Hierarchical Data Format query language (HDFql)

Reference Manual

Version 1.4.0

March 2017

Copyright (C) 2016-2017

This document s part of the Hierarchical Data Format query language (HDFgl). For more information about

HDFql, please visit the website http://www.hdfgl.com.

Disclaimer

Every effort has been made to ensure that this document is as accurate as possible. The information
containedinthisdocumentis provided without any express, statutory orimplied warranties. The founders
of HDFqgl shall have neither liability nor responsibility to any person or entity with respect to any loss or

damage arising from the information in this document or the usage of HDFq|l.

Hierarchical Data Format query language (HDFql) Reference Manual

TABLE OF CONTENTS

1. INTRODUCTION ...ccotiiiiiinnniiissnnniinssnsniessssnsnsssnsssssnsssssssns 1
2. INSTALLATION ..iiiiiiiiccnnnenniiessssssssnnsssnsnsisssssssssssssnssnsssssssses 3
2.1 WINDOWIS ...ttt ettt e e e e et e e e et e e e eta e e e etba e e e eaba e e etna e eeeena e eeeenaeeeeeranns 4

N 1 111 ©) TP UP PP PRSPt 4

P B |V Y G 6 N GO OO TP TP OPTT PP PPNt 5

TR U Y C S 6
R T PP UPTPOPPRPPPTR 6

K I O OO PPPTPPPTR T PUPPPPTPIRt 8

S N 1 A\ Y PP PP PP 11

K o A 1 (6]\ TP PP TP PP 12

R T € - SO OO OP PP 13

3.6 FORTRAN Lttt ettt ettt e ettt e e ettt s e e etaa s e e eaa s e eeba s e e ebb s e eebaa e aeba e enena e eneraeeenenanns 16

3.7 COMMAND-LINE INTERFACE ...t et e et et et e e e e e e e eaans 18

T 011 17 0 3 N 21
4.1 DESCRIPTION. ... ititutititiiie ettt et e e et e et e e e ettt e e e e et s e e eetu e e e eeaaa e eaetta e eaetnseeaaenaeaenenanseenenanns 21

4.2 SUBGCURSOR ...ttt et et e et et e et e et e e et e e et e eeea e ta e era e eeeneeanneeananas 24

4.3 EXAMPLES. .. ittt et e et e et e et e e e e et e e e et e eaaeaans 26

5. APPLICATION PROGRAMMING INTERFACE........cccccotvmtiiiissnnnisssssnnensssssnnsssssssssnsssssnssssssssssssssssnnsnsas 32
o N 0 11 Y 1Y AV I SO OO PP PP OPPT PP 32

5.2 FUNGCTIONS ...ttt ettt et e et e e e et s e taa e e e eea e e e seba e e seba e esana e eeesanseneranneenenanns 38
5.2.1 HDFQL EXECUTE ..oeeeiieiiee ettt ettt e et e et e et e e et e et e e e e eeaa e enneeanaeaeen 43

5.2.2 HDFQL _EXECUTE_GET_STATUS .. ettt ettt e e e et e e e e e e e en e eeen 45

5.2.3 HDFQL_ERROR_GET LINE ...eveueeeieeieeeete et eeeee e e eeeeeeee e et eee s eeseae s reeveeseeeeneeneseenenesneaeas 46

Version 1.4.0

Hierarchical Data Format query language (HDFql) Reference Manual

Version 1.4.0

524

5.2.5

5.2.6

5.2.7

5.2.8

5.2.9

5.2.10

5211

5.2.12

5.2.13

5.2.14

5.2.15

5.2.16

5.2.17

5.2.18

5.2.19

5.2.20

5.2.21

5.2.22

5.2.23

5.2.24

5.2.25

5.2.26

5.2.27

5.2.28

5.2.29

HDFQL_ERROR_GET_POSITION ..o eeseeeeeeeeseeesees e ees e en s eenens 47
HDFQL_ERROR_GET_IMESSAGEeeeeeeeeeeeeeeeeseeeeee e eeesees e ees e ees e s eneeen e 48
HDFQL_CURSOR_INITIALIZE ..ot 49
HDFQL CURSOR_USE ...t es e een s een s 50
HDFQL_CURSOR_USE_DEFAULT ...t eseeeeeee e eeee e s ees s s eneeeen e, 51
HDFQL_CURSOR_CLEAR ...t eeeeee et ees e eee e e s s e s eeee e eneseen s 52
HDFQL CURSOR_CLONE ...t 53
HDFQL_CURSOR_GET DATATYPEoeeeeeeeeeeeeeeeee e eeee e 55
HDFQL_CURSOR_GET_COUNT ...ttt eee s seee s ees s es s neeneenan 56
HDFQL_SUBCURSOR_GET COUNTvuvevieeeieeeeeeeeeseee s 57
HDFQL_CURSOR_GET POSITIONveveeeeeeieeeeseeeeeeeseeeeeees e 58
HDFQL_SUBCURSOR_GET_POSITIONveveieeeeeeeeseeeeeeeseeeeeeesees s eeeeees e 59
HDFQL_CURSOR_FIRST ...oovieeeveieeeeeeeeeeeeeeses s s ees st eene s ees st en s enesenennan 61
HDFQL_SUBCURSOR_FIRSTevoeeieeieeeeeeeeeeesees s ees e seen s ees s 62
HDFQL CURSOR_LAST ..ot eeeeeeesee s ees e s ees e ees e eee e seeneenan 63
HDFQL_SUBCURSOR_LASTeeeeeeeeeeeeeeee e eeseee s ees s ees e es s ee s 64
HDFQL_CURSOR_NEXTvieeeeeeeeeeeeeeeeeeeseeteseseeseeses s ese s esse s sene s seene s enesesneseas 66
HDFQL_SUBCURSOR_INEXT......eveeeeeieeeeeeeseseeseseeseeses s sesees s sees s ese s es s 67
HDFQL_CURSOR_PREVIOUSeoeeeeeeeeeeeeeeeeeee e e es e en s 63
HDFQL_SUBCURSOR_PREVIOUSvveeeeeeeeeeeeeeeseseeeeeeseeeeeesess s eees s nesneeeas 69
HDFQL_CURSOR_ABSOLUTEeoveeveieeeeeeeeeeeseeee s ees e sees s es s es s 71
HDFQL_SUBCURSOR_ABSOLUTEvveeeeeeeeeeeeeeseseeseeeeseeseee s ees e sees s 72
HDFQL_ CURSOR_RELATIVE. ... eeseeeeeees e sees s es s eesees s e e eeeneeeas 74
HDFQL_SUBCURSOR_RELATIVE.euveeeeeeeeseeeeeeeseeeseseseene e eeses s 75
HDFQL CURSOR_GET SIZEeeeeeeeeeeeeeeeeeeeee e s s 77
HDFQL_SUBCURSOR_GET SIZEe.eeeeeeeeeeeeeeeeeeeees e eeeeseeseee s ees e e 78
i

Hierarchical Data Format query language (HDFql) Reference Manual

Version 1.4.0

5.2.30

5.2.31

5.2.32

5.2.33

5.2.34

5.2.35

5.2.36

5.2.37

5.2.38

5.2.39

5.2.40

5241

5.2.42

5.2.43

5.2.44

5.2.45

5.2.46

5.2.47

5.2.48

5.2.49

5.2.50

5.2.51

5.2.52

5.2.53

5.2.54

5.2.55

HDFQL CURSOR_GET ..o e eeeee s eee s ees e ees s es s ee e eeseeneeean 79
HDFQL_SUBCURSOR_GETeeveeeeeeeeeeeeeeee s eeeeeeeeeeseeeesees e en e eee s seeeeneeean 80
HDFQL_CURSOR_GET_TINYINTouiviieieeeeeeseeeeeeeseeese s seeseee s 81
HDFQL_SUBCURSOR_GET TINYINTeovevieeeieeeeeeeeeseeeeeeeeseseeseese oo 83
HDFQL_CURSOR_GET_UNSIGNED_TINYINTereeaeeeeeeeeeeeseeeeseeeeeeese s eee e 84
HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINTueveeeeeeeeeeeeeeeeeeeseeeeeeeeeseeeee e 85
HDFQL_CURSOR_GET SMALLINT ...ttt 87
HDFQL_SUBCURSOR_GET _SIMALLINTcooeeveeeeeeeeeeeeeeeeeeseeee s ees e e 88
HDFQL_CURSOR_GET_UNSIGNED_SMALLINTeueeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 89
HDFQL_SUBCURSOR_GET_UNSIGNED_SMALLINTc..oveeirreeeereeeeeeeeeeeeeseseeeee e 91
HDFQL CURSOR_GET INT ..oeeveeeeeeeeeeeeeeeee s eeseeee s ee s ees e s en s 92
HDFQL_SUBCURSOR_GET INT ...eueeeeieeeeeeeeeeeseeeeeeessees e sees s eese s s s eee e eeeneeean 93
HDFQL_CURSOR_GET_UNSIGNED_INT.....eveveeeeeeeeeeeeeeeesseeseeseeseesees e eneese s, 95
HDFQL_SUBCURSOR_GET_UNSIGNED_INT......covuivieeeeeeeeeeseeeeseeseeeseseeseeseseesees s 9%
HDFQL_ CURSOR_GET BIGINT.......eeeeieeeeeeeeeeseeeeeeeeeeeese e seeseeeeseesesees s sese s eesneeean 97
HDFQL_SUBCURSOR_GET BIGINTvueeeeeeeeeeeeeeeeeeeseseeseeeeeeeseeeeseeseseseee e seeseeneeean 99
HDFQL_CURSOR_GET_UNSIGNED_BIGINT.......covuiveereieeeeeeeeseeseseeeeneseesesseseenesseneenen, 100
HDFQL_SUBCURSOR_GET_UNSIGNED_BIGINT........euveieeeeeeeeeeeeeeeeeeeeeesseseeseeseeeeneenen. 101
HDFQL_CURSOR_GET FLOAT ...ttt een e, 103
HDFQL_SUBCURSOR_GET_FLOAT -....oeeeeeeeeeeeeeeeee et ses e eneeeenesnan. 104
HDFQL_CURSOR_GET DOUBLEeveeeeeeeeeseeeeee e, 105
HDFQL_SUBCURSOR_GET DOUBLEevveeeeeeeeeeeeeeeeeesees e e, 107
HDFQL_CURSOR_GET CHAR ...t en e, 108
HDFQL_SUBCURSOR_GET CHAReveieeeeeeeeeeeee s s, 109
HDFQL VARIABLE_REGISTEReoveeeeeeeseeeeeeeseeeseesesesees s s e ene e, 111
HDFQL_VARIABLE_UNREGISTERoveveeeeeeseeeeeeeeeseseseesesses s eeeee s e eeeenee s e, 113
iii

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.56 HDFQL_VARIABLE_GET_NUMBERccciiiiiiiiiiii i, 114
5.2.57 HDFQL_VARIABLE_GET_DATATYPEoottiiiiiiiiiiiiii s 115
5.2.58 HDFQL_VARIABLE_GET_COUNTccooiiiiiiiiiiiiiiiiiiiiiiiiiiiiciicceceeee s 116
5.2.59 HDFQL_VARIABLE_GET_SIZE.....cccoiiiiiiiiiiiiiiiiii s 118
5.2.60 HDFQL_VARIABLE_GET_DIMENSION_COUNTcccttiiiiiiiiiiiiiiiii i, 119
5.2.61 HDFQL_VARIABLE_GET_DIMENSION........ccoiiiiiiiiiiiiiiiiniiiitiii s 120

5.3 EXAMPLES......oitiiiiiiiiiiiiiiiiiiiiiti s 122
70 0 O PPN 122

5.3.2 G e 124

533 JAVA 127

5314 PYTHON oo 130

5.3 G 132

536 FORTRAN ...ttt 134

5.3.7 OUTPUT ..ottt 136

6. LANGUAGE..........coiiirmmmttiiiniiiiiieneettiiencsiensstettisessessssssssssettsesssssessssstesetenesssssssssssentnesessssssnnansens 138
6.1 DATATYPES ..ottt s 141
6.1.1 TINYINT..eeeii e e e 143

6.1.2 UNSIGNED TINYINT....ouiiiiiiiiiiiii e 143

6.1.3 SIMALLINT ...ttt e e 144

6.1.4 UNSIGNED SMALLINT......ooiiiiiiiiii e 145

6.1.5 INT o 145

6.1.6 UNSIGNED INT ..ottt e e 146

6.1.7 BIGINT ..ccooiiiiiii 146

6.1.8 UNSIGNED BIGINT ..evuiiiiiiiiiiiiii s 147

6.1.9 FLOAT .ot 148
6.1.10 DOUBLE.........cooiiiiiiiiiiii 148

Version 1.4.0

Hierarchical Data Format query language (HDFql) Reference Manual

6.2

6.3

Version 1.4.0

6.1.11 CHAR oot e 149
6.1.12 VARTINYINT ..ot e e e 149
6.1.13 UNSIGNED VARTINYINT.....cooiiiiiiiiiiiicii s 150
6.1.14 VARSMALLINT ..ottt s 150
6.1.15 UNSIGNED VARSMALLINT. ..ottt 151
6.1.16 VARINT. ..eiiiiiiiiii e et e s e s e s 152
6.1.17 UNSIGNED VARINT......ooiiiiiiiiiiiiiiis s 152
6.1.18 VARBIGINT ... 153
6.1.19 UNSIGNED VARBIGINT ..ottt e 153
6.1.20 VARFLOAT ..ot 154
6.1.21 VARDOUBLEcoitiiiiiiii s 155
6.1.22 VARCHAR ... e 155
6.1.23 OPAQUE..........oooiiiii 156
POST-PROCESSING.....cutttuiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e s 156
6.2.1 ORDERiiiii i 157
6.2.2 TOP... i e 159
6.2.3 BOTTOM...cooiiiiiiiiiiiiii 160
6.2.4 STEP oo 161
6.2.5 INTO ..ot e 163
DATA DEFINITION LANGUAGE (DDL) «.ceteeiiiiiiiiieeetee e ettt e e e e e et e e e e e s s sinnreeeeeeeessananes 165
6.3.1 CREATEDIRECTORYcooiiiiiiiiiiiiiiiiic s 166
6.3.2 CREATEFILE ... e s 167
6.3.3 CREATE GROUP ..ottt e 168
6.3.4 CREATEDATASET......ooiiiiiiiiii 169
6.3.5 CREATEATTRIBUTE ...ttt s 173
6.3.6 CREATE [SOFT | HARD] LINKettiiititeiiiiiee ettt ettt 175
v

Hierarchical Data Format query language (HDFql) Reference Manual

6.4

6.5

6.6

Version 1.4.0

6.3.7 CREATE EXTERNALLINKcoiiiiiiiiiiiii s 177
6.3.8 ALTERDIMENSION.oiiiiiiiiiiiiii s 179
6.3.9 RENAMEDIRECTORY.....ccooiiiiiiiiiiii 180
6.3.10 RENAME FILE......ootiiiiiiiiiiiii e e 181
6.3.11 RENAME [GROUP | DATASET | ATTRIBUTE]......otttiiiiiiieeiiiiiee e 183
6.3.12 COPY FILE ...ttt e 184
6.3.13 COPY [GROUP | DATASET | ATTRIBUTE]ceiiiiuiiiiiiiiiiieiiiiie e 185
6.3.14 DROP DIRECTORY....euuiiiiiiiiiiiiiiii e 186
6.3.15 DROP FILE......cciiiiiiiiiiii i 186
6.3.16 DROP [GROUP | DATASET | ATTRIBUTE] ...ceiiiiiiiiiiiiiiiiiiiiice e 187
DATA MANIPULATION LANGUAGE (DIMIL) ..c.uiiiiiiiiiiiie ettt 188
6.4. 1 INSERT ..ceiii i e 188
DATA QUERY LANGUAGE (DQL) ...evvviiiiiiiieiiiiiiie ittt 193
6.5.1 SELECTccoiiiiiiiiiiii 193
DATA INTROSPECTION LANGUAGE (DIL)...ceetiuurrieeiiiieeeeiieeeeeeeiieee et e e e e e e 196
6.6.1 SHOW FILE VALIDITY ..ouniiiiiiiiiiiii e 196
6.6.2 SHOW USE DIRECTORY......coooiiiiiiiiiiiiiiiiiiiiiis s 197
6.6.3 SHOW USE FILE......ooiiiiiiiiiiiiiiii e 199
6.6.4 SHOW ALLUSE FILEoiiiiiiiii s 200
6.6.5 SHOW USE GROUPoiiiiiiiiiiiiiiiii et 200
6.6.6 SHOW [GROUP | DATASET | ATTRIBUTE]cciiiiuiiiiiiiiiiieeiiiie et 202
6.6.7 SHOW TYPE.....coii s 206
6.6.8 SHOW STORAGE TYPE......oiiiiiiiiiiici e 207
6.6.9 SHOW [DATASET | ATTRIBUTE] DATATYPEcoiiiiiiiiiiiiiiiiiiec e 208
6.6.10 SHOW [DATASET | ATTRIBUTE] ENDIANNESSccoiiiiiiiiiiiiiiieiiiieiee e 210
6.6.11 SHOW [DATASET | ATTRIBUTE] CHARSET ...cceiuitiiiiiiiitee ettt 211
vi

Hierarchical Data Format query language (HDFql) Reference Manual

6.7

Version 1.4.0

6.6.12 SHOW STORAGE DIMENSION........ooiiiiiiiiiiiiniiiiiii s 213
6.6.13 SHOW [DATASET | ATTRIBUTE] DIMENSION.......cccimiiiiiiiiiiireeariieee e 214
6.6.14 SHOW [DATASET | ATTRIBUTE] MAX DIMENSION........ccoiiiiiiiiiiiiieiiiiiicc e 216
6.6.15 SHOW [ATTRIBUTE] ORDERotttiiiiiiiiiiiiiiiiiieccee ittt 218
6.6.16 SHOW [DATASET | ATTRIBUTE] TAG....cuutiiiiiiiiieeeiiiiee ettt e e 220
6.6.17 SHOW FILESIZEooeviiiiiiiiiiiiiii e e 221
6.6.18 SHOW [DATASET | ATTRIBUTE] SIZE........ottiiiiiiiiiiiiiiieeeiieiee e 222
6.6.19 SHOW RELEASE DATE.......ciiiiiiii e 223
6.6.20 SHOW HDFQLVERSIONcoutuiiiiiiiiiiiiiiiiii e 224
6.6.21 SHOW HDF VERSIONcocoiiiiiiiiiiiiiii s 225
6.6.22 SHOW PCREVERSION.......coiiiiiiiiiiiiiiiii e 226
6.6.23 SHOW ZLIB VERSIONcoiiiiiiiiiiiiiiiiii e 227
6.6.24 SHOW DIRECTORY ...ccooiiiiiiiiiiii 228
6.6.25 SHOWFILE ...t 229
6.6.26 SHOW MAC ADDRESS........oiiiiiii e 230
6.6.27 SHOW EXECUTE STATUS ..ottt 230
6.6.28 SHOW [[USE] FILE | DATASET] CACHEccoiiiiiiiiiiiiiiiiiinice e 231
6.6.29 SHOW FLUSH......ooiiiiiiiii s 232
6.6.30 SHOW DEBUG.......cuuiiiiiiiiiiiiiii e e 233
MISCELLANEOUS ..ottt e e e e s e aa e eseaes 234
6.7.1 USEDIRECTORYcooiiiiiiiiiiiiiiiiiiiet s 234
6.7.2 USEFILE ..coeiiiiii s 235
6.7.3 USEGROUPcoiiiiiiiiiiiiicir e e 237
6.7.4 FLUSH [GLOBAL | LOCAL] ..ccuitiiiiiiiiiie ettt 239
6.7.5 CLOSEFILE ... 240
6.7.6 CLOSEALLFILE ..ccoiiiiiiiiiii e e 240

vii

Hierarchical Data Format query language (HDFql) Reference Manual

6.7.7 CLOSE GROUP ...ttt ettt ettt e e e e e e ettt e e e e e e s e bbbt e eeeaeeeesaasasreneeas 241

6.7.8 SET[FILE | DATASET] CACHEuuiiiiiieeeeeeieiieteeee e e e e e ee ettt e e e e e e e s seatree e e eeaeeeeennnennneeas 242

6.7.9 ENABLE FLUSH [GLOBAL | LOCAL]..cttttiitiiiiiiiiiettee ettt e e e ettt e e e e e s e 245
6.7.10 ENABLE DEBUG.......ccttttiiiiiiiiiitttetee e e e e ettt e e e e e e ettt et e e e e e e s e abbbe et eeeeeeesaaaabbeeaees 246
6.7.11 DISABLE FLUSHoutiiiiiiee ettt ettt e e e e e ettt e e e e e e s et ee e e e e e e e e annnnnnnees 247
6.7.12 DISABLE DEBUGcciiiiiiiiiiiiieiiiie ettt ettt ettt ettt e e e et et eeeeesereeeseesbnnenes 247
B.7.13 RUN Leetiiiiiiiee ettt ettt e e e e e ettt ettt e e e e e e e b bbbttt e e e e e e s et bbbt e e e e e e e e e e anbbaaees 248
L]0 Y Y 2 S 250
Application programming iNteIface (API).....cceeeiiiiiiiie e e e e et e e e e e e e e ar e e e eaaeees 250
AT UL, . e aaaaaaaaaaaaaaaaaaaaaaaaeaeaaas 250
1T Yo PPN 250
D=1 2= K= PP PP PPPPPPPR 250
D =1 4V o1 ORI 251
L (oYU o 251
PO PIOCESSING. ettt ettt ettt e e et e ettt e e et e e e et e e e e e e e e e en e e re e enenaans 251
|) A PO P PP PP PP PPPPPPPPPRPRRPPRt 251
RESUIT SUDSEE ...ttt et eeeeeeeeeeee 251
U D U S O eeaeeeaaaaeaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeaeaes 252

