

Description

Get the working directory currently in use. Post-processing options may be applied to the result of the
operation such as ordering, redirecting, etc. Please refer to the section POST-PROCESSING for additional

information.

Return

HDFQL_SUCCESS

HDFQL_ERROR

Version 1.2.0 Page 157 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.3 SHOW USE FILE

Syntax

SHOW USE FILE

[post_processing_optionl] ... [post_processing_optionX]

Description

Get the HDF file currently in use. If no file is in use, the result of the operation is empty. Post-processing
options may be applied to the result of the operation such as ordering, redirecting, etc. Please refer to the

section POST-PROCESSING for additional information.

Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO

post-processing option is specified, the cursor in use remains unchanged after executing the operation (and

Version 1.2.0 Page 158 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.4 SHOW ALL USE FILE

Syntax

SHOW ALL USE FILE

[post_processing _optionl] ... [post processing_optionX]

Description

Get all HDF files in use (i.e. open). If no files are in use, the result of the operation is empty. Post-processing
options may be applied to the result of the operation such as ordering, redirecting, etc. Please refer to the

section POST-PROCESSING for additional information.

Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Version 1.2.0 Page 159 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// TO BE DEFINED

6.6.5 SHOW USE GROUP

Syntax
SHOW USE GROUP

[post_processing_optionl] ... [post_processing optionX]

Description

Get the HDF group currently in use. If no file is in use, the result of the operation is empty. Post-processing
options may be applied to the result of the operation such as ordering, redirecting, etc. Please refer to the

section POST-PROCESSING for additional information.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

use (i.e. open) an HDF file named "my file.h5"
USE FILE my file.h5

Version 1.2.0 Page 160 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

get current working group (should be /)
SHOW USE GROUP

create an HDF group named "my group"

CREATE GROUP my group

set group currently in use to "my group" (more precisely "/my group")

USE GROUP my group

get current working group (should be /my group)
SHOW USE GROUP

create two HDF groups named "my subgroup0" and "my subgroupl" (both groups will be
created in group "/my group")

CREATE GROUP my subgroup(O, my subgroupl

set group currently in use to "my subgroupO" (more precisely "/my group/my subgroup0")

USE GROUP my subgroup0

set group currently in use to "my subgroupl" located one level up (more precisely
"/my group/my subgroupl")
USE GROUP ../my subgroupl

set group currently in use two levels up (should be /)

USE GROUP ../..

6.6.6 SHOW [GROUP | DATASET | ATTRIBUTE]

Syntax

SHOW [GROUP | DATASET | ATTRIBUTE] [object name] [LIKE regular_expression [DEEP deep_value]]
[WHERE condition]

[post_processing_optionl] ... [post_processing_optionX]

Version 1.2.0 Page 161 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get HDF objects (i.e. groups, datasets or attributes) within an HDF group or dataset named object name or
check the existence of an object named object_name. If object_name is not specified, all objects are returned —
to return only objects of type group, dataset or attribute, specify the keyword GROUP, DATASET or ATTRIBUTE

respectively. If object_name is specified, one of the following behaviors applies:

e If it ends with “/”, object_name will be treated as a group or dataset, and all groups, datasets or attributes

stored in object_name are returned.

e If it does not end with “/”, object_name will be checked for its existence. If it does exist, object_name is

returned; otherwise, if it does not exist, an error is returned.

If the keyword LIKE is specified, only objects with names complying with a regular expression named
regular_expression will be returned (in HDFql, regular expressions are the ones specified by PCRE which closely
follow PERL5 syntax — please refer to http://www.pcre.org and http://perldoc.perl.org/perire.html for
additional information). If regular_expression includes “**”, recursive search is performed (i.e. HDFgl will
search in all existing groups and subgroups). To limit the recursiveness, the keyword DEEP may be specified
along with a value deep_value representing the maximum recursiveness limit. Post-processing options may be
applied to the result of the operation such as ordering, redirecting, etc. Please refer to the section POST-

PROCESSING for additional information.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Version 1.2.0 Page 162 of 203

http://www.pcre.org/
http://perldoc.perl.org/perlre.html

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

set group currently in use to "/" (i.e. the root of the HDF file)
USE GROUP /

create two HDF groups named "my group0" and "my groupl" (both groups will be created in
group n/u)
CREATE GROUP my group(O, my groupl

create one HDF dataset named "my dataset(0" of type unsigned short (it will be created
in group "/")
CREATE DATASET my dataset(O AS UNSIGNED SMALLINT

create one HDF dataset named "my datasetl" of type short (it will be created in group
"/my group0")
CREATE DATASET my group0O/my datasetl AS SMALLINT

create two HDF attributes named "my attribute(0" and "my attributel" of type long long
(both attributes will be created in group "/")
CREATE ATTRIBUTE my attribute(O, my attributel AS BIGINT

create one HDF attribute named "my attribute2" of type char (it will be created in
group "/my group0")
CREATE ATTRIBUTE my group(O/my attribute2 AS TINYINT

create one HDF attribute named "my attribute3" of type unsigned char (it will be
created in dataset "/my datasetO")

CREATE ATTRIBUTE my datasetO/my attribute3 AS UNSIGNED TINYINT

show (i.e. get) all HDF objects existing in group "/" (should be my group0O, my groupl,
my dataset0, my attributeO, my attributel)
SHOW

show (i.e. get) all HDF groups existing in group "/" (should be my group0, my groupl)
SHOW GROUP

show (i.e. get) all HDF datasets existing in group "/" (should be my dataset0)
SHOW DATASET

check if HDF object "my groupX" exists (should return an error)

SHOW my groupX

Version 1.2.0 Page 163 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

check if HDF object "my group0" exists (should be my group0)
SHOW my group0

show (i.e. get) all HDF objects existing in object "my group0O/" (should be my datasetl
and my attributel)
SHOW my group0/

show (i.e. get) all HDF attributes existing in object "my group0/" (should be
my attributel)
SHOW ATTRIBUTE my group0/

show (i.e. get) all HDF objects existing in object "my group0/" (should be
my attribute3)
SHOW my dataset0/

6.6.7 SHOW TYPE

Syntax
SHOW TYPE object name

[post_processing_optionl] ... [post_processing_optionX]

Description

Get type of an object named object_name. Multiple types can be obtained at once by separating several object
names with a comma (,). The result of the operation can either be HDFQL_GROUP, HDFQL_DATASET or
HDFQL_ATTRIBUTE depending on whether the object is a group, dataset or attribute respectively. Post-
processing options may be applied to the result of the operation such as ordering, redirecting, etc. Please refer

to the section POST-PROCESSING for additional information.
Return
HDFQL_SUCCESS

HDFQL_ERROR

Version 1.2.0 Page 164 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.8 SHOW STORAGE TYPE

Syntax

SHOW STORAGE TYPE dataset _name

[post_processing_optionl] ... [post_processing_optionX]

Description

Get storage type of a dataset named dataset name. Multiple storage types can be obtained at once by
separating several dataset names with a comma (,). The result of the operation can either be
HDFQL_CONTIGUOUS, HDFQL COMPACT or HDFQL_CHUNKED depending on whether the storage type is
contiguous, compact or chunked respectively. Post-processing options may be applied to the result of the
operation such as ordering, redirecting, etc. Please refer to the section POST-PROCESSING for additional

information.

Return

HDFQL_SUCCESS

HDFQL_ERROR

Version 1.2.0 Page 165 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.9 SHOW [DATASET | ATTRIBUTE] DATATYPE

Syntax

SHOW [DATASET | ATTRIBUTE] DATATYPE object name

[post_processing_optionl] ... [post_processing_optionX]

Description

Get datatype of an HDF dataset or attribute named object_name. Multiple datatypes can be obtained at once
by separating several object names with a comma (,). The result of the operation can either be
HDFQL_TINYINT, HDFQL_UNSIGNED_TINYINT, HDFQL_SMALLINT, HDFQL_UNSIGNED_SMALLINT, HDFQL_INT,
HDFQL_UNSIGNED_INT, HDFQL_BIGINT, HDFQL_UNSIGNED_BIGINT, HDFQL_FLOAT, HDFQL_DOUBLE,
HDFQL_CHAR, HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT,
HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT,
HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE or HDFQL_VARCHAR. In case a
dataset and an attribute with identical names (object_name) are stored in the same location (i.e. group) and
neither the keyword DATASET nor ATTRIBUTE is specified, the datatype returned belongs to the dataset. To
explicitly get the datatype of an object according to its type, the keyword DATASET or ATTRIBUTE must be
specified. Post-processing options may be applied to the result of the operation such as ordering, redirecting,

etc. Please refer to the section POST-PROCESSING for additional information.

Version 1.2.0 Page 166 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Return
HDFQL_SUCCESS
HDFQL_ERROR
Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.10 SHOW [DATASET | ATTRIBUTE] ENDIANNESS

Syntax
SHOW [DATASET | ATTRIBUTE] ENDIANNESS object_name

[post_processing_optionl] ... [post_processing optionX]

Description

Get endianness of an HDF dataset or attribute named object_name. Multiple endiannesses can be obtained at
once by separating several object names with a comma (,). The result of the operation can either be
HDFQL_LITTLE_ENDIAN or HDFQL_BIG_ENDIAN depending on whether the endianness is little or big
respectively. In case a dataset and an attribute with identical names (object name) are stored in the same
location (i.e. group) and neither the keyword DATASET nor ATTRIBUTE is specified, the endianness returned
belongs to the dataset. To explicitly get the endianness of an object according to its type, the keyword

DATASET or ATTRIBUTE must be specified. Post-processing options may be applied to the result of the

Version 1.2.0 Page 167 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

operation such as ordering, redirecting, etc. Please refer to the section POST-PROCESSING for additional

information.
Return
HDFQL_SUCCESS
HDFQL_ERROR
Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.11 SHOW [DATASET | ATTRIBUTE] CHARSET

Syntax
SHOW [DATASET | ATTRIBUTE] CHARSET object name

[post_processing_optionl] ... [post_processing_optionX]

Description

Get charset of an HDF dataset or attribute named object_name. Multiple charsets can be obtained at once by
separating several object names with a comma (,). The result of the operation can either be HDFQL_ASCII or
HDFQL _UTF8 depending on whether the charset is ASCIl or UTF8 respectively. In case a dataset and an
attribute with identical names (object_name) are stored in the same location (i.e. group) and neither the

keyword DATASET nor ATTRIBUTE is specified, the charset returned belongs to the dataset. To explicitly get the

Version 1.2.0 Page 168 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

charset of an object according to its type, the keyword DATASET or ATTRIBUTE must be specified. Post-
processing options may be applied to the result of the operation such as ordering, redirecting, etc. Please refer

to the section POST-PROCESSING for additional information.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.12 SHOW STORAGE DIMENSION

Syntax
SHOW STORAGE DIMENSION dataset name

[post_processing_optionl] ... [post_processing_optionX]

Description

Get storage dimensions of a dataset named dataset _name. If dataset _name is chunked (i.e. its storage type is
HDFQL_CHUNKED), it returns the chunk layout dimensions; if it is not chunked, no result is returned. Post-
processing options may be applied to the result of the operation such as ordering, redirecting, etc. Please refer

to the section POST-PROCESSING for additional information.

Version 1.2.0 Page 169 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Return
HDFQL_SUCCESS
HDFQL_ERROR
Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.13 SHOW [DATASET | ATTRIBUTE] DIMENSION

Syntax
SHOW [DATASET | ATTRIBUTE] DIMENSION object_name

[post_processing_optionl] ... [post_processing optionX]

Description

Get dimensions of an HDF dataset or attribute named object_name. In case a dataset and an attribute with
identical names (object_name) are stored in the same location (i.e. group) and neither the keyword DATASET
nor ATTRIBUTE is specified, the dimensions returned belong to the dataset. To explicitly get the dimensions of
an object according to its type, the keyword DATASET or ATTRIBUTE must be specified. Post-processing options
may be applied to the result of the operation such as ordering, redirecting, etc. Please refer to the section

POST-PROCESSING for additional information.