Version 1.4.0 viii

Hierarchical Data Format query language (HDFql) Reference Manual

LIST OF TABLES

Table 5.1 —HDFQl CONSTANTS iN C...oieeieiieei e e e e et e e e e et e e e e et e e e e et e e e s etaneeeetaeeaesananns 35
Table 5.2 —HDFql constants in C and their corresponding definitionsin C++coooviiiiiiiiiiiiiiie e, 36
Table 5.3 —HDFql constants in C and their corresponding definitionsin Java........cccccccceeiiiiiiriiiiiiiin e, 36
Table 5.4—HDFgl constants in C and their corresponding definitionsin Pythonccccoooiiiiiiiiiiiiiiiiiinen, 37
Table 5.5 —HDFql constants in C and their corresponding definitionsin CH..........ccoooviiiiiiiiiiiiiiiiciee e, 37
Table 5.6 —HDFql constants in C and their corresponding definitionsin Fortran..........cccc.ocooovviiiiiiiineeeeeeeinnnen. 38
Table 5.7 —HDFQI fUNCHONS TN C.uuueeeeieeeeeieee ettt e ettt e e e e e e e e e et e e e e e e e e eeatbb e e aeeeessessatnaeeeaseessesnnnns 41
Table 5.8 —HDFql functions in C and their corresponding definitions in C++.........ccovviiiiiniiiiiiiiiiiiine e, 41
Table 5.9 —HDFql functions in C and their corresponding definitions in Java..........cccoeeeeiiiiiiiiiiiii e, 42
Table 5.10 - HDFqgl functionsin C and their corresponding definitions in Pythoncccooooviiiiiiiiiiiiin i, 42
Table 5.11—HDFql functionsin C and their corresponding definitions in CH........cccooeiiiiiiiiiiiiiiiiii e, 43
Table 5.12 — HDFqgl functionsin C and their corresponding definitions in Fortran...............cooevvvviiiiiineeeeeevnnnnnn. 43
Table 6.1 —HDFqgl operations text formatting CoNVENTIONSuuiiiieiiiiiiiiiiee et e e e eeeeeaaaaans 138
Table 6.2 —HDFQl OPEIatioNs.ciiiiiiee i e et e e e et e e e e et e e e s et e e e et e eesaaaneaeeananns 141
Table 6.3 —HDFql datatypes and their corresponding definitions in HDF5..........ccoovviiiiiiiiiiie e, 143
Table 6.4 —HDFql pOSt-processing OPtiONSc.uuiiiiiii et e et e e et e e e et e e e et e e e s et e e eeaanns 157

Version 1.4.0 ix

Hierarchical Data Format query language (HDFql) Reference Manual

LIST OF FIGURES

Figure 3.1 —Illustration of the command-line interface “HDFQICLI”..........couiiiiiiiiiiiceeecee e, 20
Figure 4.1 —Linearization of a two dimensional dataset into a (one dimensional) cursor............ccceeeeeeeveeennnnee. 23
Figure 4.2 —Cursor populated with datafrom dataset “my_dataset0”cccooveeeriiiiiiiiiii e, 26
Figure 4.3 —Cursor populated with datafrom dataset “my_datasetl”ccccoooioiiiiiiiiiiiiie s 27
Figure 4.4 —Cursor populated with datafrom dataset “my_dataset2”cccoeveiiriiiiiiiiiin e, 28
Figure 4.5 —Cursor and its subcursor populated with data from dataset “my_dataset3”...........cccceeeeeeirrrnnnnne. 29
Figure 4.6 —Cursor and its subcursors populated with data from dataset “my_datasetd”ccceeeeeerrevnnnee. 30
Figure 4.7 — Cursor and its subcursors populated with data from dataset “my_dataset5”cccccceevvveeinnnnnnn. 31

Version 1.4.0 X

1. INTRODUCTION

HDFql stands for “Hierarchical Data Format query language” and is the first tool that enables users to manage
HDF' files through a high-level language. This language was designed to be simple to use and similar to SQL
thus dramatically reducing the learning effort. HDF gl can be seen as an alternative to the C API (which contains
more than 400 low-level functions that are far from easy to use!) and to existing wrappers for C++, Java,
Python, C# and Fortran for manipulating HDF files. Whenever possible, it automatically uses parallelism to

speed-up operations hiding its inherent complexity from the user.

As an example, imagine that one needs to create an HDF file named “myFile.h5” and, inside it, a group named
“myGroup” containingan attribute named “myAttribute” of type float with a value of 12.4. Using the C AP, it

could be implemented like this:

hid t file;

hid t group;

hid t dataspace;
hid t attribute;
hsize t dimension;
float value;

H5Fcreate ("myF h5", H5F ACC EXCL, H5P DEFAULT, H5P DEFAULT);

file = HS5Fopen('n ile.hb5", H5F ACC RDWR, H5P DEFAULT);

group = H5Gcreate (file, "my

bup”, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT),'
dimension = 1;
dataspace = H5Screate simple(l, &dimension, NULL);

attribute = H5Acreate (group, '"m

“tribute', H5T NATIVE FLOAT, dataspace, H5P DEFAULT,
H5P DEFAULT) ;
value = g

H5Awrite (attribute, HS5T NATIVE FLOAT, &value);

" Hierarchical Data Format is the name of a set of file formats and libraries designed to store and organize large amounts of n umerical data. It is currently
supported by the non-profit HDF Group, whose missionis to ensure continued development of HDF technologies and the continued accessibility of data
currently stored in HDF. Please refer to the website http://www.hdfgroup.org for additional information.

Version 1.4.0 Page 1 0f252

http://www.hdfgroup.org/

Hierarchical Data Format query language (HDFql) Reference Manual

In HDFql, the same example can easily be implemented just by doing this:

create file myFile.hb
use file myFile.h5
create group myGroup

create attribute myGroup/myAttribute as float default 12.4

Version 1.4.0 Page 2 0f 252

2. INSTALLATION

The official website of the Hierarchical Data Format query language (HDFql) is http://www.hdfgl.com. Here, the
most recent documentation and examples thatillustrate how to solve disparate use-cases using HDFgl can be
found. Inaddition, in the download area (http://www.hdfgl.com/download) all versions of HDFgl ever publicly
released are available. These versions are packaged as ZIP files, each one of them meant for a particular
platform (i.e. Windows, Linux or Mac OS X), architecture (i.e. 32 bit or 64 bit) and compiler’. When

decompressed, such ZIP files typically have the following organization in terms of directories and files

contained within:

HDFgl-x.y.z

+

example (directory that contains examples in C, C++, Java, Python, C# and Fortran)

include (directory that contains HDFql C and C++ header files)

1lib (directory that contains HDFql C release/debug static and shared libraries)

bin (directory that contains HDFgl command-line interface and a proper launcher)

wrapper (directory that contains wrappers for C++, Java, Python, C# and Fortran)

doc (directory that contains HDFql reference manual)

LICENSE.txt (file that contains information about HDFgl license)

RELEASE.txt (file that contains information about HDFgl releases)

README.txt (file that contains succinct information about HDFql)

! At the time of writing, HDFql only supports Microsoft Visual Studio and Gnu Compiler Collection (GCC) compilers. Additional c ompilers will be

supported in the near future, namely MinGW (http://www.mingw.org) and Clang (http://clang.llvm.org).

Version 1.4.0

Page 3 0f 252

http://www.hdfql.com/
http://www.hdfql.com/download
http://www.mingw.org/
http://clang.llvm.org/

Hierarchical Data Format query language (HDFql) Reference Manual

The following sections provide concise instructions on how to install HDFql in the different platforms that it

currently supports —namely Windows, Linux and Mac OS X.

2.1 WINDOWS

e Download the appropriate ZIP file according to the HDFql version, architecture and compiler of interest
from http://www.hdfql.com/download. Forinstance, if the HDFql version of interestis 1.0.0 and it is to be
used in a machine running Windows 32 bit and, eventually, be linked against C or C++ code using the

Microsoft Visual Studio 2010 compilerthenthe filetodownloadis “HDFql-1.0.0 Windows32 VS-2010.zip”.

e Unzip the downloaded file using Windows Explorer in-build capabilities or a free tool such as 7-Zip

(http://www.7-zip.org).

2.2 LINUX

e Download the appropriate ZIP file according to the HDFgl version, architecture and compiler of interest
from http://www.hdfql.com/download. Forinstance, if the HDFql version of interestis 1.1.0 and it is to be
usedina machine running Linux 64 bit and, eventually, be linked against C or C++ code using the GCC 4.8.x

compilerthen the file to download is “HDFql-1.1.0_Linux64 GCC-4.8.zip".

e Unzipthe downloadedfileusing the Archive Manager or the KArchive (ifin GNOME or KDE respectively), or
by openingaterminal and executing “unzip <downloaded_zip_file>". If the unzip utility is not installed in

the machine, it can be done by executing from a terminal:
e InaRed Hat-based distribution, “sudo yum install unzip”.

o InaDebian-based distribution, “sudo apt-get install unzip”.

Version 1.4.0 Page 4 0f 252

http://www.hdfql.com/download
http://www.7-zip.org/
http://www.hdfql.com/download

Hierarchical Data Format query language (HDFql) Reference Manual

2.3 MACOSX

e Download the appropriate ZIP file according to the HDFqgl version, architecture and compiler of interest
from http://www.hdfql.com/download. Forinstance, if the HDFql version of interestis 1.3.0 and it is to be
usedin a machine running Mac OS X 64 bit and, eventually, be linked against C or C++ code using the GCC

4.9.x compiler then the file to download is “HDFql-1.3.0_Darwin64 GCC-4.9.zip".

e Unzip the downloaded file using the Archive Utility or by opening a terminal and executing “unzip
<downloaded_zip_file>". If the unzip utility is not installed in the machine, it can be done by executing

“sudo port install unzip” from a terminal.

Version 1.4.0 Page 50f252

http://www.hdfql.com/download

3. USAGE

Afterfollowingthe instructions provided in chapter INSTALLATION, HDFqglis ready for usage. Itcan be used in C
through static and shared libraries; in C++, Java, Python, C# and Fortran through wrappers; and finally, through
a command-line interface named “HDFqICLI”. The subsequent sections provide guidance on usage and basic

troubleshooting information to solve issues that may arise.

31 C

HDFgl can be used in the C programming language through static and shared libraries. These libraries are

storedinthe directory “lib”. The following short program illustrates how HDFgl can be used in such language.

// include HDFgl C header file (make sure it can be found by the C compiler)
#include "HDFgl.h"

int main(int argc, char *argv([])

{
// display HDFgl version in use
printf ("HDFq ¢s\n'", HDFQL VERSION);
// create an HDF file named "my file.h5"
hdfgl execute('C h5");
// use (i.e. open) HDF file "my file.h5"
hdfgl execute("USE FILE my file.h5");
// create a dataset named "my dataset" of type int
hdfqgl execute("CR my dataset AS INT");
return 0;
}

Version 1.4.0 Page 6 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

Assuming that the program is stored in a file named “example.c”, it must first be compiled before it can be

launched from a terminal. To compile the program against the HDFql C static library:

e In Microsoft Visual Studio, by executing “clexe example.c /I<hdfql include_directory>

<hdfql_lib_directory>\HDFql.lib /link /LTCG /NODEFAULTLIB:libcmt.lib” from a terminal.

e In Gnu Compiler Collection (GCC), by executing “gcc example.c -I<hdfql _include directory>

<hdfql_lib_directory>/libHDFql.a -fopenmp -Im -IdI’ from a terminal.

To compile the same program against the HDFql C shared library:

e In Microsoft Visual Studio, by executing “clexe example.c /I<hdfql_include_directory>

<hdfql_lib_directory>\HDFql_dIl.lib” from a terminal.

e In Gnu Compiler Collection (GCC), by executing “gcc example.c -I<hdfql include directory> -

L<hdfql_lib_directory>-IHDFql -Im -Idl" from a terminal.

Of note, debug versions of the HDFql C static and shared libraries are also available. These are stored in the
directory “debug” found under the directory “lib”. To compile C programs using debug libraries, the
instructions described inthe above bullet points should be followed with two modifications: (1) the directory
storing the libraries should be updated (“<hdfgl_lib_directory>\debug” in Microsoft Visual Studio;
“<hdfgl_lib_directory>/debug” in GCC); (2) the suffix “D” should be added to the name of the libraries
(“HDFqID.lib” and “HDFqgl_dlID.lib” in Microsoft Visual Studio; “libHDFqID.a” and “libHDFgID.so” in GCC).

In case the program does not compile, likely a C compiler is not installed in the machine. If a C compileris

missing, the solution is:

e In Windows, download and install a free version of Microsoft Visual Studio from the website

https://www.visualstudio.com/downloads.

e InLinux, install the GCC C compiler by executing from a terminal:

Version 1.4.0 Page 7 0f 252

https://www.visualstudio.com/downloads

Hierarchical Data Format query language (HDFql) Reference Manual

e InaRed Hat-based distribution, “sudo yum install gcc”.
o InaDebian-based distribution, “sudo apt-get install gcc”.

e In Mac OS X, install the GCC C compiler by executing “xcode-select --install’ from a terminal. If xcode-select
does not support the parameter “--install” (due to being outdated), download and install the Command-

Line Tools package from http://developer.apple.com/downloads which includes GCC.

In case the compiled program does not launch, most likely the HDFgl C shared library (which is needed to

launch the program) was not found. The solution is:

o InWindows, copy the file “HDFql_dll.dIl” (stored in “<hdfql_lib_directory>") into the directory where the
program is located. Alternatively, add the directory where the file “HDFql_dlIl.dll” is located to the

environment variable “PATH” by executing “set PATH=<hdfql_lib_directory>;%PATH%" from a terminal.

e In Linux, add the directory where the file “libHDFqgl.so” is located to the environment variable

“LD_LIBRARY_PATH” by executing from a terminal:
e InBash shell, “export LD_LIBRARY_PATH=<hdfql_lib_directory>:SLD_LIBRARY PATH”.
e InCshell, “setenv LD_LIBRARY_PATH <hdfql_lib_directory>:SLD_LIBRARY PATH".

e In Mac OS X, add the directory where the file “libHDFql.dylib” is located to the environment variable
“DYLD_LIBRARY_PATH” by executing from a terminal:

e InBash shell, “export DYLD_LIBRARY_PATH=<hdfql_lib_directory>:SDYLD LIBRARY PATH”".

e InCshell, “setenv DYLD LIBRARY PATH <hdfql lib_directory>:SDYLD_LIBRARY PATH".

3.2 C++

HDFql can be used in the C++ programming language through static and shared libraries. These libraries are

storedinthe directory “cpp” found underthe directory “wrapper”. The following short programillustrates how

HDFql can be used in such language.

Version 1.4.0 Page 8 0f 252

http://developer.apple.com/downloads

Hierarchical Data Format query language (HDFql) Reference Manual

// include HDFql C++ header file (make sure it can be found by the C++ compiler)
#include <iostream>

#include "HDFgl.hpp"

int main(int argc, char *argv[])

{
// display HDFgl version in use

std::cout << "HDFqgl version: " << HDFql::Version << std::endl;

// create an HDF file named "my file.h5"

HDFql::execute ("CREATE FILE my file.hb5");

// use (i.e. open) HDF file "my file.h5"

HDFgl::execute ("USE FILE my file.hb5");

// create a dataset named "my dataset" of type int

HDFql::execute ("CREATE DATASET my dataset AS INT");

return 0;

Assumingthatthe programis storedina file named “example.cpp”, it must first be compiled before it can be

launched from a terminal. To compile the program against the HDFql C++ static library:

e In Microsoft Visual Studio, by executing “cl.exe example.cop /EHsc /I<hdfql_include_directory>
<hdfql_cpp_wrapper_directory>\HDFql.lib /link /LTCG /NODEFAULTLIB:libcmt.lib” from a terminal.

e In Gnu Compiler Collection (GCC), by executing “g++ example.cpp -I<hdfql include_directory>

<hdfql_cpp_wrapper_directory>/libHDFql.a -fopenmp -IdI’ from a terminal.

To compile the same program against the HDFgl C++ shared library:

e In Microsoft Visual Studio, by executing “cl.exe example.cop /EHsc /I<hdfql_include directory>

<hdfql cpp_wrapper_directory>\HDFql_dIl.lib” from a terminal.

e In Gnu Compiler Collection (GCC), by executing “g++ example.cpp -I<hdfql_include_directory> -

L<hdfql cpp_wrapper_directory>-IHDFql -Idl” from a terminal.

Version 1.4.0 Page 9 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

In case the program does not compile, likely a C++ compileris notinstalled in the machine. If a C++ compileris

missing, the solution is:

e In Windows, download and install a free version of Microsoft Visual Studio from the website

https://www.visualstudio.com/downloads.
e InLinux, install the GCC C++ compiler by executing from a terminal:
e InaRed Hat-based distribution, “sudo yum install gcc-c++".
e InaDebian-based distribution, “sudo apt-get install g++".

e In Mac OS X, install the GCC C++ compiler by executing “xcode-select --install” from a terminal. If xcode-

III

select does not support the parameter “--install” (due to being outdated), download and install the

Command-Line Tools package from http://developer.apple.com/downloads which includes GCC.

In case the compiled program does not launch, most likely the HDFgl C++ shared library (which is needed to

launch the program) was not found. The solution is:

e InWindows, copythefile “HDFgl_dlIl.dll” (stored in “<hdfql_cpp_wrapper_directory>") into the directory
where the programis located. Alternatively, add the directory where the file “HDFql_dIl.dIl” is located to
the environmentvariable “PATH” by executing “set PATH=<hdfql cpp_wrapper _directory>%PATH%" from

aterminal.

e In Linux, add the directory where the file “libHDFql.so” is located to the environment variable

“LD_LIBRARY_PATH” by executing from a terminal:
e InBash shell, “export LD_LIBRARY _PATH=<hdfql cpp_wrapper_directory>:SLD_LIBRARY PATH".
e InCshell, “setenv LD_LIBRARY_PATH <hdfql_cpp_wrapper_directory>:SLD_LIBRARY PATH".

e In Mac OS X, add the directory where the file “libHDFql.dylib” is located to the environment variable
“DYLD_LIBRARY_PATH"” by executing from a terminal:

Version 1.4.0 Page 10 of 252

https://www.visualstudio.com/downloads
http://developer.apple.com/downloads

Hierarchical Data Format query language (HDFql) Reference Manual

e In Bash shell, “export

DYLD_LIBRARY_PATH=<hdfql_cpp_wrapper_directory>:SDYLD_LIBRARY PATH".

e InCshell, “setenv DYLD _LIBRARY PATH <hdfql _cpp_wrapper_directory>:5SDYLD LIBRARY PATH".

3.3 JAVA

HDFql can be usedinthe Java programming language through a wrapper named “HDFql.java”. This wrapper is

stored in the directory “java” found under the directory “wrapper”. The following short program illustrates

how HDFqgl can be used in such language.

public class Example
{
public static void main(String args[])
{
// load HDFql shared library (make sure it can be found by the JVM)

System. loadLibrary ("HDFql") ;

// display HDFql version in use
System. out.println("HDFqgl version: " + HDFql.VERSION);

// create an HDF file named "my file.h5"

T T

HDFqgl.execute ("CREATE FILE my file.hb5");

// use (i.e. open) HDF file "my file.h5"

TTH 2l

HDFqgl.execute ("USE FILE my file.h5");

// create a dataset named "my dataset" of type int

HDFql.execute ("CREATE DATASET my dataset AS INT");

Assuming that the program is stored in a file named “Example.java”, it must first be compiled by executing
“javac Example.java” before it can be launched by executing “java Example” from a terminal. In case the
program does not compile orlaunch, likely the Java DevelopmentKit (JDK) is not installed in the machine orthe

HDFql Java wrapper was not found. For the former, install the JDK by following the instructions available at

Version 1.4.0 Page 11 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

http://www.oracle.com/technetwork/java/javase/downloads. For the latter, add the directory where the file
“HDFql.java” (i.e. the wrapper) is located to the environment variables “CLASSPATH” and, depending on the
platform, “PATH”, “LD_LIBRARY_PATH” or “DYLD_LIBRARY_PATH":

e In Windows, by executing “set CLASSPATH=<hdfql java_wrapper _directory>;.;%CLASSPATH%" and “set

PATH=<hdfql_java_wrapper_directory>;%PATH%" from a terminal.
e InLinux, by executing from a terminal:

e In Bash shell, “export CLASSPATH=<hdfql_java_wrapper_directory>:.:SCLASSPATH” and “export
LD _LIBRARY_PATH=<hdfql java_wrapper_directory>:5LD_LIBRARY_ PATH".

e In C shell, “setenv CLASSPATH <hdfql java_wrapper_directory>:.:SCLASSPATH” and “setenv
LD _LIBRARY_PATH <hdfql_java_wrapper_directory>:5LD_LIBRARY _PATH".

e In Mac OS X, by executing from a terminal:

e In Bash shell, “export CLASSPATH=<hdfql_java_wrapper_directory>:.:SCLASSPATH” and “export
DYLD_LIBRARY PATH=<hdfql_java_wrapper_directory>:SDYLD_LIBRARY PATH".

e In C shell, “setenv CLASSPATH <hdfql java_wrapper _directory>:.:SCLASSPATH” and “setenv
DYLD_LIBRARY_PATH <hdfql_java_wrapper_directory>:5SDYLD_LIBRARY _PATH".