Version 1.2.0 Page 170 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Return
HDFQL_SUCCESS
HDFQL_ERROR
Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

create an HDF dataset named "my datasetO" of type unsigned int

CREATE DATASET my dataset(O AS UNSIGNED INT

get dimensions of dataset "my dataset(0" (should be 1)
SHOW DIMENSION my dataset(

create an HDF dataset named "my datasetl" of type double of one dimension (size 15)

CREATE DATASET my datasetl AS DOUBLE (15)

get dimensions of dataset "my datasetl" (should be 15)
SHOW DIMENSION my datasetl

create an HDF dataset named "my dataset2" of type float of three dimensions (first
dimension with size 2 and extendible up to 10; second dimension with size 5; third
dimension with size 20 and extendible to an unlimited size)

CREATE CHUNKED DATASET my dataset2 AS FLOAT(3 TO 10, 5, 20 TO UNLIMITED)

get dimensions of dataset "my dataset2" (should be 3, 5, 20)
SHOW DIMENSION my dataset?Z

Version 1.2.0 Page 171 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

6.6.14 SHOW [DATASET | ATTRIBUTE] MAX DIMENSION

Syntax
SHOW [DATASET | ATTRIBUTE] MAX DIMENSION object_name

[post_processing_optionl] ... [post_processing_optionX]

Description

Get maximum dimensions of an HDF dataset or attribute named object name. In case a dataset and an
attribute with identical names (object_name) are stored in the same location (i.e. group) and neither the
keyword DATASET nor ATTRIBUTE is specified, the dimensions returned belong to the dataset. To explicitly get
the maximum dimensions of an object according to its type, the keyword DATASET or ATTRIBUTE must be
specified. Post-processing options may be applied to the result of the operation such as ordering, redirecting,

etc. Please refer to the section POST-PROCESSING for additional information.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

create an HDF dataset named '"my datasetO" of type unsigned int

CREATE DATASET my dataset(O AS UNSIGNED INT

get maximum dimensions of dataset "my dataset0" (should be 1)

SHOW MAX DIMENSION my datasetO

Version 1.2.0 Page 172 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

create an HDF dataset named "my datasetl" of type double of one dimension (size 15)

CREATE DATASET my datasetl AS DOUBLE (15)

get maximum dimensions of dataset "my datasetl" (should be 15)

SHOW MAX DIMENSION my datasetl

create an HDF dataset named "my dataset2" of type float of three dimensions (first
dimension with size 2 and extendible up to 10; second dimension with size 5; third
dimension with size 20 and extendible to an unlimited size)

CREATE CHUNKED DATASET my datasetz AS FLOAT (3 TO ; 9y TO UNLIMITED)

get maximum dimensions of dataset "my dataset2" (should be 10, 5, -1)

SHOW MAX DIMENSION my datasetZ

6.6.15 SHOW FILE SIZE

Syntax

SHOW FILE SIZE file_name

[post_processing_optionl] ... [post_processing optionX]

Description

Get size (in bytes) of a file named file_name. Multiple file sizes can be obtained at once by separating several
file names with a comma (,). Post-processing options may be applied to the result of the operation such as

ordering, redirecting, etc. Please refer to the section POST-PROCESSING for additional information.

Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the

operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO

Version 1.2.0 Page 173 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.16 SHOW [DATASET | ATTRIBUTE] SIZE

Syntax
SHOW [DATASET | ATTRIBUTE] SIZE object name
[post_processing _optionl] ... [post processing_optionX]

Description

Get size (in bytes) of an HDF dataset or attribute named object_name. Multiple sizes can be obtained at once
by separating several object names with a comma (,). In case a dataset and an attribute with identical names
(object_name) are stored in the same location (i.e. group) and neither the keyword DATASET nor ATTRIBUTE is
specified, the size returned belongs to the dataset. To explicitly get the size of an object according to its type,
the keyword DATASET or ATTRIBUTE must be specified. Post-processing options may be applied to the result of
the operation such as ordering, redirecting, etc. Please refer to the section POST-PROCESSING for additional

information.
Return
HDFQL_SUCCESS
HDFQL_ERROR
Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the

operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO

Version 1.2.0 Page 174 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.17 SHOW RELEASE DATE

Syntax

SHOW RELEASE DATE

[post_processing _optionl] ... [post processing_optionX]

Description

Get release date of HDFgl. The format of the date returned is YYYY/MM/DD. Post-processing options may be
applied to the result of the operation such as ordering, redirecting, etc. Please refer to the section POST-

PROCESSING for additional information.

Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Version 1.2.0 Page 175 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

show release date of HDFql (should be something similar to 2016/04/25)
SHOW RELEASE DATE

6.6.18 SHOW HDFQL VERSION

Syntax
SHOW HDFQL VERSION
[post_processing _optionl] ... [post processing_optionX]

Description

Get version of HDFql library. The format of the version returned is MAJOR.MINOR.REVISION. Post-processing
options may be applied to the result of the operation such as ordering, redirecting, etc. Please refer to the

section POST-PROCESSING for additional information.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

show version of HDFqgl library (should be something similar to 1.2.0)

Version 1.2.0 Page 176 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

SHOW HDFQL VERSION

6.6.19 SHOW HDF VERSION

Syntax
SHOW HDF VERSION

[post_processing_optionl] ... [post_processing optionX]

Description

Get version of the HDF library used by HDFqgl. The format of the version returned is MAJOR.MINOR.REVISION.
Post-processing options may be applied to the result of the operation such as ordering, redirecting, etc. Please

refer to the section POST-PROCESSING for additional information.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

show version of the HDF library used by HDFqgl (should be something similar to 1.8.16)
SHOW HDF VERSION

Version 1.2.0 Page 177 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

6.6.20 SHOW PCRE VERSION

Syntax
SHOW PCRE VERSION

[post_processing_optionl] ... [post_processing_optionX]

Description

Get version of the PCRE library used by HDFqgl. The format of the version returned is MAJOR.MINOR. Post-
processing options may be applied to the result of the operation such as ordering, redirecting, etc. Please refer

to the section POST-PROCESSING for additional information.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

show version of the PCRE library used by HDFql (should be something similar to 8.38)
SHOW PCRE VERSION