3.4 PYTHON

HDFql can be usedin the Python programming language through awrapper named “HDFql.py”. This wrapper is
stored in the directory “python” found under the directory “wrapper”. The following short scriptillustrates

how HDFqgl can be used in such language.

import HDFgl module (make sure it can be found by the Python interpreter)

import HDFql

display HDFgl version in use
print ("HDFgl version: $s'" % HDFql.VERSION)

create an HDF file named "my file.h5"

Version 1.4.0 Page 12 0of 252

http://www.oracle.com/technetwork/java/javase/downloads

Hierarchical Data Format query language (HDFql) Reference Manual

HDFgl.execute ("CREATE FILE my file.h5")

use (i.e. open) HDF file "my file.h5"
HDFgl.execute ("USE FILE my file.h5")
create a dataset named "my dataset" of type int

HDFql.execute ("CREATE DATASET my dataset AS INT")

Assuming that the script is stored in a file named “example.py” it can be launched by executing “python
example.py” fromaterminal. In case the script does not launch, likely the Pythoninterpreter is not installed in
the machine or the HDFql Python wrapper was not found. For the former, install the Python interpreter by
following the instructions available at http://www.python.org/download. For the latter, add the directory

where the file “HDFql.py” (i.e. the wrapper) is located to the environment variable “PYTHONPATH":

o In Windows, by executing “set PYTHONPATH=<hdfql_python_wrapper_directory>;%PYTHONPATH%" from

a terminal.
e In Linux/Mac OS X, by executing from a terminal:
e InBash shell, “export PYTHONPATH=<hdfql_python_wrapper_directory>:SPYTHONPATH".

e InCshell, “setenv PYTHONPATH <hdfql_python_wrapper_directory>:SPYTHONPATH".

Besides these steps, ascientificcomputing package named NumPy must be installed when working with user-
defined variables (please refertothe function hdfql_variable_ register for additional information). NumPy can

be found at http://www.scipy.org/scipylib/download.html along with instructions on how to install it.

3.5 CH#

HDFqgl can be used in the C# programming language through a wrapper named “HDFql.cs”. This wrapper is
storedinthe directory “csharp” found under the directory “wrapper”. The following short program illustrates

how HDFqgl can be used in such language.

Version 1.4.0 Page 13 0of 252

http://www.python.org/download
http://www.scipy.org/scipylib/download.html

Hierarchical Data Format query language (HDFql) Reference Manual

public class Example
{
public static void Main(string []args)
{
// display HDFgl version in use

System. Console.WriteLine ("HDFgl version: {0}", HDFql.Version);

// create an HDF file named "my file.h5"

HDFgl.Execute ("CREATE FILE my file.h5");

// use (i.e. open) HDF file "my file.h5"
HDFgl.Execute ("USE FILE my file.h5");

// create a dataset named "my dataset" of type int

HDFql.Execute ("CREATE DATASET my

Q.

ataset AS INT");

Assuming that the program is stored in afile named “Example.cs”, it must first be compiled before it can be

launched from a terminal. In Windows, the program can be compiled as follows:

e In Microsoft .NET Framework, by executing “csc.exe <hdfql_csharp_wrapper_directory>*.cs Example.cs”

from a terminal.

e In Mono, by executing “mcs.bat <hdfql _csharp_wrapper_directory>*.cs Example.cs” from a terminal.

In Linux and Mac OS X, the program can be compiled in Mono by executing “mcs
<hdfql _csharp_wrapper_directory>/*.cs Example.cs” from aterminal (of note, Microsoft .NET Framework does

not support these platforms).

In case the program does not compile, likely a C# compileris not installed in the machine. If a C# compileris

missing, the solution is:

Version 1.4.0 Page 14 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

e |n Windows, download and install either Microsoft .NET Framework or Mono from the websites

https://www.microsoft.com/net/download/framework or http://www.mono-project.com/download,

respectively.

e In Linux and Mac OS X, download and install Mono from the website http://www.mono-

project.com/download.

Depending on the platform, the compiled program may be launched as follows:

e In Windows by:
e Executing “Example.exe” from a terminal if it was compiled in Microsoft .NET Framework.
e Executing “mono.exe Example.exe” from a terminal if it was compiled in Mono.

e InLinux and Mac OS X by executing “mono Example.exe” from a terminal.

In case the compiled program does not launch, most likely the HDFql C# wrapper (which is needed to launch
the program) was not found. The solution is to add the directory where the file “HDFqgl.cs” (i.e. the wrapper) is

located to the environment variable “PATH”, “LD_LIBRARY_PATH” or “DYLD_LIBRARY_PATH” (depending on

the platform):

e InWindows, by executing “set PATH=<hdfql csharp_wrapper_directory>;%PATH%" from a terminal.

e InLinux, by executing from a terminal:
e InBash shell, “export LD_LIBRARY_PATH=<hdfql_csharp_wrapper_directory>:SLD_LIBRARY PATH".
e InCshell, “setenv LD_LIBRARY_PATH <hdfql_csharp_wrapper_directory>:SLD_LIBRARY PATH".

e In Mac OS X, by executing from a terminal:

e In Bash shell, “export

DYLD LIBRARY_PATH=<hdfql_csharp_wrapper_directory>:5SDYLD_LIBRARY_PATH”.

Version 1.4.0 Page 15 0f252

https://www.microsoft.com/net/download/framework
http://www.mono-project.com/download
http://www.mono-project.com/download
http://www.mono-project.com/download

Hierarchical Data Format query language (HDFql) Reference Manual

e In C shell, “setenv DYLD LIBRARY PATH
<hdfql _csharp_wrapper_directory>:SDYLD LIBRARY PATH”.

3.6 FORTRAN

HDFql can be usedinthe Fortran programminglanguage through staticand shared libraries. These libraries are
storedinthe directory “fortran” found underthe directory “wrapper”. The following short program illustrates

how HDFqgl can be used in such language.

PROGRAM Example
! use HDFql module (make sure it can be found by the Fortran compiler)

USE HDFgl

! declare variable

INTEGER :: state

! display HDFgl version in use

WRITE(*, *) "HDFgl version: ", HDFQL VERSION

! create an HDF file named "my file.h5"
E my file.h5" // CHAR(0))

C FT

state = hdfgl execute("CREATE FI

=

! use (i.e. open) HDF file "my file.h5"
ile.h5" // CHAR(O0))

state = hdfgl execute("USE FILE my

! create a dataset named "my dataset" of type int
state = hdfgl execute("CREATE DATASET my dataset AS INT" // CHAR(0))

END PROGRAM

Assumingthatthe program is stored in a file named “example.f90”, it must first be compiled before it can be

launched from a terminal. To compile the program against the HDFql Fortran static library:

e In Gnu Compiler Collection (GCC), by executing “gfortran example.f90-I<hdfql fortran_wrapper_directory>

<hdfql fortran_wrapper_directory>/libHDFql.a -fopenmp -IdI” from a terminal.

Version 1.4.0 Page 16 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

To compile the same program against the HDFgl Fortran shared library:

e In Gnu CompilerCollection (GCC), by executing “gfortran example.f90-I<hdfql_fortran_wrapper_directory>

-L<hdfql fortran_wrapper_directory>-IHDFql -IdI” from a terminal.

In case the program does not compile, likely a Fortran compiler is not installed in the machine. If a Fortran

compiler is missing, the solution is:

e InLinux, install the GCC Fortran compiler by executing from a terminal:
e InaRed Hat-based distribution, “sudo yum install gcc-gfortran”.
e InaDebian-based distribution, “sudo apt-get install gfortran”.

e InMac OS X, install the GCC Fortran compiler by executing “xcode-select --install” from a terminal. If xcode-

select does not support the parameter “--install” (due to being outdated), download and install the

Command-Line Tools package from http://developer.apple.com/downloads which includes GCC.

Of note, anincorrect warning is raised by the GCC Fortran compiler when using the HDFql module (“Warning:
Only array FINAL procedures declared for derived type 'hdfqgl_cursor' defined at (1), suggest also scalar one”).
This warning does not interfere with the final compilation result, though, and it has been solved in the GCC
Fortran compiler version 7.0.0 (please refer to https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58175 for

additional information).

In case the compiled program does not launch, most likely the HDFql Fortran shared library (whichis needed to

launch the program) was not found. The solution is:

e In Linux, add the directory where the file “libHDFql.so” is located to the environment variable

“LD_LIBRARY_PATH” by executing from a terminal:
e InBash shell, “export LD_LIBRARY PATH=<hdfql_fortran_wrapper_directory>:SLD _LIBRARY PATH’.

e InCshell, “setenv LD_LIBRARY PATH <hdfql fortran_wrapper_directory>:SLD _LIBRARY PATH”.

Version 1.4.0 Page 17 of 252

http://developer.apple.com/downloads
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58175

Hierarchical Data Format query language (HDFql) Reference Manual

e In Mac OS X, add the directory where the file “libHDFql.dylib” is located to the environment variable
“DYLD_LIBRARY_PATH” by executing from a terminal:

e |n Bash shell, “export

DYLD LIBRARY_PATH=<hdfql _fortran_wrapper_directory>:SDYLD_LIBRARY PATH".

e In C shell, “setenv DYLD LIBRARY_PATH
<hdfql _fortran_wrapper_directory>:SDYLD LIBRARY PATH”.

3.7 COMMAND-LINE INTERFACE

A command-line interface named “HDFqICLI” is available and can be used for manipulating HDF files. It is
stored in the directory “bin”. To launch the command-line interface, open a terminal (“cmd” if in Windows,
“xterm”ifin Linux, or “Terminal” if in Mac OS X), go to the directory “bin”, and type “HDFqICLI” (if in Windows)
or “./HDFgqICLI” (if in Linux/Mac OS X). The list of parameters accepted by the command-line interface can be
viewed by launching it with the parameter “--help”. At the time of writing, this list includes the following

parameters:

e --help (show the list of parameters accepted by HDFqICLI)

e --version (show the version of HDFqICLI)

e --mac-address (show the MAC address(es) of the machine)

e --debug (show debug information when executing HDFql operations)

e --no-path (do not show group path currently in use in HDFqICLI prompt)
e --execute=X (execute HDFql operation(s) “X" and exit)

e --execute-file=X (execute HDFql operation(s) stored in file “X” and exit)

e --save-file=X (save executed HDFql operation(s) to file “X”)

Version 1.4.0 Page 18 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

In case the command-line interface does not launch, most likely the HDFql shared library (which is needed to

launch the interface) was not found. Depending on the platform, the solution is:
e In Windows, to either:

e Copy the file “HDFql_dIl.dIlI” (stored in “<hdfgl_lib_directory>") into the directory where the

command-line interface is located.

e Addthedirectory where the file “HDFql_dlIl.dIl” is located to the environment variable “PATH” by

executing “set PATH=<hdfql_lib_directory>;%PATH%"” from a terminal.

e Execute the batch file named “launch.bat” which properly sets up the environment variable

“PATH” and launches the command-line interface from a terminal.
e InLinux, to either:

e Add the directory where the file “libHDFql.so” is located to the environment variable

“LD_LIBRARY_PATH” by executing from a terminal:
e InBashshell, “export LD_LIBRARY _PATH=<hdfql lib_directory>:SLD LIBRARY PATH”.
e InCshell, “setenv LD _LIBRARY PATH <hdfql_lib_directory>:SLD_LIBRARY PATH”.

o Execute the bash script file named “launch.sh” which properly sets up the environment variable

“LD_LIBRARY_PATH” and launches the command-line interface from a terminal.

e |nMac OS X, to either:

e Add the directory where the file “libHDFgl.dylib” is located to the environment variable

“DYLD_LIBRARY_PATH” by executing from a terminal:
e InBash shell, “export DYLD_LIBRARY PATH=<hdfql_lib_directory>:SDYLD LIBRARY PATH".
e InCshell, “setenv DYLD LIBRARY PATH <hdfql lib_directory>:SDYLD LIBRARY PATH”.

o Execute the bash script file named “launch.sh” which properly sets up the environment variable

“DYLD_LIBRARY_PATH” and launches the command-line interface from a terminal.

Version 1.4.0 Page 19 0of 252

Hierarchical Data Format query language (HDFql)

Reference Manual

2016-2017

»create file example. hs
elements returned in 0.0 seconds)

2 Tile example. hs
elements returned in 0.0 seconds)

E'I ements returned 1 seconds)

reate dataset my

seconds)

EN C:\Windows\system32\cmd.exe - HDFqICLLexe = [| (3]

ommand-Line Interface) wversion 1.4.0 (using V5-2015 &4 bit 14

to get more information or "exit™ to return to the terminal.

Figure 3.1 —Illustration of the command-line interface “HDFqICLI”

Version 1.4.0

Page 20 of 252

4. CURSOR

Generally speaking, a cursor is a control structure that is used to iterate through the results returned by a
guery (that was previously executed). It can be seen as an effective means to abstract the programmer from
low-level implementation details of accessing data stored in specific structures. This chapter provides a

description of cursors and subcursorsin HDFql, as well asexamples andillustrations to demonstrate these two

concepts in practice.

4.1 DESCRIPTION

HDFgl provides cursors which offer several ways to traverse result sets according to specific needs. The

following list enumerates these functionalities (please refer to their links for further information):
e First (moves cursor to the first position within the result set —hdfql_cursor_first)

e Last (moves cursor to the last position within the result set —hdfgl_cursor_last)

o Next (moves cursor to the next position within the result set —hdfgl_cursor_next)

e Previous (moves cursor to the previous position within the result set —hdfql_cursor_previous)
e Absolute (moves cursor to an absolute position within the result set —hdfql_cursor_absolute)

e Relative (moves cursor to arelative position within the result set —hdfgl_cursor_relative)

Besides their traversal functionalities, a particular feature of cursors in HDFqgl is that they store result sets
returned by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION LANGUAGE (DIL) operations. To
retrieve values from result sets, the functions starting with “hdfgl_cursor_get” can be used. These and
remaining functions offered by cursors can be found in Table 5.7 (each of these begins with the prefix

“hdfgl_cursor”).

Version 1.4.0 Page 21 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

When a certain operation is executed, HDFqgl stores the result set returned by this operation in its default
cursor. Thiscursor isavailable to the programmerand is automatically created and initialized upon loading the

HDFql library by a program. If additional cursors are needed, they can be created like this:

// create a cursor named "my cursor"

HDFQL CURSOR my cursor;

Before a cursor can be used to store and eventually traversearesultset, it mustbe properly initialized (refer to

the function hdfgl_cursor_initialize for further information). Initializing a cursor can be done like this:

// initialize a cursor named "my cursor"

hdfgl cursor initialize(&my cursor);

To switch between different cursors (to be used for separate needs), the function hdfql_cursor_use may be

employed:

// use a cursor named "my cursor"

hdfgl cursor use(&my cursor);

The following Csnippetillustrates usage of the HDFql default cursorand a user-defined cursor, as well as some

typical operations performed on/by these.

// create a cursor named "my cursor"

HDFQL CURSOR my cursor;

// create datasets named "my dataset(0" and "my datasetl”" of type float
hdfql execute ("CREATE DATASET my dataset(O AS FLOAT");
hdfgl execute("CREATE DATASET my datasetl AS FLOAT (4, 2)");

// select (i.e. read) dataset "my dataset0" and populate HDFql default cursor with it
hdfgl execute("SELECT FROM my dataset0");

// initialize cursor "my cursor" and use it
hdfgl cursor initialize(&my cursor);

hdfql cursor use(&my cursor);

Version 1.4.0 Page 22 0of 252

Hierarchical Data Format query language (HDFql) Reference Manual

// select (i.e. read) dataset "my datasetl" and populate cursor "my cursor" with it

hdfgl execute("SELECT FROM my datasetl");

// use HDFql default cursor and display its number of elements (should be 1)
hdfgl cursor use(NULL);

printf("Number of elements in cursor is %d\n", hdfgl cursor get count (NULL));

// use cursor "my cursor" and display its number of elements (should be 8 - i.e. 4x2)
hdfgl cursor use(&my cursor);

printf("Number of elements in cursor is %d\n", hdfgl cursor get count (NULL));

// display elements of cursor "my cursor" (should display 8 elements)
while (hdfql cursor next (NULL) == HDFQL SUCCESS)
{
printf("Current element of cursor is %f\n", *hdfql cursor get float (NULL));

When populating a cursor with data from a dataset or attribute with two or more dimensions, the data is
always linearized into asingle dimension. The linearization process is depicted in Figure 4.1. Subsequently, if
need be, it is up to the programmer to access the data (stored in the cursor) according to its original
dimensions. Inthis case, the SHOW [DATASET | ATTRIBUTE] DIMENSION operation —which returns the original
dimensions of a dataset or attribute — may be useful to help in the task of going from one dimension to the

original dimensions.

Dataset [3, 2]

Cursor [€]

Figure 4.1 —Linearization of a two dimensional dataset into a (one dimensional) cursor

Version 1.4.0 Page 23 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

4.2 SUBCURSOR

HDFql also provides subcursors —they are meant to complement (i.e. help) cursorsin the task of storing data of
type variable-length (i.e. VARTINYINT, UNSIGNED VARTINYINT, VARSMALLINT, UNSIGNED VARSMALLINT,
VARINT, UNSIGNED VARINT, VARBIGINT, UNSIGNED VARBIGINT, VARFLOAT, VARDOUBLE and VARCHAR). In
practice, when a dataset or attribute of type variable-length is read through a DATA QUERY LANGUAGE (DQL)
operation, only the first value of the variable data is stored in the cursor (as expected), while all values of the
variable data are stored in the subcursor. In other words, each position of the cursor stores the first value of
the variable dataand also pointsto a subcursorthat inturn stores all the values of the variable data. The values
storedina subcursor (which are also known as a result subset) can be accessed with the functions starting with
“hdfql_subcursor_get” (enumerated in Table 5.7). Similar to cursors, HDFgl subcursors offer several ways to

traverse result subsets, namely:

e First (moves subcursor to the first position within the result subset —hdfql_subcursor_first)

e Last (moves subcursor to the last position within the result subset —hdfgl_subcursor_last)

o Next (moves subcursor to the next position within the result subset —hdfgl_subcursor_next)

e Previous(moves subcursortothe previous position within the result subset —hdfql_subcursor_previous)
e Absolute (moves subcursor to an absolute position within the result subset —hdfql_subcursor_absolute)

e Relative (moves subcursor to a relative position within the result subset —hdfqgl_subcursor_relative)

The following Csnippetillustrates usage of the HDFgl subcursors, as well as some typical operations performed

on/by these.

// create a dataset named "my dataset" of type variable-length int of one dimension (size
4)

hdfqgl execute ("CREATE DATASET my dataset AS VARINT(4)");

// insert (i.e. write) values into dataset "my dataset”

hdfgl execute("INSERT INTO my dataset VALUES((7, 8, 5, 3), (9), (6, 1, 2), (4, 0))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

Version 1.4.0 Page 24 of 252

Hierarchical Data Format query language (HDFql)

Reference Manual

hdfgl execute("SELECT FROM my dataset');

// move the cursor in use to the next position within the result set (stored)

while (hdfql cursor next (NULL) == HDFQL SUCCESS)

{

// display elements of the cursor in use

printf("Current element of cursor 1is

// move the subcursor in use to the next position within the result subset

while (hdfql subcursor next (NULL) == HDFQL SUCCESS)

{

// display elements of the subcursor in use

printf (" Current element of subcursor is

*hdfql cursor get int (NULL));

*hdfgl subcursor get int (NULL));

The output of executing the snippet would be similar to this:

Current element of
Current element
Current element
Current element
Current element

Current element of
Current element

Current element of
Current element
Current element
Current element

Current element of
Current element

Current element

cursor is 7
of subcursor
of subcursor
of subcursor
of subcursor
cursor 1is 9
of subcursor
cursor 1s 6
of subcursor
of subcursor
of subcursor
cursor is 4
of subcursor

of subcursor

is
is
is

is

is

is

W 0 © 3

is 1

is

is

is

Version 1.4.0

Page 25 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

4.3 EXAMPLES

The following C snippets demonstrate how HDFqgl cursors and subcursors are populated with (variable) data
stored in datasets or attributes, along with illustrations to facilitate understanding of the populating process

and its final result.