Version 1.2.0 Page 178 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

6.6.21 SHOW ZLIB VERSION

Syntax
SHOW ZLIB VERSION

[post_processing_optionl] ... [post_processing_optionX]

Description

Get version of the ZLIB library used by HDFqgl. The format of the version returned is MAJOR.MINOR.REVISION.
Post-processing options may be applied to the result of the operation such as ordering, redirecting, etc. Please

refer to the section POST-PROCESSING for additional information.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

show version of the ZLIB library used by HDFql (should be something similar to 1.2.8)
SHOW ZLIB VERSION

Version 1.2.0 Page 179 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

6.6.22 SHOW DIRECTORY

Syntax
SHOW DIRECTORY [directory_name]

[post_processing_optionl] ... [post_processing_optionX]

Description

Get directory names within a directory named directory_name. If directory_name is not specified, all directory
names within the current working directory are returned. Otherwise, if directory directory_name is specified,
all directory names within this directory are returned. Post-processing options may be applied to the result of
the operation such as ordering, redirecting, etc. Please refer to the section POST-PROCESSING for additional

information.
Return
HDFQL_SUCCESS
HDFQL_ERROR
Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

Version 1.2.0 Page 180 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

6.6.23 SHOW FILE

Syntax
SHOW FILE [directory_name | file_name]

[post_processing_optionl] ... [post_processing_optionX]

Description

Get file names within a directory named directory_name or check existence of a file named file_name. If
neither directory_name nor file_name are specified, all file names within the current working directory are
returned. If directory_name is specified, all file names within this directory are returned. Alternatively, if
file_name is specified, its existence is checked: if the file exists, its name is returned; otherwise (if it does not
exist), an error is returned. Multiple files can be checked for their existence at once by separating these with a
comma (,). Post-processing options may be applied to the result of the operation such as ordering, redirecting,

etc. Please refer to the section POST-PROCESSING for additional information.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

To be defined.

Version 1.2.0 Page 181 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

6.6.24 SHOW MAC ADDRESS

Syntax
SHOW MAC ADDRESS

[post_processing_optionl] ... [post_processing_optionX]

Description

Get MAC address(es) of the machine where HDFql is executed. Post-processing options may be applied to the
result of the operation such as ordering, redirecting, etc. Please refer to the section POST-PROCESSING for

additional information.
Return
HDFQL_SUCCESS
HDFQL_ERROR

Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

show MAC address(es) of the machine where HDFql is executed (should be something
similar to E7-2A-E9-8B-CA-4E)
SHOW MAC ADDRESS

Version 1.2.0 Page 182 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

6.6.25 SHOW EXECUTE STATUS

Syntax
SHOW EXECUTE STATUS

[post_processing_optionl] ... [post_processing_optionX]

Description

Get execution status of the last operation. Post-processing options may be applied to the result of the
operation such as ordering, ranging, etc. Please refer to the section POST-PROCESSING for additional

information.
Return
HDFQL_SUCCESS
HDFQL_ERROR
Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.26 SHOW [[USE] FILE | DATASET] CACHE

Syntax

SHOW [[USE] FILE | DATASET] CACHE [SLOTS | SIZE | PREEMPTION]

Version 1.2.0 Page 183 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

[post_processing_optionl] ... [post_processing_optionX]

Description

Get cache parameter values for accessing HDF files or datasets. In case neither the keyword SLOT, SIZE nor
PREEMPTION is specified, all cache parameter values (i.e. for slots, size and preemption) are returned. To
return a specific cache parameter value, the keyword SLOT, SIZE or PREEMPTION must be specified. In case
neither the keyword FILE, USE FILE nor DATASET is specified, the cache parameters returned refers to files by
default (optionally, the keyword FILE may be specified to make the purpose of this operation clearer). To
explicitly return cache parameters of datasets or the file currently in use, the keyword DATASET or USE FILE

must be specified.
Return
HDFQL_SUCCESS
HDFQL_ERROR
Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.27 SHOW FLUSH

Syntax

SHOW FLUSH

Version 1.2.0 Page 184 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

[post_processing_optionl] ... [post_processing_optionX]

Description

Get status of the automatic flushing. The status can either be HDFQL_ENABLED or HDFQL_DISABLED. Post-
processing options may be applied to the result of the operation such as ordering, ranging, etc. Please refer to

the section POST-PROCESSING for additional information.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.28 SHOW DEBUG

Syntax

SHOW DEBUG

[post_processing_optionl] ... [post_processing_optionX]

Version 1.2.0 Page 185 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get status of the debug mechanism. The status can either be HDFQL_ENABLED or HDFQL_DISABLED. Post-
processing options may be applied to the result of the operation such as ordering, ranging, etc. Please refer to

the section POST-PROCESSING for additional information.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operation in case the operation succeeded; in case the operation failed, the cursor in use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.7 MISCELLANEOUS

This section assembles all remaining HDFqgl operations that — due to their heterogeneous nature and
functionality — do not fit in the previous sections about the language for data definition, manipulation, querying

and introspection.

Version 1.2.0 Page 186 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

6.7.1 USE DIRECTORY

Syntax

USE DIRECTORY directory_name

Description

Use a directory named directory_name for subsequent operations. This will change the current working
directory to directory_name thus avoiding the need to explicitly provide the full path of this directory when
working within it (i.e. subsequent operations are done relatively to this directory, unless otherwise specified). If
the directory directory_name was not found or could not be opened (due to unknown/unexpected reasons), an

error is returned.
Return
HDFQL_SUCCESS
HDFQL_ERROR
Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

// TO BE DEFINED

6.7.2 USE FILE

Syntax
USE [READONLY] FILE file_name

[CACHE [SLOTS {slots_value | DEFAULT}] [SIZE {size_value | DEFAULT}] [PREEMPTION
{preemption_value | DEFAULT}]]

Version 1.2.0 Page 187 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Use (i.e. open) an HDF file named file_name for subsequent operations. By default, the file is opened with
read/write permissions. To open a file with read only permission, the keyword READONLY should be specified
(any subsequent attempt to write into this file will return an error). If the file file_name was not found or could
not be opened (due to unknown/unexpected reasons), an error is returned. HDFql tracks opened files in a stack
fashion (i.e. LIFO) meaning that the most recently opened file is the one currently in use. In case the keyword
CACHE is specified, HDFqgl opens the file using cache parametrized with the slots value, size _value and
preemption_value values (this will overwrite any file cache that may have been set through the operation SET

[FILE | DATASET] CACHE).
Return

HDFQL_SUCCESS
HDFQL_ERROR

Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

use (i.e. open) an HDF file named "my file0.h5" located in the current working
directory

USE FILE my file0.h5

use (i.e. open) an HDF file named "my filel.h5" located in a root directory named
"data"

USE FILE /data/my filel.h5

use (i.e. open) two HDF files named "my file2.h5" and "my file3.h5" with read only
permissions (both files are located in the current working directory)

USE READONLY FILE my file2.h5, my file3.hb

Version 1.2.0 Page 188 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

6.7.3 USE GROUP

Syntax
USE GROUP group_name

Description

Use (i.e. open) an HDF group named group_name for subsequent operations. This will change the current
working group to group_name thus avoiding the need to explicitly provide the full path of this group when
working within it (i.e. subsequent operations are done relatively to this group, unless otherwise specified). If
the group group_name was not found or could not be opened (due to unknown/unexpected reasons), an error

is returned. Upon using (i.e. opening) an HDF file, the group currently in use is “/” (i.e. the root of the HDF file).
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

set group currently in use to "/" (i.e. the root of the HDF file)
USE GROUP /

create two HDF groups named '"my group0" and "my groupl" (both groups will be created in
group n/n)
CREATE GROUP my group(O, my groupl

create an HDF dataset named "my datasetO" of type double (it will be created in group
”/”)

CREATE DATASET my dataset(O AS DOUBLE

set group currently in use to "my groupO" (more precisely "/my group0")

Version 1.2.0 Page 189 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

USE GROUP my group0

create an HDF dataset named "my datasetl" of type double (it will be created in group
"/my group0")
CREATE DATASET my datasetl AS DOUBLE

create an HDF group named "my subgroupO" (it will be created in group "/my group0")
CREATE GROUP my subgroup(

create an HDF dataset named "my dataset2" of type variable double (it will be created
in group "/my group0O/my subgroup0")
CREATE DATASET my subgroup(O/my dataset2 AS VARDOUBLE

create an HDF attribute named "my attributeO" of type float (it will be created in
group n/n)
CREATE ATTRIBUTE . ./my_attributeO AS FLOAT

set group currently in use to "my subgroup0" (more precisely "/my groupO/my subgroup0")

USE GROUP my subgroup0

create an HDF attribute named "my attributel" of type char (it will be created in group
"/my groupl")
CREATE ATTRIBUTE ../../my groupl/my attributel AS CHAR

create an HDF attribute named "my attribute2" of type variable char (it will be created
in group "/")
CREATE ATTRIBUTE /my_attributeZ AS VARCHAR

6.7.4 FLUSH [GLOBAL | LOCAL]
Syntax
FLUSH [GLOBAL | LOCAL]

Description

Flush the entire virtual HDF file (global) or the specific HDF file (local) currently in use. All buffered data will be

written into the disk. If neither the keyword GLOBAL nor LOCAL is specified, a global flush is performed by

Version 1.2.0 Page 190 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

default (optionally, the keyword GLOBAL may be specified to make the purpose of this operation clearer). To

perform a local flush, the keyword LOCAL must be specified. If no file is currently used, no flush is performed.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

// TO BE DEFINED

6.7.5 CLOSE FILE

Syntax

CLOSE FILE [file_name]

Description

Close the HDF file currently in use. Multiple files can be closed at once by separating these with a comma (,).
Before closing a file, all buffered data will be written into it. After closing a file, the file in use will be the one
most recently used before the closed file. If the file file_name is specified, it will be closed regardless of
whether it is the file currently in use or not. The file file_name must match exactly the name of the file when it
was opened (otherwise no file will be closed). If file file_name is not used or it is not possible to close it (due to

unknown/unexpected reasons), an error is returned.

Return

HDFQL_SUCCESS

Version 1.2.0 Page 191 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

HDFQL_ERROR
Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

// TO BE DEFINED

6.7.6 CLOSE ALL FILE

Syntax

CLOSE ALL FILE

Description

Close all HDF files in use. All buffered data will be written into the respective files before closing them. If it is

not possible to close a certain file (due to unknown/unexpected reasons), an error is returned.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

// TO BE DEFINED

Version 1.2.0 Page 192 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

6.7.7 CLOSE GROUP

Syntax

CLOSE GROUP

Description

Close the HDF group currently in use. After closing it, the group currently in use will be “/” (i.e. the root of the

HDF file). If no file is currently used, no group is closed.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

// TO BE DEFINED

6.7.8 SET [FILE | DATASET] CACHE

Syntax

SET [FILE | DATASET] CACHE [SLOTS {slots_value | DEFAULT | FILE}] [SIZE {size_value | DEFAULT |
FILE}] [PREEMPTION {preemption_value | DEFAULT | FILE}]

Version 1.2.0 Page 193 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Set cache parameters to default or specific values for accessing HDF files or datasets. All files or datasets that
are subsequently opened or accessed (through the operations USE FILE or SELECT respectively) will use the

default values defined by the HDF5 API or specific cache parameter values. These cache parameters are:

e Slots — number of chunk slots in the raw data chunk cache of the file or dataset. Due to the hashing
strategy, its value should ideally be a prime number. When the keyword DEFAULT is specified, its value is
521 (i.e. default value defined by the HDF5 API). When the keyword FILE is specified, its value will be as

defined in the file cache slots parameter.

e Size — total size of the raw data chunk cache in bytes for the file or dataset. When the keyword DEFAULT is
specified, its value is 1048576 (i.e. 1 MB — default value defined by the HDF5 API). When the keyword FILE

is specified, its value will be as defined in the file cache size parameter.

e Preemption — chunk preemption policy. Its value must be between 0 and 1 inclusive. It indicates the
weighting according to which chunks which have been fully read or written are penalized when
determining which chunks to flush from cache. When the keyword DEFAULT is specified, its value is 0.75
(i.e. default value defined by the HDF5 API). When the keyword FILE is specified, its value will be as defined

in the file cache preemption parameter.