// create a dataset named "my dataset(0" of type short
hdfql_execute(”CREATE DATASET my dataset(O AS SMALLINT");

// insert (i.e. write) a value into dataset "my dataset(0"

hdfql execute("INSERT INTO my datasetO VALUES(7)");

// select (i.e. read) dataset "my dataset0" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset0");

Dataset “my_dataset0” Cursor

Subcursorl

Figure 4.2 — Cursor populated with data from dataset “my_dataset0”

Version 1.4.0 Page 26 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

// create a dataset named "my datasetl" of type float of one dimension (size 3)

hdfgl execute("CREATE DATASET my datasetl AS FLOAT(3)");

// insert (i.e. write) values into dataset "my datasetl"”

hdfql execute("INSERT INTO my datasetl VALUES(5.5, 8.1, 4.9)");

// select (i.e. read) dataset "my datasetl"” and populate cursor in use with it

hdfgl execute("SELECT FROM my datasetl");

Dataset “my_datasetl” Cursor

Subcursor3

Subcursorl Subcursor2

Figure 4.3 — Cursor populated with data from dataset “my_dataset1”

Version 1.4.0 Page 27 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

// create a dataset named "my dataset2" of type double of two dimensions (size 3x2)

hdfgl execute("CREATE DATASET my dataset2 AS DOUBLE (3, 2)");

// insert (i.e. write) values into dataset "my dataset2"

hdfql execute("INSERT INTO my dataset2 VALUES((3.2, 1.3), (0, 0.2), (9.1, 6.5))");

// select (i.e. read) dataset "my dataset2" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset2");

Dataset “my_dataset2”

Cursor

Subcursorl | Subcursor2 | Subcursor3 Subcursord4 | Subcursor5 | Subcursoré

NULL MNULL NULL NULL NULL NULL

Figure 4.4 — Cursor populated with data from dataset “my_dataset2”

Version 1.4.0 Page 28 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

// create a dataset named "my dataset3" of type variable-length short
hdfql_execute("CREATE DATASET my dataset3 AS VARSMALLINT");

// insert (i.e. write) values into dataset "my dataset3"

hdfql execute("INSERT INTO my dataset3 VALUES(7, 9, 3)");

// select (i.e. read) dataset "my dataset3" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset3");

Dataset “my_dataset3” Cursor

Subcursorl

Figure 4.5—Cursor and its subcursor populated with data from dataset “my_dataset3”

Version 1.4.0 Page 29 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

// create a dataset named "my dataset4" of type variable-length float of one dimension
(size 3)

hdfql execute ("CREATE DATASET my dataset4 AS VARFLOAT(3)");

// insert (i.e. write) values into dataset "my dataset4"”

hdfgl execute("INSERT INTO my dataset4 VALUES((5.5), (8.1, 2.2), (4.9, 3.4, 5.6))");

// select (i.e. read) dataset "my dataset4" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset4");

Dataset “my_datasetd” Cursor

81,22 49,34,56

Subcursorl Subcursor2 Subcursor3
55 = 8.1 2.2 49 34 56
1 1 2 1 2 3

Figure 4.6 —Cursor and its subcursors populated with data from dataset “my_dataset4”

Version 1.4.0 Page 30 0of 252

Hierarchical Data Format query language (HDFql) Reference Manual

// create a dataset named "my datasetb" of type variable-length double of two dimensions
(size 3x2)

hdfql execute("CREATE DATASET my datasetb5 AS VARDOUBLE (3, 2)");

// insert (i.e. write) values into dataset "my dataset5"
hdfgl execute("INSERT INTO my datasetb VALUES(((3.2, 8, 6.7), (1.3, 0.2)), ((0), (0.2,
1.5)), ((9.1, 2, 4, 7), (6.5)))");

// select (i.e. read) dataset "my datasetb5" and populate cursor in use with it

hdfgl execute("SELECT FROM my datasetb");

Dataset “my_dataset5”

o EEFEXN 1.3,0.2 Cursor

1 0.2,1.5

Subcursorl Subcursor2 Subcursor3

Subcursord Subcursor5s Subcursoré

Figure 4.7 —Cursor and its subcursors populated with data from dataset “my_dataset5”

Version 1.4.0 Page 31 0f252

5. APPLICATION PROGRAMMING INTERFACE

An application programming interface (API) specifies how software components should interact with each
other. In practice, an APl comes in the form of a library that includes specifications for functions, data
structures, object classes, constants and variables. A good APl makes it easier to develop a program by
providing all the building blocks. This chapter is devoted to describing HDFgl APl and how to use it through

practical examples in C, C++, Java, Python, C# and Fortran.

5.1 CONSTANTS

A constant is an identifier whose associated value cannot typically be altered by the program during its
execution. Using a constantinstead of specifyingavalue multiple timesinthe program not only simplifies code
maintenance, but canalso supply a meaningfulname forit. Constantsinthe C programminglanguages follow a
naming convention of writing all words in uppercase and separating each word with an underscore (_). The

following table summarizes all existing HDFql constants in C.

HDFql Constantin C Description Datatype Value

HDFQL_VERSION Represents the HDFqgl version in use char* 1.4.0
HDFQL_YES Represents the concept “Yes” int 0
HDFQL_NO Represents the concept “No” int -1
HDFQL_ENABLED Represents the concept “Enabled” int 0
HDFQL_DISABLED Represents the concept “Disabled” int -1
HDFQL_UNDEFINED Represents the concept “Undefined” int -1
HDFQL_TRACKED Represents the HDF tracked creation order strategy int 1
HDFQL_INDEXED Representsthe HDF indexed creation order strategy int 2

Version 1.4.0 Page 32 of 252

Hierarchical Data Format query language (HDFql)

Reference Manual

(VARTINYINT)

HDFQL_DIRECTORY Represents a directory int 1
HDFQL_FILE Represents a file int 2
HDFQL_GROUP Represents the HDF object type group int 4
HDFQL_DATASET Represents the HDF object type dataset int 8
HDFQL_ATTRIBUTE Represents the HDF object type attribute int 16
HDFQL_SOFT_LINK Represents the HDF soft link type int 32
HDFQL_HARD_LINK Represents the HDF hard link type int 64
HDFQL_EXTERNAL_LINK Represents the HDF external link type int 128
HDFQL_CONTIGUOUS Represents the HDF contiguous layout/strategy int 1
HDFQL_COMPACT Represents the HDF compact layout/strategy int 2
HDFQL_CHUNKED Represents the HDF chunked layout/strategy int 4
HDFQL_TINYINT Represents the tinyinteger datatype (TINYINT) int 1
Represents the unsigned tinyinteger datatype
HDFQL_UNSIGNED_TINYINT int 2
(UNSIGNED TINYINT)
HDFQL_SMALLINT Represents the small integer datatype (SMALLINT) int 4
Represents the unsigned small integer datatype
HDFQL_UNSIGNED_SMALLINT int 8
(UNSIGNED SMALLINT)
HDFQL_INT Represents the integer datatype (INT) int 16
Represents the unsigned integer datatype (UNSIGNED
HDFQL_UNSIGNED_INT int 32
INT)
HDFQL_BIGINT Represents the biginteger datatype (BIGINT) int 64
Represents the unsigned biginteger datatype
HDFQL_UNSIGNED_BIGINT int 128
(UNSIGNED BIGINT)
HDFQL_FLOAT Represents the float datatype (FLOAT) int 256
HDFQL_DOUBLE Represents the double datatype (DOUBLE) int 512
HDFQL_CHAR Represents the char datatype (CHAR) int 1024
Represents thevariable-length tiny integer datatype
HDFQL_VARTINYINT int 2048

Version 1.4.0

Page 33 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

Represents the unsigned variable-length tinyinteger
HDFQL_UNSIGNED_VARTINYINT int 4096
datatype (UNSIGNED VARTINYINT)

Represents the variable-length small integer datatype
HDFQL_VARSMALLINT int 8192
(VARSMALLINT)

Represents the unsigned variable-lengthsmall integer
HDFQL_UNSIGNED_VARSMALLINT int 16384
datatype (UNSIGNED VARSMALLINT)

Represents the variable-length integer datatype
HDFQL_VARINT int 32768
(VARINT)

Represents the unsigned variable-length integer
HDFQL_UNSIGNED_VARINT int 65536
datatype (UNSIGNED VARINT)

Representsthevariable-length big integer datatype
HDFQL_VARBIGINT int 131072
(VARBIGINT)

Represents the unsigned variable-length big integer
HDFQL_UNSIGNED_VARBIGINT int 262144
datatype (UNSIGNED VARBIGINT)

Represents the variable-length float datatype

HDFQL_VARFLOAT int 524288

(VARFLOAT)

Represents the variable-length double datatype

HDFQL_VARDOUBLE int 1048576

(VARDOUBLE)

Represents the variable-length char datatype
HDFQL_VARCHAR int 2097152
(VARCHAR)

HDFQL_OPAQUE Represents the opaque datatype (OPAQUE) int 4194304
HDFQL_NATIVE_ENDIAN Represents the native architecture byte ordering int 1
HDFQL_LITTLE_ENDIAN Represents the little endian byte ordering int 2

HDFQL_BIG_ENDIAN Represents the big endian byte ordering int 4
HDFQL_ASCII Represents the ASCII character encoding int 1
HDFQL_UTF8 Represents the UTF8 character encoding int 2

HDFQL_SUCCESS Represents an operation that succeeded int 0

Representsanoperationthat failed due to a parsing
HDFQL_ERROR_PARSE int -1
error

Representsanoperationthat failed due to an object
HDFQL_ERROR_NOT_FOUND int -2
(e.g.directory, file, group, dataset) not being found

HDFQL_ERROR_NO_ACCESS Representsanoperationthat failed due to an object int -3

Version 1.4.0 Page 34 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

(e.g.directory, file, group, dataset) not being accessible

Representsanoperationthat failed due to an object
HDFQL_ERROR_ALREADY_EXISTS int -4
(e.g.directory, file, group, dataset) already existing

Represents anoperationthatfaileddueto its internal
HDFQL_ERROR_EMPTY int -5
structure beingempty (cannot be processed further)

Represents anoperationthat faileddueto its internal
HDFQL_ERROR_FULL int -6
structure being full (cannot be processed further)

Representsanoperation that failed due to trying to
HDFQL_ERROR_BEFORE_FIRST int -7
position/access an element before the first one

Representsanoperation that failed due to trying to
HDFQL_ERROR_AFTER_LAST int -8
position/access an element after the last one

Represents an operation that failed due to a user-
HDFQL_ERROR_NO_ADDRESS int -9
defined variable having no address (i.e.is NULL)

Represents an operation thatfailed due to a user-
HDFQL_ERROR_NOT_REGISTERED int -10
defined variable not being registered

Represents an operation thatfailed due to being
HDFQL_ERROR_OUTSIDE_LIMIT int -11
outside the limit (cannot be processed further)

Represents an operation that failed due to an
HDFQL_ERROR_UNKNOWN int -99
unknown/unexpected error

Table 5.1 —HDFql constants in C

HDFqgl also supports other programming languages namely C++, Java, Python, C# and Fortran through
wrappers. The below tables provide examples on how HDFql constants are defined in these programming

languages.

In C++, the prefix “HDFQL_" of the name of constants (definedin C) isreplaced by the namespace “HDFql” and
its underscores (_) are discarded. The remainder of the name of constants follows the upper camel-case

convention. The following table lists a subset of HDFgl constants as defined in C and details how these are

defined/can be used in C++.

Version 1.4.0 Page 35 0f252

Hierarchical Data Format query language (HDFql)

HDFql Constant in C Corresponding Definition in C++

HDFQL_VERSION

HDFql::Version

HDFQL_SUCCESS

HDFql::Success

HDFQL_ERROR_PARSE

HDFql::ErrorParse

HDFQL_TINYINT

HDFql:Tinylnt

HDFQL_UNSIGNED_BIGINT

HDFql::UnsignedBigint

HDFQL_UTF8

HDFql::Utf8

Reference Manual

Table 5.2 —HDFql constants in C and their corresponding definitions in C++

In Java, the prefix “HDFQL_" of the name of constants (defined in C) is replaced by the class “HDFgl”. The

remainder of the name of constants remains exactly the same. The following table lists a subset of HDFq|l

constants as defined in C and details how these are defined/can be used in Java.

HDFql Constant in C Corresponding Definition in Java

HDFQL_VERSION

HDFql.VERSION

HDFQL_SUCCESS

HDFql.SUCCESS

HDFQL_ERROR_PARSE

HDFql.ERROR_PARSE

HDFQL_TINYINT

HDFql.TINYINT

HDFQL_UNSIGNED_BIGINT

HDFql.UNSIGNED_BIGINT

HDFQL_UTF8

HDFql.UTF8

Table 5.3 —HDFqgl constants in C and their corresponding definitions in Java

In Python, the prefix “HDFQL_" of the name of constants (defined in C) is replaced by the class “HDFgl”. The
remainder of the name of constants remains exactly the same. The following table lists a subset of HDFq|

constants as defined in C and details how these are defined/can be used in Python.

Version 1.4.0 Page 36 0f 252

Hierarchical Data Format query language (HDFql)

HDFql Constant in C

HDFQL_VERSION

Corresponding Definition in Python

HDFql.VERSION

Reference Manual

HDFQL_SUCCESS

HDFql .SUCCESS

HDFQL_ERROR_PARSE

HDFql .ERROR_PARSE

HDFQL_TINYINT

HDFql.TINYINT

HDFQL_UNSIGNED_BIGINT

HDFql.UNSIGNED_BIGINT

HDFQL_UTF8

HDFql.UTF8

Table 5.4—HDFql constants in C and their corresponding definitions in Python

In C#, the prefix “HDFQL_" of the name of constants (defined in C) is replaced by the class “HDFgl” and its
underscores (_) are discarded. The remainder of the name of constants follows the upper camel-case

convention. The following table lists a subset of HDFgl constants as defined in C and details how these are

defined/can be used in C#.

HDFql Constant in C

Corresponding Definition in C#

HDFQL_VERSION HDFql.Version

HDFQL_SUCCESS HDFql.Success

HDFQL_ERROR_PARSE HDFql.ErrorParse

HDFQL_TINYINT HDFql.TinyInt

HDFQL_UNSIGNED_BIGINT HDFql.UnsignedBigint

HDFQL_UTF8 HDFql.Utf8

Table 5.5 —HDFql constants in C and their corresponding definitions in C#

In Fortran, the name of constantsisthe same as in C and can be written in any case. The following table lists a

subset of HDFql constants as defined in C and details how these are defined/can be used in Fortran.

Version 1.4.0 Page 37 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

HDFql Constant in C Corresponding Definition in Fortran

HDFQL_VERSION HDFQL_VERSION
HDFQL_SUCCESS HDFQL_SUCCESS
HDFQL_ERROR_PARSE HDFQL_ERROR_PARSE
HDFQL_TINYINT HDFQL_TINYINT
HDFQL_UNSIGNED_BIGINT HDFQL_UNSIGNED_BIGINT
HDFQL_UTF8 HDFQL_UTF8

Table 5.6 —HDFqgl constants in C and their corresponding definitions in Fortran

5.2 FUNCTIONS

A functionisa group of instructions that together perform a specifictask, requiring direction back to the caller
on completion of the task. Any given function might be called at any point during a program's execution,
including by other functions or itself. It provides better modularity of a program and a high degree of code

reusing. The following table summarizes all existing HDFgl functions in C.

HDFgl Function in C Description

hdfql_execute Execute a script (composed of one or more operations)
hdfql_execute_get_status Get status of the last executed operation
hdfgl_error_get_line Geterrorline of the last executed operation
hdfql_error_get_position Get error position of the last executed operation
hdfql_error_get_message Get error message of the last executed operation
hdfql_cursor_initialize Initialize a cursor forsubsequent use

hdfgl_cursor_use Set the cursor to be used for storing the result of operations
hdfql_cursor_use_default SetHDFql defaultcursorasthe oneto be usedforstoring theresult of operations

hdfql_cursor_clear Clear (i.e. empty) the cursorin use

Version 1.4.0 Page 38 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

hdfgl_cursor_clone Clone (i.e.duplicate) a cursorinto anotherone
hdfql_cursor_get_datatype Get datatype of the cursorin use
hdfgl_cursor_get_count Get number of elements (i.e. result set size) stored in the cursorin use
hdfgl_subcursor_get _count Getnumberof elements (i.e.result subset size) stored in the subcursorin use
hdfql_cursor_get_position Get current position of cursorin use within result set
hdfqgl_subcursor_get_position Get current position of subcursorin use within result subset
hdfql_cursor_first Move the cursorin use to the first position within resultset
hdfql_subcursor_first Move the subcursorin use to the first position within result subset
hdfqgl_cursor_last Move the cursorin use to the last position within resultset
hdfgl_subcursor_last Move the subcursorin use to the last position within result subset
hdfgl_cursor_next Move the cursorin use one position forward from its current position
hdfgl_subcursor_next Move the subcursorin use one position forward from its current position
hdfqgl_cursor_previous Move the cursorin use one position backward from its current position
hdfql_subcursor_previous Move the subcursorin use one position backward from its current position
hdfql_cursor_absolute Move the cursorin use to an absolute position within the resultset
hdfgl_subcursor_absolute Move the subcursorin use to an absolute position within the result subset
hdfql_cursor_relative Move the cursorin use to a relative position within result set
hdfgl_subcursor_relative Move the subcursorin use to a relative position within result subset
hdfql_cursor_get_size Get current elementsize (in bytes) of the cursorin use
hdfgl_subcursor_get_size Getcurrentelement size (in bytes) of the subcursorin use
hdfgl_cursor_get Get current element of the cursorin use as a generic (typeless) pointer
hdfgl_subcursor_get Get current element of the subcursorin use as a generic (typeless) pointer
hdfgl_cursor_get_tinyint Get current element of the cursorin use as a TINYINT
hdfgl_subcursor_get_tinyint Get current element of the subcursorin use as a TINYINT
hdfgl_cursor_get_unsigned_tinyint Get current element of the cursorin use as an UNSIGNED TINYINT

Version 1.4.0 Page 39 0f 252

Hierarchical Data Format query language (HDFql)

Reference Manual

hdfgl_subcursor_get_unsigned_tinyint

Get current element of the subcursorin use as an UNSIGNED TINYINT

hdfgl_cursor_get_smallint

Getcurrent element of the cursorin use as a SMALLINT

hdfgl_subcursor_get_smallint

Get current element of the subcursorin use as a SMALLINT

hdfql_cursor_get _unsigned_smallint

Get current element of the cursorin use as an UNSIGNED SMALLINT

hdfgl_subcursor_get_unsigned_smallint

Get current element of the subcursorin use as an UNSIGNED SMALLINT

hdfqgl_cursor_get_int

Get current element of the cursorin use as an INT

hdfgl_subcursor_get_int

Get current element of the subcursorin use as an INT

hdfql_cursor_get_unsigned_int

Getcurrent element of the cursorin use as an UNSIGNED INT

hdfql_subcursor_get_unsigned_int

Get current element of the subcursorin use as an UNSIGNED INT

hdfql_cursor_get_bigint

Getcurrent element of the cursorin use as a BIGINT

hdfgl_subcursor_get_bigint

Getcurrent element of the subcursorin use as a BIGINT

hdfql_cursor_get_unsigned_bigint

Get current element of the cursorin use as an UNSIGNED BIGINT

hdfql_subcursor_get_unsigned_bigint

Get current element of the subcursorin use as an UNSIGNED BIGINT

hdfql_cursor_get_float

Getcurrent element of the cursorin use as a FLOAT

hdfqgl_subcursor_get float

Get current element of the subcursorin use as a FLOAT

hdfql_cursor_get_double

Get current element of the cursorin use as a DOUBLE

hdfqgl_subcursor_get_double

Get current element of the subcursorin use as a DOUBLE

hdfgl_cursor_get_char

Get current element of the cursorin use as a CHAR

hdfql_subcursor_get_char

Get current element of the subcursorin use as a CHAR

hdfgl_variable_register

Registera variable for subsequent use

hdfql_variable_unregister

Unregistera variable

hdfql_variable_get_number

Get number of a variable

hdfql_variable_get datatype

Get datatype of a variable

hdfql _variable_get count

Get number of elements (i.e. result setsize) stored in a variable

hdfql_variable_get_size

Getsize (in bytes) of a variable

Version 1.4.0

Page 40 of 252

Hierarchical Data Format query language (HDFql)

Reference Manual

hdfql_variable_get dimension_count

Get number of dimensions of a variable

hdfql_variable_get_dimension

Getsize of a certain dimension of a variable

Table 5.7 —HDFql functions in C

In C++, the prefix “hdfgl_” of the name of functions (defined in C) is replaced by the namespace “HDFql” and its

underscores (_) are discarded. The remainder of the name of functions follows the lower camel-case

convention. The following table lists a subset of HDFql functions as defined in C and details how these are

defined/can be used in C++.

HDFql Function in C

Corresponding Definition in C++

hdfgl_execute

HDFql::execute

hdfgl_cursor_next

HDFql::cursorNext

hdfql_cursor_get_tinyint

HDFqgl::cursorGetTinylnt

hdfgl_cursor_get_unsigned_int

HDFqgl::cursorGetUnsignedint

hdfql_subcursor_get_big_int

HDFql::subcursorGetBigint

hdfql_variable_get_number

HDFqgl::variableGetNumber

Table 5.8 —HDFqgl functions in C and their corresponding definitions in C++

In Java, the prefix “hdfgl_” of the name of functions (defined in C) is replaced by the class “HDFgl” and its

underscores (_) are discarded. The remainder of the name of functions follows the lower camel-case

convention. The following table lists a subset of HDFql functions as defined in C and details how these are

defined/can be used in Java.

HDFgl Functionin C

Corresponding Definition in Java

hdfql_execute

HDFql.execute

hdfgl_cursor_next

HDFql.cursorNext

Version 1.4.0

Page 41 of 252

Hierarchical Data Format query language (HDFql)

Reference Manual

hdfgl_cursor_get_tinyint

HDFql.cursorGetTinylnt

hdfql_cursor_get_unsigned_int

HDFql.cursorGetUnsignedint

hdfql_subcursor_get_big_int

HDFql.subcursorGetBigint

hdfql_variable_get _number

HDFql.variableGetNumber

Table 5.9 -HDFql functions in C and their corresponding definitions in Java

In Python, the prefix “hdfql_” of the name of functions (defined in C) is replaced by the class “HDFgl”. The

remainder of the name of functions remains exactly the same. The following table lists a subset of HDFq|l

functions as defined in C and details how these are defined/can be used in Python.