In case neither the keyword FILE nor DATASET is specified, the setting of the cache parameters refers to files by
default (optionally, the keyword FILE may be specified to make the purpose of this operation clearer). To

explicitly set the cache parameters to datasets, the keyword DATASET must be specified.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Version 1.2.0 Page 194 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

use (i.e. open) an HDF file named "my file(O.h5" with cache slots, size and preemption
values of 521, 1048576 and 0.75 respectively (these are the default values defined by the
HDF5 API)

USE FILE my file0.h5

set cache slots and preemption values to 2297 and 0.9 respectively (the cache size
value remains intact) for subsequent usage (i.e. opening) of HDF files

SET CACHE SLOTS 29/ PREEMPTION (.9

use (i.e. open) an HDF file named "my filel.h5" with cache slots, size and preemption
values of 2297, 1048576 and 0.9 respectively
USE FILE my filel.hb

set cache slots, size and preemption values to 1523, 262144 and 0.6 respectively for
subsequent usage (i.e. opening) of HDF files

SET FILE CACHE SLOTS 1523 SIZE ~62144 PREEMPTION (.06

use (i.e. open) an HDF file named "my file2.h5" with cache slots, size and preemption
values of 1523, 262144 and 0.6 respectively
USE FILE my fileZ.h5

set cache size value to 1048576 (default value defined by the HDF5 API) and preemption
value to 0.4 (the cache slots value remains intact) for subsequent usage (i.e. opening)
of HDF files

SET FILE CACHE SIZE DEFAULT PREEMPTION 0.4

use (i.e. open) an HDF file named "my file3.h5" with cache slots, size and preemption
values of 1523, 1048576 and 0.4 respectively
USE FILE my file3.h5

select (i.e. read) an HDF dataset named "my dataset(0" with cache slots, size and
preemption values of 521, 1048576 and 0.75 respectively (these are the default values
defined by the HDF5 API)

SELECT FROM my dataset0

set cache slots and preemption values to 2297 and 0.9 respectively (the cache size

value remains intact) for subsequent selection (i.e. reading) of HDF datasets

Version 1.2.0 Page 195 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

SET DATASET CACHE SLOTS ~”9/ PREEMPTION 0.9

select (i.e. read) an HDF dataset named "my datasetl" with cache slots, size and
preemption values of 2297, 1048576 and 0.9 respectively
SELECT FROM my datasetl

set cache slots, size and preemption values to 1523, 262144 and 0.6 respectively for
subsequent selection (i.e. reading) of HDF datasets

SET DATASET CACHE SLOTS 1523 SIZE 262144 PREEMPTION (.06

select (i.e. read) an HDF dataset named "my dataset2" with cache slots, size and
preemption values of 1523, 262144 and 0.6 respectively
SELECT FROM my dataset2

set cache size value to 1048576 (default value defined by the HDF5 API) and preemption
value to 0.4 (the cache slots value remains intact) for subsequent selection (i.e.
reading) of HDF datasets

SET DATASET CACHE SIZE DEFAULT PREEMPTION (.4

select (i.e. read) an HDF dataset named "my dataset3" with cache slots, size and
preemption values of 1523, 1048576 and 0.4 respectively
SELECT FROM my dataset3

set cache slots, size and preemption values to 3089, 2048 and 0.85 respectively for
subsequent usage (i.e. opening) of HDF files

SET FILE CACHE SLOTS 35089 SIZE ~048 PREEMPTION (.85

set cache slots value to 521 (default value defined by the HDF5 API), size value to
1024, and preemption value to 0.85 (defined by the cache preemption value for HDF files)
for subsequent selection (i.e. reading) of HDF datasets

SET DATASET CACHE SLOTS DEFAULT SIZE 10”4 PREEMPTION FILE

select (i.e. read) an HDF dataset named "my dataset4" with cache slots, size and
preemption values of 521, 1024 and 0.85 respectively
SELECT FROM my dataset4

Version 1.2.0 Page 196 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

6.7.9 ENABLE FLUSH [GLOBAL | LOCAL]

Syntax

ENABLE FLUSH [GLOBAL | LOCAL]

Description

Enable automatic flushing of the entire virtual HDF file (global) or only the HDF file (local) currently in use.
Automatic flushing (i.e. all buffered data is written into the disk) will subsequently occur whenever an
operation modifying the file is executed. If neither the keyword GLOBAL nor LOCAL is specified, automatic
global flushing is set by default (optionally, the keyword GLOBAL may be specified to make the purpose of this

operation clearer). To set automatic local flushing, the keyword LOCAL must be specified.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

enable automatic flushing of the entire virtual HDF file (global) currently in use

ENABLE FLUSH

enable automatic flushing of the entire virtual HDF file (global) currently in use

ENABLE FLUSH GLOBAL

enable automatic flushing of only the HDF file (local) currently in use
ENABLE FLUSH LOCAL

Version 1.2.0 Page 197 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

6.7.10 ENABLE DEBUG

Syntax
ENABLE DEBUG

Description

Enable debug mechanism (i.e. info/debug messages will be displayed when executing operations). This may be
useful to check what parameters HDFqgl is receiving, the operation performed, and the return value of this

operation.
Return
HDFQL_SUCCESS
HDFQL_ERROR
Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

enable debug mechanism (i.e. info/debug messages will be displayed when executing
operations)

ENABLE DEBUG

6.7.11 DISABLE FLUSH

Syntax

DISABLE FLUSH

Description

Disable automatic flushing of the entire virtual HDF file (global) or only the HDF file (local) currently in use.

Version 1.2.0 Page 198 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Return
HDFQL_SUCCESS
HDFQL_ERROR
Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

disable automatic flushing of the entire virtual HDF file (global) or only the HDF file
(local) currently in use

DISABLE FLUSH

6.7.12 DISABLE DEBUG

Syntax

DISABLE DEBUG

Description

Disable debug mechanism (i.e. info/debug messages will not be displayed when executing operations).
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Version 1.2.0 Page 199 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

disable debug mechanism (i.e. info/debug messages will not be displayed when executing
operations)

DISABLE DEBUG

6.7.13 RUN

Syntax

RUN command

Description

Run (i.e. execute) an external command named command. If the command has parameters, both the command
and parameters should be surrounded by double-quotes (“). If the command was not found or it was not

possible to run it (due to unknown/unexpected reasons), an error is returned.
Return

HDFQL_SUCCESS

HDFQL_ERROR

Cursor

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

run notepad text editor (if "notepad.exe" was not found, an error 1is returned)

RUN notepad.exe

run firefox and open HDFql website (if "firefox" was not found, an error is returned)

RUN "firefox http://www.hdfqgl.com"

Version 1.2.0 Page 200 of 203

GLOSSARY

Application programming interface (API)

An application programming interface (API) specifies how software components should interact with each
other. In practice, an APl comes in the form of a library that includes specifications for functions, data
structures, object classes, constants and variables. A good APl makes it easier to develop a program by

providing all the building blocks.

Attribute

An (HDF) attribute is a metadata object describing the nature and/or intended usage of a primary data object.
A primary data object may be a group, dataset or committed datatype. Attributes are assumed to be very small

as data objects go, so storing them as standard (HDF) datasets would be inefficient.

Cursor

A cursor is a control structure that is used to iterate through the results returned by a query (that was
previously executed). It can be seen as an effective means to abstract the programmer from low-level
implementation details of accessing data stored in specific structures. In HDFql, cursors offer several ways to
traverse result sets according to specific needs and they also store result sets returned returned by DATA

QUERY LANGUAGE (DQL) and DATA INTROSPECTION LANGUAGE (DIL) operations.

Dataset

A (HDF) dataset is an object composed of a collection of data elements and metadata that stores a description
of the data elements, data layout and all other information necessary to write and read the data. A dataset

may be a multidimensional array of data elements and it may have zero or more attributes.

Version 1.2.0 Page 201 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Datatype

A datatype is a classification identifying one of various types of data such as integer, real or string, which
determines the possible values for that type, the operations that can be done on values of that type, the
meaning of the data, and the way values of that type can be stored. In other words, a datatype is a

classification of data that tells HDFql how the user intends to use it.

Group

A (HDF) group is a container structure which can hold zero or more objects (i.e. datasets and other groups).
Every object must be a member of at least one group, except the root group, which (as the sole exception) may

not belong to any group.

Post-processing

Post-processing options enable processing (i.e. transformation) results of a query according to the
programmer’s needs such as ordering or redirecting. These options are optional and may be used to create a
(linear) pipeline to further process result sets returned by DATA QUERY LANGUAGE (DQL) and DATA
INTROSPECTION LANGUAGE (DIL) operations.

Result set

A result set stores the results returned by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION
LANGUAGE (DIL) operations.

Result subset

A result subset stores the results returned by a DATA INTROSPECTION LANGUAGE (DIL) operation that was

performed on a dataset or attribute of type variable.

Version 1.2.0 Page 202 of 203

Hierarchical Data Format query language (HDFql) Reference Manual

Subcursor

A subcursor is meant to complement (i.e. help) cursors in the task of storing data of type variable (i.e.
VARTINYINT, UNSIGNED VARTINYINT, VARSMALLINT, UNSIGNED VARSMALLINT, VARINT, UNSIGNED VARINT,
VARBIGINT, UNSIGNED VARBIGINT, VARFLOAT, VARDOUBLE and VARCHAR.). In practice, when a dataset or
attribute of type variable is read through a DATA QUERY LANGUAGE (DQL) operation, only the first value of the
variable data is stored in the cursor (as expected), while all values of the variable data are stored in the
subcursor. In other words, each position of the cursor stores the first value of the variable data and also points
to a subcursor that in turn stores all the values of the variable data. Similar to cursors, HDFgl subcursors offer

several ways to traverse result subsets.