HDFql Function in C

Corresponding Definition in Python

hdfql_execute

HDFql.execute

hdfql_cursor_next

HDFqgl.cursor_next

hdfql_cursor_get_tinyint

HDFqgl.cursor_get_tinyint

hdfql_cursor_get_unsigned_int

HDFql.cursor_get_unsigned_int

hdfql_subcursor_get_big_int

HDFql.subcursor_get_big_int

hdfql_variable_get_number

HDFql.variable_get_number

Table 5.10— HDFql functions in C and their corresponding definitions in Python

In C#, the prefix “hdfgl " of the name of functions (defined in C) is replaced by the class “HDFql” and its

underscores (_) are discarded. The remainder of the name of functions follows the upper camel-case

convention. The following table lists a subset of HDFql functions as defined in C and details how these are

defined/can be used in C#.

HDFql Function in C

Corresponding Definition in C#

hdfgl_execute

HDFql.Execute

Version 1.4.0

Page 42 of 252

Hierarchical Data Format query language (HDFql)

Reference Manual

hdfgl_cursor_next

HDFql.CursorNext

hdfql_cursor_get_tinyint

HDFql.CursorGetTinyInt

hdfgl_cursor_get_unsigned_int

HDFql.CursorGetUnsignedint

hdfql_subcursor_get_big_int

HDFql.SubcursorGetBigint

hdfql_variable_get_number

HDFgl.VariableGetNumber

Table 5.11 - HDFql functions in C and their corresponding definitions in C#

In Fortran, the name of functionsisthe same as in C and can be written using any case. The following table lists

a subset of HDFgl functions as defined in C and details how these are defined/can be used in Fortran.

HDFql Function in C

Corresponding Definition in Fortran

hdfql_execute

hdfql_execute

hdfgl_cursor_next

hdfgl_cursor_next

hdfql_cursor_get_tinyint

hdfql_cursor_get_tinyint

hdfql_cursor_get_unsigned_int

hdfql_cursor_get_unsigned_int

hdfql_subcursor_get _big_int

hdfgl_subcursor_get big_int

hdfql_variable_get_number

hdfql_variable_get_number

Table 5.12 — HDFql functions in C and their corresponding definitions in Fortran

5.2.1 HDFQL_EXECUTE

Syntax

int hdfgl_execute(const char *script)

Version 1.4.0

Page 43 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Execute a script named script. A script can be composed of one or more operations —in case of multiple
operations these can either be separated with a semicolon (;) or an end of line (EOL) terminator. In HDFq|l,
operations are case insensitive meaning that, forexample, operation “SHOW DATASET” is equivalent to “show
dataset” or any other case variation. If a certain operation raises an error, any subsequent operations within

script are not executed. Please refer to Table 6.2 for a complete enumeration of HDFgl operations.

Parameter(s)

script — string containing one or more operations to execute. Multiple operations are either separated with a

semicolon (;) or an end of line (EOL) terminator.
Return

int —depending on the success in executing script, it can either be HDFQL SUCCESS, HDFQL_ERROR_PARSE,
HDFQL_ERROR_NOT_FOUND, HDFQL_ERROR_NO_ACCESS, HDFQL_ERROR_ALREADY_EXISTS,
HDFQL_ERROR_EMPTY, HDFQL_ERROR_FULL, HDFQL_ERROR_BEFORE_FIRST, HDFQL_ERROR_AFTER_LAST,
HDFQL_ERROR_NO_ADDRESS, HDFQL_ERROR_NOT_REGISTERED, = HDFQL_ERROR_OUTSIDE_LIMIT or
HDFQL_ERROR_UNKNOWN.

Example(s)

// declare variable

int status;,

// execute script (composed of only one operation - i.e. SHOW USE FILE)

status = hdfql execute("SHOW USE FILE");

// display message about the status of executed script (i.e. successful or not)
if (status == HDFQL SUCCESS)

printf("Execution was successful\n");
else

printf("Execution was not successful and returned status is %d\n", status);

// execute script (composed of two operations - i.e. USE FILE my file.h5 and SHOW)

Version 1.4.0 Page 44 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

hdfgl execute("USE FILE my file.h5 ; SHOW");

5.2.2 HDFQL_EXECUTE_GET STATUS

Syntax
int hdfgl_execute_get_status(void)

Description

Get status of the last executed operation. In other words, this function returns the status of the last call of

hdfgl_execute.
Parameter(s)
None

Return

int — depending on the success of the last executed operation, it can either be HDFQL SUCCESS,

HDFQL_ERROR_PARSE, HDFQL_ERROR_NOT_FOUND, HDFQL_ERROR_NO_ACCESS,
HDFQL_ERROR_ALREADY_EXISTS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_FULL,
HDFQL_ERROR_BEFORE_FIRST, HDFQL_ERROR_AFTER_LAST, HDFQL_ERROR_NO_ADDRESS,

HDFQL_ERROR_NOT_REGISTERED, HDFQL_ERROR_OUTSIDE_LIMIT or HDFQL_ERROR_UNKNOWN.

Example(s)

// declare variable

int status;,

// execute script (composed of only one operation — i.e. SHOW USE DIRECTORY)
hdfgl execute("SHOW USE DIRECTORY");

// get status of last executed script (i.e. SHOW USE DIRECTORY)

status = hdfqgl execute get status();

// display message about the status of last executed script (i.e. successful or not)

Version 1.4.0 Page 45 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

if (status == HDFQL_SUCCESS)
printf("Execution was successful\n");
else

g

printf("Execution was not successful and s %d\n'", status);

[

returned status

5.2.3 HDFQL_ERROR_GET _LINE

Syntax
int hdfql_error_get_line(void)
Description

Get errorline of the last executed operation. In other words, this function returns the number of the line (in

the script) where an error was raised during the last call of hdfgl _execute. The first line in the script is

designated as number one (1).
Parameter(s)

None

Return

int—number of the line (in the script) where an error has occurred during the last executed operation. If the

last executed operation was sucessful, the number of the line will be HDFQL_UNDEFINED.

Example(s)

// execute script (composed of only one operation - i.e. CREATE FILE my file.h5 - which
is syntactically correct)

hdfql execute("CREATE FILE my file.hb5");

// display number of the line where an error occurred during the last executed operation
(should be -1 — i.e. HDFQL UNDEFINED)

printf("Error line number is %d\n", hdfgl error get line());

// execute script (composed of only one operation - i.e. CREATE FILEX my file.h5 - which

is syntactically incorrect due to a typo in "FILEX")

Version 1.4.0 Page 46 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

hdfgl execute("CREATE FILEX my file.h5");

// display number of the line where an error occurred during the last executed operation
(should be 1)

printf("Error line number is %d\n", hdfgl error get line());

5.24 HDFQL_ERROR_GET_POSITION

Syntax
int hdfgl_error_get_position(void)
Description

Get error position of the last executed operation. In other words, this function returns the position in the line
where an error was raised during the last call of hdfgl_execute. The first position in the line is designated as

number one (1).
Parameter(s)
None

Return

int— positionin the line where an error has occurred during the last executed operation. If the last executed

operation was sucessful, the position in the line will be HDFQL _UNDEFINED.

Example(s)

// execute script (composed of only one operation - i.e. CREATE FILE my file.h5 - which
is syntactically correct)

hdfgl execute("CREATE FILE my file.h5");
// display position in the line where an error occurred during the last executed
operation (should be -1 - i.e. HDFQL UNDEFINED)

printf("Error position is %d\n'", hdfql error get position());

// execute script (composed of only one operation - i.e. CREATE FILEX my file.h5 - which

Version 1.4.0 Page 47 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

is syntactically incorrect due to a typo in "FILEX")
hdfgl execute("CREATE FILEX my file.h5");

// display position in the line where an error occurred during the last executed
operation (should be 8)

printf("Error position is %d\n'", hdfql error get position());

5.2.5 HDFQL_ERROR_GET_MESSAGE

Syntax

char *hdfql_error_get_message(void)

Description

Get error message of the last executed operation. In other words, this function returns the message of the

error that was raised during the last call of hdfgl_execute.
Parameter(s)

None

Return

char — pointer to the message of an error that has occurred during the last executed operation. If the last

executed operation was sucessful, the pointer will be NULL.

Example(s)

// execute script (composed of only one operation - i.e. CREATE FILE my file.h5 - which
is syntactically correct)

hdfgl execute("CREATE FILE my file.h5");
// display message of an error that occurred during the last executed operation (should
be "NULL")

printf("%s\n", hdfqgl error get message());

// execute script (composed of only one operation - i.e. CREATE FILEX my file.h5 - which

Version 1.4.0 Page 48 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

is syntactically incorrect due to a typo in "FILEX")

hdfgl execute("CREATE FILEX my file.h5");

// display message of an error that occurred during the last executed operation (should
be "Unknown token “FILEX”'")

printf("%s\n", hdfgl error get message());

5.2.6 HDFQL_CURSOR_INITIALIZE

Syntax

int hdfql_cursor_initialize(HDFQL_CURSOR *cursor)

Description

Initialize a cursor named cursor for subsequent use. Before a new cursor is used for the first time, it should
always be initialized (otherwise unexpected errors may arise). The initialization of a cursor sets its datatype
attribute to undefined (HDFQL_UNDEFINED), its current element to NULL, and resets its count and position
attributesto zero makingit ready forusage. Of note, the process of initializing a cursor is only required in C and
performed once, while in other programming languages supported by HDFql —namely, C++, Java, Python, C#

and Fortran —such initialization is redundant as it is done automatically when declaring a cursor.

Parameter(s)

cursor— pointerto a cursor (previously declared) to initialize with default values. If the pointeris NULL (in C),
the cursorin useisinitialized instead. The equivalent of a NULL pointer in C++, Java, Python, C# and Fortran is
NULL, null, None, null and O, respectively. While in C cursor is mandatory, in C++, Java, Python, C# and Fortran

itis optional (when not provided, the cursorin use is initialized instead).
Return

int — depending on the success in initializing cursor, it can either be HDFQL_SUCCESS or

HDFQL_ERROR_NOT_REGISTERED.

Version 1.4.0 Page 49 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create a cursor named "my cursor"

HDFQL CURSOR my cursor;

// initialize cursor "my cursor"

hdfgl cursor initialize (&my cursor);

// use cursor "my cursor"

hdfgl cursor use(&my cursor);

// display number of elements in cursor "my cursor" (should be 0)

printf("Number of elements in cursor is $d\n", hdfgl cursor get count (NULL));

5.2.7 HDFQL_CURSOR_USE

Syntax

int hdfgl_cursor_use(HDFQL_CURSOR *cursor)

Description

Set the cursor named cursor as the one to be used for storing results of operations.

Parameter(s)

cursor — pointer to a cursor to use for storing the result of operations. If the pointeris NULL (in C), the HDFq|
defaultcursorisusedinstead (i.e. equivalent of calling the function hdfql_cursor_use_default). The equivalent
of a NULL pointer in C++, Java, Python, C# and Fortran is NULL, null, None, null and 0, respectively. While in C
cursoris mandatory, in C++, Java, Python, C# and Fortran itis optional (when not provided, the cursorin use is

used instead).
Return

int — depending on the success in wusing cursor, it can either be HDFQL SUCCESS or

HDFQL_ERROR_NOT_REGISTERED.

Version 1.4.0 Page 50 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create a cursor named "my cursor"

HDFQL CURSOR my cursor;

// use cursor "my cursor"

hdfgl cursor use(&my cursor);

// initialize cursor "my cursor"

hdfgl cursor initialize (NULL);

// display datatype of cursor "my cursor" (should be -1 - i.e. HDFQL UNDEFINED)
printf("Datatype of cursor is %d\n", hdfgl cursor get type (NULL))

// get current working directory

hdfql execute("SHOW USE DIRECTORY");

// display (again) datatype of cursor "my cursor" (should be 1024 - i.e. HDFQL CHAR)

printf("Datatype of cursor is %d\n", hdfgl cursor get type(NULL))

// use HDFql default cursor

hdfql cursor use (NULL);

// display datatype of HDFql default cursor (should be -1 — i.e. HDFQL UNDEFINED)
printf("Datatype of cursor is $d\n", hdfql cursor get type(NULL)) ;

5.2.8 HDFQL_CURSOR_USE_DEFAULT
Syntax
int hdfgl_cursor_use_default(void)

Description

Set HDFql default cursor as the one to be used for storing results of operations.

Parameter(s)

None

Version 1.4.0 Page 51 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

Return

int — depending on the success in using HDFql default cursor, it can either be HDFQL SUCCESS or
HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// create a cursor named "my cursor"

HDFQL CURSOR my cursor;

// initialize cursor "my cursor"

hdfgl cursor initialize (&my cursor);

// use cursor "my cursor"

hdfgl cursor use(&my cursor);

// display datatype of cursor "my cursor" (should be -1 - i.e. HDFQL UNDEFINED)
printf("Datatype of cursor is %d\n", hdfgl cursor get type (NULL))

// get current working directory

hdfgl execute ("SHOW USE DIRECTORY");

// display (again) datatype of cursor "my cursor" (should be 1024 - i.e. HDFQL CHAR)
printf("Datatype of cursor is %d\n", hdfgl cursor get type(NULL))

// use HDFql default cursor

hdfql cursor use default();

// display datatype of HDFql default cursor (should be -1 — i.e. HDFQL UNDEFINED)

printf("Datatype of cursor is ¢d\n", hdfql cursor get type(NULL)) ;

5.29 HDFQL_CURSOR_CLEAR

Syntax

int hdfgl_cursor_clear(HDFQL _CURSOR *cursor)

Version 1.4.0 Page 52 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Clear (i.e.empty) acursor named cursor. Specifically, this function removes all elements (i.e. result set) stored
inthe cursor, specifiesits datatype attribute to undefined (HDFQL_UNDEFINED), changesits current element to

NULL, and resets its count and position attributes to zero.

Parameter(s)

cursor — pointer to a cursor to clear (i.e. empty). If the pointer is NULL (in C), the cursor in use is cleared
instead. The equivalent of a NULL pointer in C++, Java, Python, C# and Fortran is NULL, null, None, null and 0,
respectively. While in C cursor is mandatory, in C++, Java, Python, C# and Fortran it is optional (when not

provided, the cursorin use is cleared instead).
Return

int — depending on the success in clearing cursor, it can either be HDFQL SUCCESS or

HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// get current working directory

hdfql execute("SHOW USE DIRECTORY");

// display number of elements in the cursor in use (should be 1)

printf("Number of elements in cursor is $%d\n", hdfgl cursor get count (NULL));

// clear the cursor in use

hdfql cursor clear (NULL);

// display (again) number of elements in the cursor in use (should be 0)

printf("Number of elements in cursor is %d\n", hdfgl cursor get count (NULL));

5.2.10 HDFQL_CURSOR_CLONE

Syntax

int hdfgl_cursor_clone(HDFQL_CURSOR *cursor_original, HDFQL_CURSOR *cursor_clone)

Version 1.4.0 Page 53 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Clone (i.e. duplicate) a cursor named cursor_original into another one named cursor_clone. In other words,
cursor_clone will be an exact copy of cursor_original, meaning that it will have the same datatype, count and

position values, store the same result set, and have the same current element as the original cursor.

Parameter(s)

cursor_original — pointer to a cursor to clone. If the pointer is NULL (in C), the cursorin use is the one to be
clonedinstead. The equivalent of a NULL pointer in C++, Java, Python, C# and Fortran is NULL, null, None, null

and 0, respectively. While in C cursoris mandatory, in C++, Java, Python, C# and Fortran it is optional (when not

provided, the cursorin use is the one to be cloned instead).
cursor_clone — pointer to the cursor that will be a clone (i.e. duplicate) of the original cursor.
Return

int— depending onthe successincloning cursor_originalinto cursor_clone, it can either be HDFQL_SUCCESS or

HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// create a cursor named "my cursor"

HDFQL CURSOR my cursor;

// initialize cursor "my cursor"

hdfql cursor initialize(&my cursor);

// get current working directory (it will be stored in HDFql default cursor)

hdfql execute ("SHOW USE DIRECTORY");

// clone the cursor in use (i.e. HDFgl default cursor) into the cursor "my cursor"

hdfql cursor clone(NULL, &my cursor, HDFQL NO) ;

// use cursor "my cursor"

hdfgl cursor use(&my cursor);

// display number of elements in the cursor in use (should be 1)

printf("Number of elements in cursor is $d\n", hdfgl cursor get count (NULL));

Version 1.4.0 Page 54 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.11 HDFQL_CURSOR_GET_DATATYPE

Syntax

int hdfgl_cursor_get_datatype(HDFQL CURSOR *cursor)

Description

Get the datatype of a cursor named cursor. If the cursor has never been populated or has been initialized or
cleared, the returned datatype is undefined (HDFQL _UNDEFINED). Please refer to Table 6.3 for a complete

enumeration of HDFql datatypes.

Parameter(s)

cursor— pointertoa cursor to get its datatype. If the pointer is NULL (in C), the datatype of the cursorin use is
returnedinstead. The equivalent of a NULL pointerin C++, Java, Python, C#and Fortran is NULL, null, None, null
and O, respectively. While in C cursoris mandatory, in C++, Java, Python, C# and Fortran it is optional (when not

provided, the datatype of the cursorin use is returned instead).
Return

int— depending on the datatype of the cursor or its state (i.e. whetherithas neverbeen populated or has been
initialized or cleared), it can either be HDFQL _TINYINT, HDFQL_UNSIGNED_TINYINT, HDFQL SMALLINT,
HDFQL_UNSIGNED_SMALLINT, HDFQL_INT, HDFQL_UNSIGNED_INT, HDFQL_BIGINT,
HDFQL_UNSIGNED_BIGINT, = HDFQL_FLOAT, @ HDFQL_DOUBLE, @ HDFQL_CHAR, HDFQL_VARTINYINT,
HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT,
HDFQL_UNSIGNED_VARINT, = HDFQL_VARBIGINT, = HDFQL_UNSIGNED_VARBIGINT, = HDFQL_VARFLOAT,
HDFQL_VARDOUBLE, HDFQL _VARCHAR, HDFQL_OPAQUE or HDFQL_UNDEFINED.

Example(s)

// get current working directory

hdfql execute("SHOW USE DIRECTORY");

// display datatype of the cursor in use (should be 1024 - i.e. HDFQL CHAR)

Version 1.4.0 Page 55 0f252

Hierarchical Data Format query language (HDFql) Reference Manual

printf("Datatype of cursor is &d\n", hdfgl cursor get type(NULL)) ;

// clear the cursor in use

hdfgl cursor clear (NULL);

// display (again) datatype of the cursor in use (should be -1 - i.e. HDFQL UNDEFINED)

printf("Datatype of cursor is %d\n", hdfgl cursor get type(NULL)) ;

5.2.12 HDFQL_CURSOR_GET_COUNT

Syntax

int hdfgl_cursor_get_count(HDFQL _CURSOR *cursor)

Description

Get the number of elements (i.e. result set size) stored in a cursor named cursor. If the result set stores data
from a dataset or attribute that does not have a dimension (i.e. ifitis scalar), the returned number of elements
is one. Otherwise, if the result set stores data from a dataset or attribute that has dimensions, the returned
number of elements equals the multiplication of all its dimensions’ sizes (e.g. if a cursor stores a result set of
two dimensions of size 10x3, the number of elements is 30). If the cursor has never been populated or has

beeninitialized or cleared, the returned number of elements is zero.

Parameter(s)

cursor— pointertoa cursor to get itsnumberof elements (i.e. result set size). If the pointeris NULL (in C), the
number of elements of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java,
Python, C# and Fortran is NULL, null, None, null and 0, respectively. While in C cursor is mandatory, in C++,
Java, Python, C# and Fortran itis optional (when not provided, the number of elements of the cursorin use is

returned instead).
Return

int—number of elements (i.e. result set size) stored in the cursor.

Version 1.4.0 Page 56 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// get current working directory

hdfqgl execute ("SHOW USE DIRECTORY");

// display number of elements in the cursor in use (should be 1)

printf("Number of elements in cursor is $d\n", hdfqgl cursor get count (NULL));

// clear the cursor in use

hdfgl cursor clear (NULL);

// display (again) number of elements in the cursor in use (should be 0)

N

9]

or

C

printf("Number of elements in cursor is $%d\n", hdfgl cursor get count (NULL));

5.2.13 HDFQL_SUBCURSOR_GET_COUNT

Syntax

int hdfgl_subcursor_get_count(HDFQL _CURSOR *cursor)

Description

Get the number of elements (i.e. result subset size) stored in the subcursor in use. If the cursor that the
subcursor belongs to has never been populated or has been initialized or cleared, the returned number of

elements is zero.

Parameter(s)

cursor — pointer to a cursor to get the number of elements (i.e. result subset size) stored in the subcursorin
use. If the pointer is NULL (in C), the number of elements of the subcursor of the cursor in use is returned
instead. The equivalent of a NULL pointer in C++, Java, Python, C# and Fortran is NULL, null, None, null and O,
respectively. While in C cursor is mandatory, in C++, Java, Python, C# and Fortran it is optional (when not

provided, the number of elements of the subcursor of the cursorin use is returned instead).
Return

int —number of elements (i.e. result subset size) stored in the subcursor.