Version 1.2.0 Page 203 of 203

	1. INTRODUCTION
	2. INSTALLATION
	2.1 WINDOWS
	2.2 LINUX
	2.3 MAC OS X

	3. USAGE
	3.1 C/C++
	3.2 JAVA
	3.3 PYTHON
	3.4 C#
	3.5 COMMAND-LINE INTERFACE

	4. CURSOR
	4.1 DESCRIPTION
	4.2 SUBCURSOR
	4.3 EXAMPLES

	5. APPLICATION PROGRAMMING INTERFACE
	5.1 CONSTANTS
	5.2 FUNCTIONS
	5.2.1 HDFQL_EXECUTE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.2 HDFQL_EXECUTE_STATUS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.3 HDFQL_CURSOR_INITIALIZE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.4 HDFQL_CURSOR_USE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.5 HDFQL_CURSOR_USE_DEFAULT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.6 HDFQL_CURSOR_CLEAR
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.7 HDFQL_CURSOR_CLONE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.8 HDFQL_CURSOR_GET_DATATYPE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.9 HDFQL_CURSOR_GET_COUNT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.10 HDFQL_SUBCURSOR_GET_COUNT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.11 HDFQL_CURSOR_GET_POSITION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.12 HDFQL_SUBCURSOR_GET_POSITION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.13 HDFQL_CURSOR_FIRST
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.14 HDFQL_SUBCURSOR_FIRST
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.15 HDFQL_CURSOR_LAST
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.16 HDFQL_SUBCURSOR_LAST
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.17 HDFQL_CURSOR_NEXT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.18 HDFQL_SUBCURSOR_NEXT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.19 HDFQL_CURSOR_PREVIOUS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.20 HDFQL_SUBCURSOR_PREVIOUS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.21 HDFQL_CURSOR_ABSOLUTE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.22 HDFQL_SUBCURSOR_ABSOLUTE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.23 HDFQL_CURSOR_RELATIVE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.24 HDFQL_SUBCURSOR_RELATIVE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.25 HDFQL_CURSOR_GET_SIZE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.26 HDFQL_SUBCURSOR_GET_SIZE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.27 HDFQL_CURSOR_GET
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.28 HDFQL_SUBCURSOR_GET
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.29 HDFQL_CURSOR_GET_TINYINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.30 HDFQL_SUBCURSOR_GET_TINYINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.31 HDFQL_CURSOR_GET_UNSIGNED_TINYINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.32 HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.33 HDFQL_CURSOR_GET_SMALLINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.34 HDFQL_SUBCURSOR_GET_SMALLINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.35 HDFQL_CURSOR_GET_UNSIGNED_SMALLINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.36 HDFQL_SUBCURSOR_GET_UNSIGNED_SMALLINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.37 HDFQL_CURSOR_GET_INT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.38 HDFQL_SUBCURSOR_GET_INT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.39 HDFQL_CURSOR_GET_UNSIGNED_INT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.40 HDFQL_SUBCURSOR_GET_UNSIGNED_INT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.41 HDFQL_CURSOR_GET_BIGINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.42 HDFQL_SUBCURSOR_GET_BIGINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.43 HDFQL_CURSOR_GET_UNSIGNED_BIGINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.44 HDFQL_SUBCURSOR_GET_UNSIGNED_BIGINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.45 HDFQL_CURSOR_GET_FLOAT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.46 HDFQL_SUBCURSOR_GET_FLOAT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.47 HDFQL_CURSOR_GET_DOUBLE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.48 HDFQL_SUBCURSOR_GET_DOUBLE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.49 HDFQL_CURSOR_GET_CHAR
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.50 HDFQL_SUBCURSOR_GET_CHAR
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.51 HDFQL_VARIABLE_REGISTER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.52 HDFQL_VARIABLE_UNREGISTER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.53 HDFQL_VARIABLE_GET_NUMBER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.54 HDFQL_VARIABLE_GET_DATATYPE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.55 HDFQL_VARIABLE_GET_COUNT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.56 HDFQL_VARIABLE_GET_SIZE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.57 HDFQL_VARIABLE_GET_DIMENSION_COUNT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.58 HDFQL_VARIABLE_GET_DIMENSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.3 EXAMPLES
	5.3.1 C/C++
	5.3.2 JAVA
	5.3.3 PYTHON
	5.3.4 C#

	6. LANGUAGE
	6.1 DATATYPES
	6.2 POST-PROCESSING
	6.2.1 ORDER
	Syntax
	Description
	Cursor
	Example(s)

	6.2.2 TOP
	Syntax
	Description
	Cursor
	Example(s)

	6.2.3 BOTTOM
	Syntax
	Description
	Cursor
	Example(s)

	6.2.4 STEP
	Syntax
	Description
	Cursor
	Example(s)

	6.2.5 INTO
	Syntax
	Description
	Cursor
	Example(s)

	6.3 DATA DEFINITION LANGUAGE (DDL)
	6.3.1 CREATE DIRECTORY
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.3.2 CREATE FILE
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.3.3 CREATE GROUP
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.3.4 CREATE DATASET
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.3.5 CREATE ATTRIBUTE
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.3.6 CREATE [SOFT | HARD] LINK
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.3.7 CREATE EXTERNAL LINK
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.3.8 ALTER DIMENSION
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.3.9 RENAME FILE
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.3.10 RENAME [GROUP | DATASET | ATTRIBUTE]
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.3.11 COPY FILE
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.3.12 COPY [GROUP | DATASET | ATTRIBUTE]
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.3.13 DROP DIRECTORY
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.3.14 DROP FILE
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.3.15 DROP [GROUP | DATASET | ATTRIBUTE]
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.4 DATA MANIPULATION LANGUAGE (DML)
	6.4.1 INSERT
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.4.2 UPDATE
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.4.3 DELETE
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.5 DATA QUERY LANGUAGE (DQL)
	6.5.1 SELECT
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6 DATA INTROSPECTION LANGUAGE (DIL)
	6.6.1 SHOW FILE VALIDITY
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.2 SHOW USE DIRECTORY
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.3 SHOW USE FILE
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.4 SHOW ALL USE FILE
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.5 SHOW USE GROUP
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.6 SHOW [GROUP | DATASET | ATTRIBUTE]
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.7 SHOW TYPE
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.8 SHOW STORAGE TYPE
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.9 SHOW [DATASET | ATTRIBUTE] DATATYPE
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.10 SHOW [DATASET | ATTRIBUTE] ENDIANNESS
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.11 SHOW [DATASET | ATTRIBUTE] CHARSET
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.12 SHOW STORAGE DIMENSION
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.13 SHOW [DATASET | ATTRIBUTE] DIMENSION
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.14 SHOW [DATASET | ATTRIBUTE] MAX DIMENSION
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.15 SHOW FILE SIZE
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.16 SHOW [DATASET | ATTRIBUTE] SIZE
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.17 SHOW RELEASE DATE
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.18 SHOW HDFQL VERSION
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.19 SHOW HDF VERSION
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.20 SHOW PCRE VERSION
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.21 SHOW ZLIB VERSION
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.22 SHOW DIRECTORY
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.23 SHOW FILE
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.24 SHOW MAC ADDRESS
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.25 SHOW EXECUTE STATUS
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.26 SHOW [[USE] FILE | DATASET] CACHE
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.27 SHOW FLUSH
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.6.28 SHOW DEBUG
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.7 MISCELLANEOUS
	6.7.1 USE DIRECTORY
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.7.2 USE FILE
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.7.3 USE GROUP
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.7.4 FLUSH [GLOBAL | LOCAL]
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.7.5 CLOSE FILE
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.7.6 CLOSE ALL FILE
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.7.7 CLOSE GROUP
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.7.8 SET [FILE | DATASET] CACHE
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.7.9 ENABLE FLUSH [GLOBAL | LOCAL]
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.7.10 ENABLE DEBUG
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.7.11 DISABLE FLUSH
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.7.12 DISABLE DEBUG
	Syntax
	Description
	Return
	Cursor
	Example(s)

	6.7.13 RUN
	Syntax
	Description
	Return
	Cursor
	Example(s)

	GLOSSARY
	Application programming interface (API)
	Attribute
	Cursor
	Dataset
	Datatype
	Group
	Post-processing
	Result set
	Result subset
	Subcursor