Version 1.4.0 Page 57 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create a dataset named "my dataset" of type variable-length int of two dimensions

(size 2x2)

hdfgl execute("CREATE DATASET my dataset AS VARINT (2, 2)");

// insert (i.e. write) values into dataset "my dataset"”

hdfql execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// display number of elements in the cursor in use (should be 4 - i.e. 2x2)

printf("Number of elements in cursor is $d\n", hdfgl cursor get count (NULL));

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display number of elements in the subcursor in use (should be 3)

printf("Number of elements in subcursor is 2d\n", hdfql subcursor get count (NULL));

// move the cursor in use to next position within the result set (i.e. second position)

hdfgl cursor next (NULL);

// display number of elements in the subcursor in use (should be 1)

printf("Number of elements in subcursor is $%d\n", hdfgl subcursor get count (NULL));

5.2.14 HDFQL_CURSOR_GET_POSITION

Syntax

int hdfgl_cursor_get_position(HDFQL_CURSOR *cursor)

Description

Get current position of a cursor named cursor within the result set. The first element of the result setis at
position one (1), while the last element is located at the position returned by hdfgl_cursor_get count. If the

cursor has never been populated or has been initialized or cleared, or in case the result set is empty, the

Version 1.4.0 Page 58 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

returned current position is zero. If the cursor was moved before the first element or after the last element,

the returned current position is zero or the number of elements in the result set plus one (1), respectively.

Parameter(s)

cursor — pointer to a cursor to get its current position within the result set. If the pointeris NULL (in C), the
current position of the cursorin use is returned instead. The equivalent of a NULL pointer in C++, Java, Python,
C# and Fortran is NULL, null, None, null and 0, respectively. While in C cursor is mandatory, in C++, Java,
Python, C# and Fortran it is optional (when not provided, the current position of the cursorin use is returned

instead).
Return

int —current position of the cursor within the result set.

Example(s)

// clear the cursor in use

hdfgl cursor clear (NULL);

// display position of the cursor in use within the result set (should be -1 - i.e.
HDFQL UNDEFINED)

printf("Position of cursor is %d\n", hdfgl cursor get position(NULL));

// get current working directory

hdfgl execute("SHOW USE DIRECTORY");

// move the cursor in use to the first position within the result set

hdfgl cursor first (NULL);

// display (again) position of the cursor in use within the result set (should be 1)

printf("Position of cursor is %d\n", hdfgl cursor get position(NULL));

5.2.15 HDFQL_SUBCURSOR_GET_POSITION

Syntax

int hdfgl_subcursor_get_position(HDFQL _CURSOR *cursor)

Version 1.4.0 Page 59 0of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get current position of the subcursorin use within the result subset. The first element of the result subset is at
position one (1), while the lastelementis located at the position returned by hdfgl_subcursor_get_count. If the
cursor that the subcursor belongs to has never been populated or has beeninitialized or cleared, or in case the
result subset is empty, the returned current position is zero. If the subcursor was moved before the first
elementorafterthe last element, the returned current positionis zero orthe number of elementsin the result

subset plus one (1), respectively.

Parameter(s)

cursor — pointer to a cursor to get the current position of the subcursorin use within the result subset. If the
pointer is NULL (in C), the current position of the subcursor of the cursor in use is returned instead. The
equivalentof aNULL pointerin C++, Java, Python, C# and Fortran is NULL, null, None, null and O, respectively.
While in C cursor is mandatory, in C++, Java, Python, C# and Fortran it is optional (when not provided, the

current position of the subcursor of the cursorin use is returned instead).
Return

int —current position of the subcursor within the result subset.

Example(s)

// create a dataset named "my dataset" of type variable-length int of two dimensions
(size 2x2)

hdfql execute("CREATE DATASET my dataset AS VARINT (2, 2)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfgl cursor first (NULL);

// display position of the subcursor in use within the result subset (should be -1 - i.e.

HDFQL UNDEFINED)

Version 1.4.0 Page 60 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

printf("Position of subcursor is %d\n", hdfql subcursor get position(NULL)) ;

// move the subcursor in use to the next position within the result subset (two times)
hdfgl subcursor next (NULL) ;
hdfql subcursor next (NULL) ;

// display (again) position of the subcursor in use within the result subset (should be
2)

printf("Position of subcursor is %d\n", hdfql subcursor get position(NULL)) ;

5.2.16 HDFQL_CURSOR_FIRST

Syntax

int hdfgl_cursor_first(HDFQL_CURSOR *cursor)

Description

Move a cursor named cursorto the first position within the result set. In other words, the cursor will point to
the firstelement of the resultsetandits positionissettoone (1). If the result setis empty, an erroris returned

and its position remains unchanged (i.e. remains zero).

Parameter(s)

cursor— pointertoa cursor to move to the first position within the result set. If the pointeris NULL (in C), the
cursor in use is moved to the first position instead. The equivalent of a NULL pointer in C++, Java, Python, C#
and Fortranis NULL, null, None, null and O, respectively. While in C cursor is mandatory, in C++, Java, Python,

C# and Fortran it is optional (when not provided, the cursorin use is moved to the first position instead).
Return

int— depending onthe success in moving the cursor to the first position within the result set, it can either be

HDFQL_SUCCESS or HDFQL_ERROR_EMPTY.

Example(s)

// get current working directory

Version 1.4.0 Page 61 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

hdfgl execute ("SHOW USE DIRECTORY");

// display position of the cursor in use within the result subset (should be -1 - i.e.
HDFQIL UNDEFINED)

printf("Position of cursor is %d\n", hdfgl cursor get position(NULL));

// move the cursor in use to the first position within the result set

hdfql cursor first (NULL);

// display (again) position of the cursor in use within the result set (should be 1)

printf("Position of cursor is %d\n", hdfgl cursor get position(NULL));

5.2.17 HDFQL_SUBCURSOR_FIRST

Syntax

int hdfgl_subcursor_first(HDFQL_CURSOR *cursor)

Description

Move the subcursorinuse to the first position within the result subset. In other words, the subcursor will point
to thefirstelement of the result subsetand its positionissettoone (1). If the result subsetis empty, anerroris

returned and its position remains unchanged (i.e. remains zero).

Parameter(s)

cursor — pointer to a cursor to move the subcursor in use to the first position within the result subset. If the
pointeris NULL (in C), the subcursor of the cursor in use is moved to the first position instead. The equivalent
of a NULL pointer in C++, Java, Python, C# and Fortran is NULL, null, None, null and 0, respectively. While in C
cursor is mandatory, in C++, Java, Python, C#and Fortran it is optional (when not provided, the subcursor of

the cursor in use is moved to the first position instead).
Return

int —depending on the success in moving the subcursor to the first position within the result subset, it can
either be HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or
HDFQL_ERROR_AFTER_LAST.

Version 1.4.0 Page 62 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create a dataset named "my dataset" of type variable-length int of two dimensions
(size 2x2)

hdfgl execute("CREATE DATASET my dataset AS VARINT (2, 2)");

// insert (i.e. write) values into dataset "my dataset"”

hdfql execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfql cursor first (NULL);

// display position of the subcursor in use within the result subset (should be -1 - i.e.
HDFQL UNDEFINED)
printf("Position of subcursor is %d\n", hdfgl subcursor get position(NULL)) ;

// move the subcursor in use to the first position within the result subset

hdfql subcursor first (NULL);

// display (again) position of the subcursor in use within the result subset (should be
1)
printf("Position of subcursor is %d\n", hdfgl subcursor get position(NULL))

5.2.18 HDFQL_CURSOR_LAST
Syntax
int hdfgl_cursor_last(HDFQL_CURSOR *cursor)

Description

Move a cursor named cursor to the last position within the result set. In other words, the cursor will point to

the last element of the result set and its positionis settothe value returned by hdfgl_cursor_get count. If the

result setis empty, an error is returned and its position remains unchanged (i.e. remains zero).

Version 1.4.0 Page 63 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor — pointer to a cursor to move to the last position within the result set. If the pointeris NULL (in C), the
cursor in use is moved to the last position instead. The equivalent of a NULL pointer in C++, Java, Python, C#
and Fortranis NULL, null, None, null and 0, respectively. While in C cursor is mandatory, in C++, Java, Python,

C# and Fortran it is optional (when not provided, the cursor in use is moved to the last position instead).
Return

int —depending on the success in moving the cursor to the last position within the result set, it can either be

HDFQL_SUCCESS or HDFQL_ERROR_EMPTY.

Example(s)

// get current working directory

hdfgl execute("SHOW USE DIRECTORY");

// move the cursor in use to the last position within the result set

hdfql cursor last (NULL) ;

// display position of the cursor in use within the result set (should be 1)

printf("Position of cursor is 2d\n", hdfql cursor get position(NULL));

5.2.19 HDFQL_SUBCURSOR_LAST

Syntax

int hdfgl_subcursor_last(HDFQL_CURSOR *cursor)

Description

Move the subcursorin use to the last position within the result subset. In other words, the subcursor will point
to the last element of the result subset and its position is set to the value returned by

hdfgl_subcursor_get_count. If the result subset is empty, an error is returned and its position remains

unchanged (i.e. remains zero).

Version 1.4.0 Page 64 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor — pointer to a cursor to move the subcursor in use to the last position within the result subset. If the
pointeris NULL (in C), the subcursor of the cursor in use is moved to the last position instead. The equivalent of
a NULL pointer in C++, Java, Python, C# and Fortran is NULL, null, None, null and 0, respectively. While in C
cursor is mandatory, in C++, Java, Python, C#and Fortran it is optional (when not provided, the subcursor of

the cursorin use is moved to the last position instead).
Return

int —depending on the success in moving the subcursor to the last position within the result subset, it can
either be HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or
HDFQL_ERROR_AFTER_LAST.

Example(s)

// create a dataset named "my dataset" of type variable-length int of two dimensions
(size 2x2)

hdfql execute ("CREATE DATASET my dataset AS VARINT (2, 2)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfgl cursor first(NULL);

// display position of subcursor in use within the result subset (should be -1 - i.e.
HDFQIL UNDEFINED)

printf("Position of subcursor is %d\n", hdfgl subcursor get position(NULL)) ;

// move the subcursor in use to the last position within the result set

hdfql subcursor last (NULL) ;

// display (again) position of subcursor in use within the result subset (should be 3)

printf("Position of subcursor is %d\n", hdfql subcursor get position(NULL)) ;

Version 1.4.0 Page 65 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.20 HDFQL_CURSOR_NEXT

Syntax

int hdfgl_cursor_next(HDFQL_CURSOR *cursor)

Description

Move a cursor named cursor one position forward from its current position. In other words, the cursor will
pointto the nextelement of the resultset and its position is incremented by one. If the result set is empty or
the cursoris inthe last position, an erroris returned and its position remains unchanged (i.e. remains zero) or

is set to the value returned by hdfgl_cursor_get_count plus one (1), respectively.

Parameter(s)

cursor— pointerto a cursor to move one position forward fromits current position. If the pointeris NULL (in C),
the cursor in use is moved one position forward from its current position instead. The equivalent of a NULL
pointer in C++, Java, Python, C# and Fortran is NULL, null, None, null and 0, respectively. While in C cursor is
mandatory, in C++, Java, Python, C# and Fortran it is optional (when not provided, the cursor in use is moved

one position forward from its current position instead).
Return

int — depending on the success in moving the cursor one position forward from its current position, it can

either be HDFQL_SUCCESS, HDFQL_ERROR_EMPTY or HDFQL_ERROR_AFTER_LAST.

Example(s)

// get current working directory

hdfql _execute ("SHOW USE DIRECTORY");

// move the cursor in use to the next position within the result set

hdfql cursor next (NULL) ;

// display position of cursor within the result set (should be 1)

printf("Position of cursor is ¢d\n", hdfql cursor get position(NULL));

Version 1.4.0 Page 66 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.21 HDFQL_SUBCURSOR_NEXT

Syntax

int hdfgl_subcursor_next(HDFQL_CURSOR *cursor)

Description

Move the subcursor in use one position forward from its current position. In other words, the subcursor will
point to the next element of the result subset and its position is incremented by one. If the result subset is
empty or the subcursor is in the last position, an error is returned and its position remains unchanged (i.e.

remains zero) oris set to the value returned by hdfqgl_subcursor_get_count plus one (1), respectively

Parameter(s)

cursor— pointertoa cursor to move the subcursorin use one position forward from its current position. If the
pointer is NULL (in C), the subcursor of the cursor in use is moved one position forward from its current
positioninstead. The equivalent of a NULL pointerin C++, Java, Python, C# and Fortran is NULL, null, None, null
and O, respectively. While in C cursoris mandatory, in C++, Java, Python, C# and Fortran it is optional (when not

provided, the subcursorof the cursorin use is moved one position forward from its current position instead).
Return

int— depending on the success in moving the subcursor one position forward from its current position, it can
either be HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or
HDFQL_ERROR_AFTER_LAST.

Example(s)

// create a dataset named "my dataset" of type variable-length int of two dimensions
(size 2x2)

hdfgl execute ("CREATE DATASET my dataset AS VARINT (2, 2)");

// insert (i.e. write) values into dataset "my dataset”

hdfgl execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset');

Version 1.4.0 Page 67 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

// move the cursor in use to the first position within the result set

hdfql cursor first(NULL);

// display position of subcursor in use within the result set (should be -1 - i.e.
HDFQL UNDEFINED)

printf("Position of subcursor is %d\n", hdfgl subcursor get position(NULL))

// move the subcursor in use to the next position within the result subset (two times)
hdfql subcursor next (NULL) ;
hdfql subcursor next (NULL) ;

// display (again) position of subcursor in use within the result subset (should be 2)

printf("Position of subcursor is %d\n", hdfql subcursor get position(NULL)) ;

5.2.22 HDFQL_CURSOR_PREVIOUS

Syntax

int hdfgl_cursor_previous(HDFQL_CURSOR *cursor)

Description

Move a cursor named cursor one position backward from its current position. In other words, the cursor will
pointto the previous element of the resultsetand its positionis decremented by one. If the result setis empty
or the cursoris inthe first position, an erroris returned and its position remains unchanged (i.e. remains zero)

oris setto zero, respectively.

Parameter(s)

cursor— pointerto a cursor to move one position backward from its current position. If the pointeris NULL (in
C), the cursor in use is moved one position backward from its current position instead. The equivalent of a
NULL pointerin C++, Java, Python, C# and Fortran is NULL, null, None, nulland O, respectively. Whilein C cursor
ismandatory, in C++, Java, Python, C# and Fortranit isoptional (when not provided, the cursorin use is moved

one position backward from its current position instead).

Version 1.4.0 Page 68 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

Return

int — depending on the success in moving the cursor one position backward from its current position, it can

either be HDFQL_SUCCESS, HDFQL_ERROR_EMPTY or HDFQL_ERROR_BEFORE_FIRST.

Example(s)

// create a dataset named "my dataset" of type float of two dimensions (size 2x10)

hdfgl execute ("CREATE DATASET my dataset AS FLOAT (2, 10)");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to the last position within the result set

hdfql cursor last (NULL) ;

// move the cursor in use to the previous position within the result set

hdfql cursor previous (NULL) ;

// display position of cursor in use within the result set (should be 19 - i.e. 2x10-1)
printf("Position of cursor is %d\n", hdfgl cursor get position(NULL));

5.2.23 HDFQL_SUBCURSOR_PREVIOUS

Syntax

int hdfgl_subcursor_previous(HDFQL_CURSOR *cursor)

Description

Move the subcursorin use one position backward from its current position. In other words, the subcursor will
pointto the previous element of the result subsetand its position is decremented by one. If the result subsetis

empty or the subcursor is in the first position, an error is returned and its position remains unchanged (i.e.

remains zero) or is set to zero, respectively.

Version 1.4.0 Page 69 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor— pointertoa cursor to move the subcursorin use one position backward fromits current position. If the
pointer is NULL (in C), the subcursor of the cursor in use is moved one position backward from its current
positioninstead. The equivalent of aNULL pointerin C++, Java, Python, C# and Fortran is NULL, null, None, null
and 0, respectively. While in C cursoris mandatory, in C++, Java, Python, C# and Fortran it is optional (when not

provided, the subcursor of the cursorin use is moved one position backward fromits current positioninstead).

Return

int— dependingonthe successin movingthe subcursor one position backward from its current position, it can
either be HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or
HDFQL_ERROR_AFTER_LAST.

Example(s)

// create a dataset named "my dataset" of type variable-length int of two dimensions
(size 2x2)

hdfql execute("CREATE DATASET my dataset AS VARINT (2, 2)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfgl cursor first (NULL);

// move the subcursor in use to the last position within the result subset

hdfql subcursor last (NULL) ;

// move the subcursor in use to the previous position within the result subset (two
times)

hdfql subcursor previous (NULL);

hdfgl subcursor previous (NULL);

// display position of the subcursor within the result subset (should be 1 - i.e. 3-1-1)

printf("Position of subcursor is %d\n", hdfgl subcursor get position(NULL))

Version 1.4.0 Page 70 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.24 HDFQL_CURSOR_ABSOLUTE

Syntax

int hdfgl_cursor_absolute(HDFQL_CURSOR *cursor, int position)

Description

Move a cursor named cursor to an absolute position position within the result set. If position is positive, the
cursor will positionitself with reference to the beginning of the result set. If position is negative, the cursor will
positionitself with reference to the end of the result set. The first element of the result set is at position one
(1), while the lastelementis located at the position returned by hdfql_cursor_get_count. An attempt to move
the cursor before the first element will return an error and set the position of the cursor to zero, while an
attempt to move the cursor after the last element will return an error and set the position of the cursor to

number of elements in the result set plus one (1).

Parameter(s)

cursor— pointerto a cursor to move to an absolute position within the result set. If the pointeris NULL (in C),
the cursor in use is moved to an absolute position instead. The equivalent of a NULL pointer in C++, Java,
Python, C# and Fortran is NULL, null, None, null and O, respectively. While in C cursoris mandatory, in C++,
Java, Python, C# and Fortran it is optional (when not provided, the cursor in use is moved to an absolute

position instead).
position —absolute position to which to move the cursor.
Return

int— depending onthe successin movingthe cursor to an absolute position within the result set, it can either

be HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create six HDF groups named "gl", "g2", "g3", "g4" and "g5"

hdfql execute ("CREATE GROUP gl, g2, g3, g4, g5");

Version 1.4.0 Page 71 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

// populate cursor in use with all existing groups (should be gl, g2, g3, g4, g5)
hdfql execute ("SHOW GROUP") ;

// move the cursor in use to absolute position 3 within the result set

hdfql cursor absolute (NULL, 3);

// display current element of the cursor in use within the result set (should be g3)

=

printf("Current element of cursor is $%s", hdfql cursor get char(NULL)) ;

// move the cursor in use to absolute position -2 within the result set

hdfgl cursor absolute (NULL, -2) ;

// display current element of the cursor in use within the result set (should be g4)

printf("Current element of cursor is %s", hdfql cursor get char (NULL)) ;

5.2.25 HDFQL_SUBCURSOR_ABSOLUTE

Syntax

int hdfgl_subcursor_absolute(HDFQL_CURSOR *cursor, int position)

Description

Move the subcursorin use to an absolute position position within the result subset. If position is positive, the
subcursor will position itself with reference to the beginning of the result subset. If position is negative, the
subcursor will position itself with reference to the end of the result subset. The first element of the result
subset is at position one (1), while the last element is located at the position returned by
hdfgl_subcursor_get count. An attempt to move the subcursor before the first element will return an error
and set the position of the subcursor to zero, while an attempt to move the subcursor after the last element

will return an error and set the position of the subcursor to number of elements in the result subset plus one

(1).
Parameter(s)

cursor— pointerto a cursor to move the subcursorin use to an absolute position withinthe result subset. If the

pointer is NULL (in C), the subcursor of the cursor in use is moved to an absolute position instead. The

Version 1.4.0 Page 72 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

equivalentof aNULL pointerin C++, Java, Python, C# and Fortran is NULL, null, None, null and 0O, respectively.
While in C cursor is mandatory, in C++, Java, Python, C# and Fortran it is optional (when not provided, the

subcursor of the cursor in use is moved to an absolute position instead).
position —absolute position to which to move the subcursor.
Return

int— dependingonthe successin movingthe subcursorto an absolute position within the result subset, it can
either be HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or
HDFQL_ERROR_AFTER_LAST.

Example(s)

// create a dataset named "my dataset" of type variable-length int of two dimensions
(size 2x2)

hdfql execute("CREATE DATASET my dataset AS VARINT (2, 2)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset');

// move the cursor in use to the first position within the result set

hdfgl cursor first (NULL);

// move the subcursor in use to absolute position 3 within the result subset

hdfql subcursor absolute (NULL, 3);

// display current element of the subcursor in use within the result subset (should be 5)

printf("Current element of subcursor is %d", hdfgl cursor get int (NULL));

// move the subcursor in use to absolute position -2 within the result subset

hdfql subcursor absolute(NULL, -2);

// display current element of the subcursor in use within the result subset (should be 8)

printf("Current element of subcursor is %d", hdfgl cursor get int (NULL));

Version 1.4.0 Page 73 0of 252

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.26 HDFQL_CURSOR_RELATIVE

Syntax

int hdfgl_cursor_relative(HDFQL_CURSOR *cursor, int position)

Description

Move a cursor named cursor to a relative position position with respect to its current position. If position is
positive, the cursor will go forward in the result set relative to its current position. If position is negative, the
cursor will gobackwardinthe resultsetrelative toits current position. The first element of the result setis at
position one (1), while the last element is located at the position returned by hdfqgl_cursor_get_count. An
attempt to move the cursor before the first element will return an error and set the position of the cursor to
zero, while an attemptto move the cursor afterthe last element will return an errorand set the position of the

cursor to number of elements in the result set plus one (1).

Parameter(s)

cursor— pointertoa cursor to move to a relative position with respect to its current position. If the pointeris
NULL (in C), the cursor in use is moved to a relative position instead. The equivalent of a NULL pointerin C++,
Java, Python, C# and Fortran is NULL, null, None, null and 0, respectively. While in C cursor is mandatory, in
C++, Java, Python, C# and Fortran it is optional (when not provided, the cursor in use is moved to a relative

position instead).
position —relative position to which to move the cursor.
Return

int— depending onthe successin movingthe cursor to a relative position with respecttoits current position, it
can either be HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or
HDFQL_ERROR_AFTER_LAST.

Example(s)

// create six HDF groups named "gl'", "g2", "g3", "g4" and '"g5"

o

hdfql execute ("CREATE GROUP gl, g2, g3, g4, gb5");

Version 1.4.0 Page 74 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

// populate cursor in use with all existing groups (should be gl, g2, g3, g4, g5)

hdfqgl execute ("SHOW GROUP") ;
// move the cursor in use to the first position within the result set

hdfql cursor first(NULL);

// move the cursor in use to relative position 2 within the result set

hdfql cursor relative (NULL, Z);

// display current element of the cursor within the result set (should be g3)

printf("Current element of cursor is %s", hdfql cursor get char (NULL)) ;

// move the cursor in use to relative position -2 within the result set

hdfgl cursor relative (NULL, -2);

// display current element of the cursor within the result set (should be gl)

printf("Current element of cursor is %s", hdfql cursor get char (NULL)) ;

5.2.27 HDFQL_SUBCURSOR_RELATIVE

Syntax

int hdfgl_subcursor_relative(HDFQL_CURSOR *cursor, int position)

Description

Move the subcursor in use to a relative position position with respect to its current position. If position is
positive, the subcursor will go forward in the result set relative to its current position. If position is negative,
the subcursorwill go backward in the result set relative to its current position. The first element of the result
subset is at position one (1), while the last element is located at the position returned by
hdfql_subcursor_get_count. An attempt to move the subcursor before the first element will return an error
and set the position of the subcursor to zero, while an attempt to move the subcursor after the last element

will return an error and setthe position of the subcursor to number of elements in the result set plus one (1).

Parameter(s)

cursor — pointer to a cursor to move the subcursor in use to a relative position with respect to its current

position. If the pointeris NULL (in C), the subcursorof the cursor in use is moved to a relative position instead.

Version 1.4.0 Page 75 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

The equivalent of a NULL pointer in C++, Java, Python, C# and Fortran is NULL, null, None, null and O,
respectively. While in C cursor is mandatory, in C++, Java, Python, C# and Fortran it is optional (when not

provided, the subcursor of the cursorin use is moved to a relative position instead).
position —relative position to which to move the subcursor.
Return

int — depending on the success in moving the subcursor to a relative position with respect to its current
position, it can either be HDFQL SUCCESS, HDFQL ERROR_EMPTY, HDFQL ERROR_BEFORE_FIRST or
HDFQL_ERROR_AFTER_LAST.

Example(s)

// create a dataset named "my dataset" of type variable-length int of two dimensions
(size 2x2)

hdfql execute("CREATE DATASET my dataset AS VARINT (2, 2)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset');

// move the cursor in use to the first position within the result set

hdfgl cursor first(NULL);

// move the subcursor in use to the first position within the result subset

hdfgl subcursor first (NULL);

// move the subcursor in use to relative position 2 within the result subset

hdfql subcursor relative (NULL, 2);

// display current element of the subcursor in use within the result subset (should be 5)

printf("Current element of subcursor is %d", hdfgl cursor get int (NULL));

// move the subcursor in use to relative position -1 within the result subset

hdfql subcursor relative(NULL, -1);

// display current element of the subcursor in use within the result subset (should be 8)

Version 1.4.0 Page 76 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

printf("Current element of subcursor is %d", hdfgl cursor get int (NULL));

5.2.28 HDFQL_CURSOR_GET_SIZE

Syntax

int hdfgl_cursor_get_size(HDFQL_CURSOR *cursor)

Description

Get the current element size (in bytes) of a cursor named cursor. If the result set it empty or the cursor is

located before or after the first or last element of the result set, an error is returned instead.

Parameter(s)

cursor— pointertoa cursor to get the current element size (in bytes). If the pointeris NULL (in C), the current
elementsizeof the cursorin useisreturned instead. The equivalent of a NULL pointer in C++, Java, Python, C#
and Fortranis NULL, null, None, null and O, respectively. While in C cursor is mandatory, in C++, Java, Python,
C# and Fortran it is optional (when not provided, the current element size of the cursor in use is returned

instead).
Return

int— dependingonthe success in getting the current element size (in bytes) of the cursor, it can either be 20

(i.e. the size itself), HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create an HDF group named "my group"

hdfql execute ("CREATE GROUP my group");

// populate cursor in use with all existing groups (should be my group)

hdfgl execute ("SHOW GROUP") ;

// move the cursor in use to the first position within the result set

hdfgl cursor first (NULL);

Version 1.4.0 Page 77 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

// display current element size (in bytes) of the cursor in use within the result set
(should be 8 - i.e. 8x1)

printf("Current element size (in bytes) of cursor is 3%d\n", hdfql cursor get size(NULL));

5.2.29 HDFQL_SUBCURSOR_GET_SIZE

Syntax

int hdfgl_subcursor_get_size(HDFQL_CURSOR *cursor)

Description

Get the currentelementsize (in bytes) of the subcursorin use. If the result subset it empty or the subcursoris

located before or after the first or last element of the result subset, an erroris returned instead.

Parameter(s)

cursor —pointer to a cursor to get the current element size (in bytes) of the subcursorin use. If the pointeris
NULL (in C), the currentelementsize of the subcursor of the cursorin use isreturned instead. The equivalent of
a NULL pointer in C++, Java, Python, C# and Fortran is NULL, null, None, null and O, respectively. While in C

cursoris mandatory, in C++, Java, Python, C# and Fortran itis optional (when not provided, the current element

size of the subcursor of the cursorin use is returned instead).
Return

int— dependingonthe successin gettingthe currentelementsize (in bytes) of the subcursor, it can either be

0 (i.e. the size itself), HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create a dataset named "my dataset" of type variable-length char of one dimension
(size 3)

hdfgl execute("CREATE DATASET my dataset AS VARCHAR (3)");

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES(Red, Green, Blue)");

Version 1.4.0 Page 78 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfql cursor first(NULL);

// move the subcursor in use to the first position within the result subset

hdfql subcursor first (NULL);

// display current element size (in bytes) of the subcursor within the result subset
(should be 3 — i.e. 3x1)
printf("Current element size (in bytes) of subcursor is $%d\n",

hdfql subcursor get size(NULL)) ;

5.2.30 HDFQL_CURSOR_GET

Syntax

void *hdfql_cursor_get(HDFQL CURSOR *cursor)

Description

Get the currentelement of acursor named cursoras a generic(typeless) pointer. It is up to the programmer to
interpretthe returned pointeraccordingto theirneeds. If the result setitempty orthe cursor is located before

or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor— pointertoa cursor to get the currentelementas a generic(typeless) pointer. If the pointeris NULL (in
C), the current elementof the cursorin use is returned instead. The equivalent of a NULL pointerin C++, Java,
Python, C# and Fortran is NULL, null, None, null and 0, respectively. While in C cursor is mandatory, in C++,

Java, Python, C# and Fortran it is optional (when not provided, the current element of the cursor in use is

returned instead).
Return

void — generic (typeless) pointer to the current element of the cursor. If there is no current element, the

pointeris NULL.

Version 1.4.0 Page 79 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create a dataset named "my dataset" of type float of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS FLOAT(3)");

inser 1.e. write vailues 1nto atase m atase
// 1 t (1 ite) 1 into dataset "my dataset”

hdfgl execute("INSERT INTO my dataset VALUES (5.5, 8.1, 4.9)");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a float (should be 5.5)

printf("Current element of cursor is %f\n", (float *) hdfgl cursor get (NULL));

5.2.31 HDFQL_SUBCURSOR_GET

Syntax

void *hdfql_subcursor_get(HDFQL CURSOR *cursor)

Description

Get the current element of the subcursor in use as a generic (typeless) pointer. It is up to the programmer to
interpretthe returned pointeraccordingto their needs. If the result subsetitempty orthe subcursoris located

before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor— pointertoa cursor to get the currentelement of the subcursorin use as a generic(typeless) pointer. If
the pointeris NULL (in C), the current element of the subcursor of the cursorin use is returned instead. The
equivalentof aNULL pointerin C++, Java, Python, C# and Fortran is NULL, null, None, null and O, respectively.
While in C cursor is mandatory, in C++, Java, Python, C# and Fortran it is optional (when not provided, the

current element of the subcursor of the cursorin use is returned instead).

Version 1.4.0 Page 80 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Return

void —generic (typeless) pointer to the current element of the subcursor. If there is no current element, the

pointeris NULL.

Example(s)

// create a dataset named "my dataset" of type variable-length float of one dimension
(size 3)

hdfgl execute("CREATE DATASET my dataset AS VARFLOAT(3)");

// insert (i.e. write) values into dataset "my dataset"”

hdfgl execute("INSERT INTO my dataset VALUES((5.5, 2.2), (8.1), (4.9, 3.4, 5.6))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a float (should be 5.5)

printf("Current element of subcursor is $f\n", (float *) hdfgl subcursor get (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a float (should be 2.2)

printf("Current element of subcursor is %f\n", (float *) hdfqgl subcursor get (NULL));

5.2.32 HDFQL_CURSOR_GET_TINYINT

Syntax

char *hdfql_cursor_get_tinyint(HDFQL_CURSOR *cursor)

Version 1.4.0 Page 81 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get the current element of a cursor named cursor as a TINYINT. In other words, the current element is
interpreted as a “char” C datatype and returned as a pointer of such type. If the result set is empty or the

cursor is located before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a TINYINT. If the pointeris NULL (in C), the current
elementofthe cursorinuseis returned instead. The equivalent of a NULL pointer in C++, Java, Python, C# and

Fortran is NULL, null, None, null and 0, respectively. While in C cursor is mandatory, in C++, Java, Python, C#

and Fortran it is optional (when not provided, the current element of the cursorin use is returned instead).
Return

char — pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create a dataset named "my dataset" of type char of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS TINYINT (3)");

// insert (i.e. write) values into dataset "my dataset"

~

hdfgl execute("INSERT INTO my dataset VALUES (12, 34, 23)");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a char (should be 12)

printf("Current element of cursor is %d\n", *hdfql cursor get tinyint(NULL));

Version 1.4.0 Page 82 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.33 HDFQL_SUBCURSOR_GET_TINYINT

Syntax

char *hdfql_subcursor_get_tinyint(HDFQL _CURSOR *cursor)

Description

Get the current element of the subcursor in use as a TINYINT. In other words, the current element is
interpreted as a “char” C datatype and returned as a pointer of such type. If the result subset is empty or the

subcursoris located before orafterthe first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursorin use as a TINYINT. If the pointer is
NULL (in C), the currentelement of the subcursor of the cursorin use is returned instead. The equivalent of a
NULL pointerin C++, Java, Python, C# and Fortran is NULL, null, None, nulland O, respectively. Whilein C cursor
ismandatory, in C++, Java, Python, C# and Fortranit is optional (when not provided, the currentelement of the

subcursor of the cursorin use is returned instead).
Return

char — pointertothe current element of the subcursor. If there is no currentelement, the pointer will be NULL.

Example(s)

// create a dataset named "my dataset" of type variable-length char of one dimension
(size 3)

hdfql_execute(”CREATE DATASET my dataset AS VARTINYINT (3)");

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

Version 1.4.0 Page 83 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

// display current element of the cursor in use as a char (should be 5)

printf("Current element of cursor is %d\n'", *hdfql cursor get tinyint (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as a char (should be 5)

printf("Current element of subcursor is %d\n", *hdfql subcursor get tinyint (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as a char (should be 2)

printf("Current element of subcursor is %d\n", *hdfql subcursor get tinyint (NULL));

5.2.34 HDFQL_CURSOR_GET_UNSIGNED_TINYINT

Syntax

unsigned char *hdfqgl_cursor_get_unsigned_tinyint(HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as an UNSIGNED TINYINT. In other words, the current
elementisinterpreted as an “unsigned char” C datatype and returned as a pointerof suchtype. If the result set
isemptyor the cursoris located before orafterthe first or last element of the result set, the returned element

is NULL.

Parameter(s)

cursor— pointertoa cursor to get the currentelementasa UNSIGNED TINYINT. If the pointeris NULL (in C), the
currentelementof the cursorinuse isreturned instead. The equivalent of a NULL pointer in C++, Java, Python,
C# and Fortran is NULL, null, None, null and 0, respectively. While in C cursor is mandatory, in C++, Java,
Python, C# and Fortran it is optional (when not provided, the current element of the cursorin use is returned

instead).

Version 1.4.0 Page 84 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Return

unsigned char—pointerto the currentelement of the cursor. If there isno current element, the pointer will be

NULL.

Example(s)

// create a dataset named "my dataset" of type unsigned char of one dimension (size 3)

hdfgl execute("CREATE DATASET my dataset AS UNSIGNED TINYINT(3)");

// insert (i.e. write) values into dataset "my dataset"

i}

hdfgl execute("INSERT INTO my dataset VALUES (12, 34, 23)");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned char (should be 12)

printf("Current element of cursor is %u\n", *hdfqgl cursor get unsigned tinyint (NULL)) ;

5.2.35 HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINT

Syntax
unsigned char *hdfql_subcursor_get_unsigned_tinyint(HDFQL_CURSOR *cursor)

Description

Get the currentelement of the subcursorin use as an UNSIGNED TINYINT. In otherwords, the current element
is interpreted as an “unsigned char” C datatype and returned as a pointer of such type. If the result subset is

empty or the subcursor is located before or after the first or last element of the result subset, the returned

elementis NULL.

Version 1.4.0 Page 85 0f252

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor— pointertoa cursor to get the current element of the subcursorin use as an UNSIGNED TINYINT. If the
pointer is NULL (in C), the current element of the subcursor of the cursor in use is returned instead. The
equivalentof aNULL pointerin C++, Java, Python, C# and Fortran is NULL, null, None, null and 0, respectively.
While in C cursor is mandatory, in C++, Java, Python, C# and Fortran it is optional (when not provided, the

current element of the subcursor of the cursorin use is returned instead).
Return

unsigned char— pointerto the currentelementof the subcursor. If there is no current element, the pointer will

be NULL.

Example(s)

// create a dataset named "my dataset" of type variable-length unsigned char of one
dimension (size 3)

hdfgl execute ("CREATE DATASET my dataset AS UNSIGNED VARTINYINT(3)");

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as an unsigned char (should be 5)

printf("Current element of cursor is 3%u\n", *hdfqgl cursor get unsigned tinyint (NULL)) ;

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfgl subcursor next (NULL) ;
// display current element of the subcursor in use as an unsigned char (should be 5)
printf("Current element of subcursor is $%u\n",

*hdfgl subcursor get unsigned tinyint (NULL));

// move the subcursor in use to next position within the result subset (i.e. second

Version 1.4.0 Page 86 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as an unsigned char (should be 2)
printf("Current element of subcursor is %u\n",

*hdfgl subcursor get unsigned tinyint (NULL));

5.2.36 HDFQL_CURSOR_GET_SMALLINT

Syntax

short *hdfqgl_cursor_get_smallint(HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as a SMALLINT. In other words, the current element is
interpreted as a “short” C datatype and returned as a pointer of such type. If the result setis empty or the

cursor is located before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor— pointertoa cursor to get the currentelement as a SMALLINT. If the pointeris NULL (in C), the current
elementof the cursorin useis returned instead. The equivalent of a NULL pointer in C++, Java, Python, C# and
Fortran is NULL, null, None, null and 0, respectively. While in C cursor is mandatory, in C++, Java, Python, C#

and Fortran it is optional (when not provided, the current element of the cursorin use is returned instead).
Return

short —pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create a dataset named "my dataset" of type short of one dimension (size 3)

hdfgl execute("CREATE DATASET my dataset AS SMALLINT(3)");

// insert (i.e. write) values into dataset "my dataset"”

hdfql execute("INSERT INTO my dataset VALUES (12, 34, 23)");

Version 1.4.0 Page 87 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a short (should be 12)

printf("Current element of cu or is %d\n'", *hdfgl cursor get smallint (NULL)),;

5.2.37 HDFQL_SUBCURSOR_GET_SMALLINT

Syntax

short *hdfgl_subcursor_get_smallint(HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as a SMALLINT. In other words, the current element is
interpreted as a “short” C datatype and returned as a pointer of such type. If the result subset is empty or the

subcursoris located before orafterthe first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor— pointerto a cursor to get the current element of the subcursor in use as a SMALLINT. If the pointeris
NULL (in C), the currentelement of the subcursor of the cursorin use is returned instead. The equivalent of a
NULL pointerin C++, Java, Python, C# and Fortran is NULL, null, None, nulland O, respectively. Whilein C cursor
is mandatory, in C++, Java, Python, C# and Fortranit isoptional (when not provided, the currentelement of the

subcursor of the cursorin use is returned instead).
Return

short — pointer to the current element of the subcursor. If there is no current element, the pointer will be

NULL.

Version 1.4.0 Page 88 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create a dataset named "my dataset" of type variable-length short of one dimension
(size 3)

hdfgl execute("CREATE DATASET my dataset AS VARSMALLINT(3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as a short (should be 5)

printf("Current element of cursor is %d\n", *hdfql cursor get smallint (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as a short (should be 5)

printf("Current element of subcursor is %d\n", *hdfqgl subcursor get smallint (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a short (should be 2)

printf("Current element of subcursor is %d\n", *hdfql subcursor get smallint (NULL));

5.2.38 HDFQL_CURSOR_GET_UNSIGNED_SMALLINT

Syntax

unsigned short *hdfqgl_cursor_get_unsigned_smallint(HDFQL_CURSOR *cursor)

Version 1.4.0 Page 89 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get the current element of a cursor named cursor as an UNSIGNED SMALLINT. In other words, the current
elementisinterpreted as an “unsigned short” C datatype and returned as a pointer of such type. If the result
set is empty or the cursor is located before or after the first or last element of the result set, the returned

elementis NULL.

Parameter(s)

cursor— pointertoa cursor to get the currentelementas an UNSIGNED SMALLINT. If the pointeris NULL (in C),
the current element of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java,
Python, C# and Fortran is NULL, null, None, null and 0, respectively. While in C cursor is mandatory, in C++,
Java, Python, C# and Fortran it is optional (when not provided, the current element of the cursor in use is

returned instead).
Return

unsigned short—pointertothe currentelement of the cursor. If there is no currentelement, the pointer will be

NULL.

Example(s)

// create a dataset named "my dataset" of type unsigned short of one dimension (size 3)
hdfqlﬁexecute(”CREATE DATASET my dataset AS UNSIGNED SMALLINT (3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES (12, 34, 23)");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as an unsigned short (should be 12)

printf("Current element of cursor is %u\n'", *hdfql cursor get unsigned smallint (NULL));

Version 1.4.0 Page 90 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.39 HDFQL_SUBCURSOR_GET_UNSIGNED_SMALLINT

Syntax

unsigned short *hdfqgl_subcursor_get_unsigned_smallint(HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as an UNSIGNED SMALLINT. In other words, the current
elementisinterpreted as an “unsigned short” C datatype and returned as a pointer of such type. If the result
subset is empty or the subcursor is located before or after the first or last element of the result subset, the

returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as an UNSIGNED SMALLINT. If
the pointer is NULL (in C), the current element of the subcursor of the cursorin use is returned instead. The
equivalentof aNULL pointerin C++, Java, Python, C# and Fortran is NULL, null, None, null and 0, respectively.

While in C cursor is mandatory, in C++, Java, Python, C# and Fortran it is optional (when not provided, the

current element of the subcursor of the cursorin use is returned instead).
Return

unsigned short — pointer to the current element of the subcursor. If there is no current element, the pointer

will be NULL.

Example(s)

// create a dataset named "my dataset" of type variable-length unsigned short of one
dimension (size 3)

hdfql execute("CREATE DATASET my dataset AS UNSIGNED VARSMALLINT(3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

Version 1.4.0 Page 91 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as an unsigned short (should be 5)

printf("Current element of cursor is %u\n", *hdfql cursor get unsigned smallint (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as an unsigned short (should be 5)
printf("Current element of subcursor is %u\n",

*hdfgl subcursor get unsigned smallint (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as an unsigned short (should be 2)

printf("Current element of subcursor is %u\n",

*hdfgl subcursor get unsigned smallint (NULL));

5.2.40 HDFQL_CURSOR_GET_INT

Syntax

int *hdfql_cursor_get_int(HDFQL_CURSOR *cursor)

Description

Get the currentelement of acursor named cursoras an INT. In other words, the currentelementisinterpreted
as an “int” C datatype and returned as a pointer of such type. If the result set is empty or the cursoris located

before or after the first or last element of the result set, the returned element is NULL.

Parameter!s!

cursor — pointer to a cursor to get the current element as an INT. If the pointer is NULL (in C), the current

elementof the cursorin useis returned instead. The equivalent of a NULL pointer in C++, Java, Python, C# and

Version 1.4.0 Page 92 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Fortran is NULL, null, None, null and 0, respectively. While in C cursor is mandatory, in C++, Java, Python, C#

and Fortran it is optional (when not provided, the current element of the cursorin use is returned instead).

Return

int —pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create a dataset named "my dataset" of type int of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS INT(3)");

// insert (i.e. write) values into dataset "my dataset"

hdfqgl execute("INSERT INTO my dataset VALUES (12, 34, 23)");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as an unsigned short (should be 12)

printf("Current element of cursor is %d\n", *hdfgl cursor get int (NULL));

5.2.41 HDFQL_SUBCURSOR_GET_INT

Syntax

int *hdfql_subcursor_get_int(HDFQL_CURSOR *cursor)

Description

Get the currentelementof the subcursorinuse as an INT. In otherwords, the currentelementisinterpretedas
an “int” C datatype and returned as a pointer of such type. If the result subset is empty or the subcursoris

located before or after the first or last element of the result subset, the returned element is NULL.

Version 1.4.0 Page 93 0of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor— pointertoa cursor to get the current element of the subcursorin use as an INT. If the pointeris NULL
(inC), the current element of the subcursor of the cursorin use is returned instead. The equivalent of a NULL
pointer in C++, Java, Python, C# and Fortran is NULL, null, None, null and 0, respectively. While in C cursor is
mandatory, in C++, Java, Python, C#and Fortran it is optional (when not provided, the current element of the

subcursor of the cursorin use is returned instead).
Return

int— pointertothe current element of the subcursor. If there is no current element, the pointer will be NULL.

Example(s)

// create a dataset named "my dataset" of type variable-length int of one dimension (size
3)
hdfql execute ("CREATE DATASET my dataset AS VARINT(3)");

// insert (i.e. write) values into dataset "my dataset"”

hdfql execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an int (should be 5)

printf("Current element of cursor is %d\n'", *hdfql cursor get int (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as an int (should be 5)

printf("Current element of subcursor is %d\n", *hdfqgl subcursor get int (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfgl subcursor next (NULL) ;

Version 1.4.0 Page 94 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

// display current element of the subcursor in use as an int (should be 2)

printf("Current element of subcursor is %d\n", *hdfqgl subcursor get int (NULL));

5.2.42 HDFQL_CURSOR_GET_UNSIGNED_INT

Syntax

unsigned int *hdfql_cursor_get_unsigned_int(HDFQL_CURSOR *cursor)

Description

Get the currentelement of acursor named cursoras an UNSIGNED INT. In other words, the current element is
interpreted asan “unsigned int” Cdatatype and returned as a pointer of such type. If the result setis empty or

the cursor is located before or after the first or last element of the result set, the returned element is NULL.

Parameter(s!

cursor — pointer to a cursor to get the current element as an UNSIGNED INT. If the pointeris NULL (in C), the
currentelement of the cursorinuse isreturned instead. The equivalent of a NULL pointer in C++, Java, Python,
C# and Fortran is NULL, null, None, null and 0, respectively. While in C cursor is mandatory, in C++, Java,
Python, C# and Fortran it is optional (when not provided, the current element of the cursor in use is returned

instead).
Return

unsigned int—pointerto the current element of the cursor. If there is no current element, the pointer will be

NULL.

Example(s)

// create a dataset named "my dataset" of type unsigned int of one dimension (size 3)

hdfgl execute("CREATE DATASET my dataset AS UNSIGNED INT (3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES (12, 34, 23)");

Version 1.4.0 Page 95 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned int (should be 12)

printf("Current element of cu

N

sor is %Su\n", *hdfqgl cursor get unsigned int (NULL));

5.2.43 HDFQL_SUBCURSOR_GET_UNSIGNED_INT

Syntax

unsigned int *hdfql_subcursor_get_unsigned_int(HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursorin use as an UNSIGNED INT. In other words, the current element is
interpreted asan “unsignedint” C datatype and returned as a pointer of such type. If the result subsetis empty
or the subcursorislocated before orafterthe first or last element of the result subset, the returned element is

NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as an UNSIGNED INT. If the
pointer is NULL (in C), the current element of the subcursor of the cursor in use is returned instead. The
equivalentof aNULL pointerin C++, Java, Python, C# and Fortran is NULL, null, None, null and 0O, respectively.
While in C cursor is mandatory, in C++, Java, Python, C# and Fortran it is optional (when not provided, the

current element of the subcursor of the cursorin use is returned instead).
Return

unsignedint—pointerto the currentelement of the subcursor. If there is no current element, the pointer will

be NULL.

Version 1.4.0 Page 96 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create a dataset named "my dataset" of type variable-length unsigned int of one
dimension (size 3)

hdfgl execute("CREATE DATASET my dataset AS UNSIGNED VARINT (3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as an unsigned int (should be 5)

printf("Current element of cursor is 3%u\n'", *hdfql cursor get unsigned int (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as an unsigned int (should be 5)

printf("Current element of subcursor is %u\n", *hdfqgl subcursor get unsigned int (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as an unsigned int (should be 2)

printf("Current element of subcursor is %u\n", *hdfql subcursor get unsigned int (NULL));

5.2.44 HDFQL_CURSOR_GET_BIGINT

Syntax

long long *hdfgl_cursor_get_bigint(HDFQL_CURSOR *cursor)

Version 1.4.0 Page 97 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get the current element of a cursor named cursor as a BIGINT. In other words, the current element is
interpreted asa“longlong” C datatype and returned as a pointerof such type. If the result set is empty or the

cursor is located before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a BIGINT. If the pointeris NULL (in C), the current
elementofthe cursorin useis returned instead. The equivalent of a NULL pointer in C++, Java, Python, C# and
Fortran is NULL, null, None, null and 0, respectively. While in C cursor is mandatory, in C++, Java, Python, C#

and Fortran it is optional (when not provided, the current element of the cursorin use is returned instead).
Return

long long — pointer to the current element of the cursor. If there is no current element, the pointer will be

NULL.

Example(s)

// create a dataset named "my dataset" of type long long of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS BIGINT(3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES (12, 34, 23)");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as a long long (should be 12)

printf("Current element of cursor is %l11d\n", *hdfgl cursor get bigint (NULL));

Version 1.4.0 Page 98 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.45 HDFQL_SUBCURSOR_GET_BIGINT

Syntax

long long *hdfgl_subcursor_get_bigint(HDFQL_CURSOR *cursor)

Description

Get the currentelement of the subcursorin use as a BIGINT. In otherwords, the current elementisinterpreted
as a “long long” C datatype and returned as a pointer of such type. If the result subset is empty or the

subcursoris located before orafterthe first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as a BIGINT. If the pointer is
NULL (in C), the currentelement of the subcursor of the cursorin use is returned instead. The equivalent of a
NULL pointerin C++, Java, Python, C# and Fortran is NULL, null, None, nulland O, respectively. Whilein C cursor
ismandatory, in C++, Java, Python, C# and Fortranit isoptional (when not provided, the currentelement of the

subcursor of the cursorin use is returned instead).

Return

longlong— pointertothe currentelement of the subcursor. If there is no current element, the pointer will be

NULL.

Example(s)

// create a dataset named "my dataset" of type variable-length long long of one dimension
(size 3)

hdfql execute("CREATE DATASET my dataset AS VARBIGINT (3)");

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

Version 1.4.0 Page 99 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

// display current element of the cursor in use as a long long (should be 5)

printf("Current element of cursor is %11d\n", *hdfgl cursor get bigint (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a long long (should be 5)

printf("Current element of subcursor is %11d\n", *hdfgl subcursor get bigint (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a long long (should be 2)

printf("Current element of subcursor is %11d\n", *hdfqgl subcursor get bigint (NULL));

5.2.46 HDFQL_CURSOR_GET_UNSIGNED_BIGINT

Syntax

unsigned long long *hdfgl_cursor_get_unsigned_bigint(HDFQL_CURSOR *cursor)

Description

Get the currentelement of acursor named cursoras an UNSIGNED BIGINT. In other words, the current element
isinterpretedasan “unsigned longlong” C datatype and returned as a pointer of such type. If the result set is
emptyor the cursorislocated before or afterthe firstor lastelement of the resultset, the returned element is

NULL.

Parameter(s)

cursor— pointertoa cursor to get the currentelementas an UNSIGNED BIGINT. If the pointeris NULL (in C), the
currentelement of the cursorinuse isreturned instead. The equivalent of a NULL pointer in C++, Java, Python,
C# and Fortran is NULL, null, None, null and 0, respectively. While in C cursor is mandatory, in C++, Java,
Python, C# and Fortran it is optional (when not provided, the current element of the cursor in use is returned

instead).

Version 1.4.0 Page 100 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Return

unsignedlonglong —pointer to the current element of the cursor. If there is no current element, the pointer

will be NULL.

Example(s)

// create a dataset named "my dataset" of type unsigned long long of one dimension (size
3)

hdfgl execute("CREATE DATASET my dataset AS UNSIGNED BIGINT(3)");

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES(12, 34, 23)");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned long long (should be 12)

printf("Current element of cursor is %llu\n", *hdfqgl cursor get unsigned bigint (NULL)),

5.2.47 HDFQL_SUBCURSOR_GET_UNSIGNED_BIGINT

Syntax

unsigned long long *hdfgl_subcursor_get_unsigned_bigint(HDFQL_CURSOR *cursor)

Description

Get the currentelement of the subcursorin use as an UNSIGNED BIGINT. In otherwords, the current element is
interpreted as an “unsigned longlong” C datatype and returned as a pointer of such type. If the result subset is

empty or the subcursor is located before or after the first or last element of the result subset, the returned

elementis NULL.

Version 1.4.0 Page 101 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as an UNSIGNED BIGINT. If the
pointer is NULL (in C), the current element of the subcursor of the cursor in use is returned instead. The
equivalentof aNULL pointerin C++, Java, Python, C# and Fortran is NULL, null, None, null and 0, respectively.
While in C cursor is mandatory, in C++, Java, Python, C# and Fortran it is optional (when not provided, the

current element of the subcursor of the cursorin use is returned instead).
Return

unsigned long long — pointer to the current element of the subcursor. If there is no current element, the

pointer will be NULL.

Example(s)

// create a dataset named "my dataset" of type variable-length unsigned long long of one
dimension (size 3)

hdfgl execute("CREATE DATASET my dataset AS UNSIGNED VARBIGINT(3)");

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as an unsigned long long (should be 5)

printf("Current element of cursor is $%llu\n", *hdfgl cursor get unsigned bigint (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfgl subcursor next (NULL) ;
// display current element of the subcursor in use as an unsigned long long (should be 5)
printf("Current element of subcursor is $%$1lu\n",

*hdfgl subcursor get unsigned bigint (NULL));

// move the subcursor in use to next position within the result subset (i.e. second

Version 1.4.0 Page 102 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as an unsigned long long (should be 2)

lu\n",

I~
[

printf("Current element of subcursor 1is

*hdfgl subcursor get unsigned bigint (NULL));

5.2.48 HDFQL_CURSOR_GET_FLOAT

Syntax

float *hdfqgl_cursor_get_float(HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as a FLOAT. In other words, the current element is
interpreted as a “float” C datatype and returned as a pointer of such type. If the result set is empty or the

cursor is located before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a FLOAT. If the pointer is NULL (in C), the current
elementof the cursorin useis returned instead. The equivalent of a NULL pointer in C++, Java, Python, C# and
Fortran is NULL, null, None, null and 0, respectively. While in C cursor is mandatory, in C++, Java, Python, C#

and Fortran it is optional (when not provided, the current element of the cursorin use is returned instead).
Return

float —pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create a dataset named "my dataset" of type float of one dimension (size 3)

hdfgl execute("CREATE DATASET my dataset AS FLOAT(3)");

// insert (i.e. write) values into dataset "my dataset"”

hdfql execute("INSERT INTO my dataset VALUES (5.5, 8.1, 4.9)");

Version 1.4.0 Page 103 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

E

~T TDAM s Jat+aa my -
ECT FROM my dataset");

hdfql execute("SE

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a float (should be 5.5)

printf("Current element of cursor is %f\n", *hdfgl cursor get float(NULL));

5.2.49 HDFQL_SUBCURSOR_GET_FLOAT

Syntax

float *hdfgl_subcursor_get_float(HDFQL_CURSOR *cursor)

Description

Get the currentelement of the subcursorin use as a FLOAT. In other words, the current element is interpreted
as a “float” C datatype and returned as a pointer of such type. If the result subset is empty or the subcursoris

located before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor— pointertoa cursor to get the currentelement of the subcursorin use as a FLOAT. If the pointeris NULL
(inC), the current element of the subcursor of the cursorin use is returned instead. The equivalent of a NULL
pointer in C++, Java, Python, C# and Fortran is NULL, null, None, null and O, respectively. While in C cursor is
mandatory, in C++, Java, Python, C#and Fortran it is optional (when not provided, the current element of the

subcursor of the cursorin use is returned instead).
Return

float—pointerto the currentelementof the subcursor. If there is no currentelement, the pointer will be NULL.

Example(s)

// create a dataset named "my dataset" of type variable-length float of one dimension

Version 1.4.0 Page 104 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

(size 3)

hdfgl execute("CREATE DATASET my dataset AS VARFLOAT(3)");

// insert (i.e. write) values into dataset "my dataset"”

hdfql execute("INSERT INTO my dataset VALUES((7.5, 3.1), (4.5), (4.9, 3.2, 9.7, 8.8))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a float (should be 7.5)

printf("Current element of cursor is %f\n", *hdfql cursor get float(NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as a float (should be 7.5)

printf("Current element of subcursor is %f\n", *hdfql subcursor get float(NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a float (should be 3.1)

printf("Current element of subcursor is %f\n", *hdfgl subcursor get float(NULL));

5.2.50 HDFQL_CURSOR_GET_DOUBLE

Syntax

double *hdfql_cursor_get _double(HDFQL _CURSOR *cursor)

Version 1.4.0 Page 105 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get the current element of a cursor named cursor as a DOUBLE. In other words, the current element is
interpreted as a “double” C datatype and returned as a pointer of such type. If the result set is empty or the

cursor is located before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a DOUBLE. If the pointeris NULL (in C), the current
elementofthe cursorinuseis returned instead. The equivalent of a NULL pointer in C++, Java, Python, C# and

Fortran is NULL, null, None, null and 0, respectively. While in C cursor is mandatory, in C++, Java, Python, C#

and Fortran it is optional (when not provided, the current element of the cursorin use is returned instead).
Return

double —pointerto the currentelement of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create a dataset named "my dataset" of type double of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS DOUBLE (3)");

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES(5.5, 8.1, 4.9)");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a double (should be 5.5)

printf("Current element of cursor is %f\n", *hdfqgl cursor get double(NULL))

Version 1.4.0 Page 106 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.51 HDFQL_SUBCURSOR_GET_DOUBLE

Syntax

double *hdfql_subcursor_get_double(HDFQL _CURSOR *cursor)

Description

Get the current element of the subcursor in use as a DOUBLE. In other words, the current element is
interpreted asa“double” C datatype and returned as a pointerof such type. If the result subsetis empty or the

subcursoris located before orafter the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursorin use as a DOUBLE. If the pointer is
NULL (in C), the currentelement of the subcursor of the cursorin use is returned instead. The equivalent of a
NULL pointerin C++, Java, Python, C# and Fortran is NULL, null, None, nulland O, respectively. Whilein C cursor
ismandatory, in C++, Java, Python, C# and Fortranit isoptional (when not provided, the currentelement of the

subcursor of the cursorin use is returned instead).

Return

double — pointer to the current element of the subcursor. If there is no current element, the pointer will be

NULL.

Example(s)

// create a dataset named "my dataset" of type variable-length double of one dimension
(size 3)

hdfql execute ("CREATE DATASET my dataset AS VARDOUBLE (3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute ("INSERT INTO my dataset VALUES((7.5, 3.1), (4.5), (4.9, 3.2, 9.7, 8.8))");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset');

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

Version 1.4.0 Page 107 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

// display current element of the cursor in use as a double (should be 7.5)

printf("Current element of cursor is %f\n", *hdfql cursor get double(NULL))
// move the subcursor in use to next position within the result subset (i.e. first

position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a double (should be 7.5)

printf("Current element of subcursor is %f\n'", *hdfql subcursor get double (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a double (should be 3.1)

printf("Current element of subcursor is %f\n", *hdfqgl subcursor get double(NULL));

5.2.52 HDFQL_CURSOR_GET_CHAR

Syntax

char *hdfql_cursor_get char(HDFQL CURSOR *cursor)

Description

Get the current element of a cursor named cursor as a CHAR. In other words, the current element is

interpreted as a “char” C datatype and returned as a pointer of such type. If the result set is empty or the

cursor is located before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a CHAR. If the pointer is NULL (in C), the current
elementofthe cursorinuseis returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#and
Fortran is NULL, null, None, null and 0, respectively. While in C cursor is mandatory, in C++, Java, Python, C#

and Fortran it is optional (when not provided, the current element of the cursorin use is returned instead).

Version 1.4.0 Page 108 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Return

char — pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create a dataset named "my dataset" of type char of one dimension (size 3)

hdfgl execute("CREATE DATASET my dataset AS CHAR(3)");

// insert (i.e. write) values into dataset "my dataset"”

hdfql execute("INSERT INTO my dataset VALUES (Red)");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a char (should be Red)

printf("Current element of cursor is %s\n'", hdfql cursor get char (NULL));

5.2.53 HDFQL_SUBCURSOR_GET_CHAR

Syntax

char *hdfql_subcursor_get_char(HDFQL_CURSOR *cursor)

Description

Get the currentelement of the subcursorinuse as a CHAR. In other words, the current element is interpreted
as a “char” C datatype and returned as a pointer of such type. If the result subset is empty or the subcursoris

located before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor— pointerto a cursor to get the current element of the subcursorin use as a CHAR. If the pointeris NULL
(inC), the current element of the subcursor of the cursorin use is returned instead. The equivalent of a NULL

pointer in C++, Java, Python, C# and Fortran is NULL, null, None, null and O, respectively. While in C cursor is

Version 1.4.0 Page 109 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

mandatory, in C++, Java, Python, C#and Fortran it is optional (when not provided, the current element of the

subcursor of the cursorin use is returned instead).
Return

char — pointertothe current element of the subcursor. If there is no currentelement, the pointer will be NULL.

Example(s)

// create a dataset named "my dataset" of type variable-length char of one dimension
(size 3)

hdfgl execute("CREATE DATASET my dataset AS VARCHAR (3)");

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES(Red, Green, Blue)'");

// select (i.e. read) dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as a char (should be Red)

printf("Current element of cursor is %s\n'", hdfql cursor get char (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a char (should be Red)

printf("Current element of subcursor is %s\n", hdfgl subcursor get char(NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a char (should be Green)

printf("Current element of subcursor is %s\n", hdfgl subcursor get char (NULL));

Version 1.4.0 Page 110 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.54 HDFQL_VARIABLE_REGISTER

Syntax

int hdfgl_variable_register(const void *variable)

Description

Register a variable named variable for subsequent use. In other words, for HDFgl to be able to read or write
from/to a user-defined variableit mustfirst be registered. If the operation was successful, variable is registered
and a numberisassigned toit. Thisnumber— calculated by HDFgl — starts with zero and is incremented by one
everytime anew variable is registered. If variable is registered more than once, only one numberis assigned to
it (namely the number assigned upon the first registering). Of note, currently up to 16 variables can be
registered at any given time. While in C, C++ and Fortran any variable may be registered (as long HDFgl can
properly read and write values from/to it), the following restrictions apply for other programming languages

(supported by HDFqgl):

e In Java, only a variable that is an array of “byte”, “short”, “int”, “long”, “float”, “double" or “String”

datatype or its corresponding wrapper class “Byte”, “Short”, “Integer”, “Long”, “Float” or “Double” may be
registered. Any attempt to register a variable that is not an array or of the datatype/wrapper class

previously enumerated will return an error.

e In Python, only a variable that is a NumPy array of “int8”, “uint8”, “int16”, “uint16”, “int32”, “uint32”,
“int64”, “uint64”, “float32”, “float64” or “Ssize” datatype may be registered. Any attempt to register a
variable that is not a NumPy array or of the datatype previously enumerated will return an error. Please

refer to http://www.numpy.org for additional information.

e In CH#, only a variable that is an array of datatype “SByte”, “Byte”, “Int16”, “UInt16”, “Int32”, “UInt32”,
“Inted”, “Ulnt64”, “Single”, “Double” or “String” datatype or its alias “sbyte”, “byte”, “short”, “ushort”,

int”, “uint”, “long”, “ulong”, “float”, “double” or “string” may be registered. Any attempt to register a

variable that is not an array or of the datatype/alias previously enumerated will return an error.

In general, itisadvisable toregisteravariable just before executing the HDFql operation which employs it, and
to unregisteritassoonasitis nolongerused (thisisespecially relevantin C#where variables are pinned when
registered and thus cannot be moved by the Garbage Collector). This can be done via the function

hdfgl_variable _unregister.

Version 1.4.0 Page 111 of 252

http://www.numpy.org/

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

variable —variable to register for subsequent use.
Return

int — depending on the success in registering the variable for subsequent use, it can either be >0 (i.e. the
number assigned to the variable when successfully registered), HDFQL ERROR_NO_ADDRESS or
HDFQL_ERROR_FULL.

Example(s)

// declare variables
char script[1024];

short data[3];

// create a dataset named "my dataset'" of type short of one dimension (size 3)

hdfgl execute("CREATE DATASET my dataset AS SMALLINT(3)");

// assign values to variable "data"
data[(0] 218

data[l]
data[”] 75

// register variable "data" for subsequent use (by HDFql)

hdfql variable register(&data);

// prepare script to insert (i.e. write) values from variable "data" into dataset
"my dataset"

sprintf (script, "INSERT INTO my dataset VALUES FROM MEMORY %u'",

hdfql variable get number (&data));

// execute script

hdfql execute(script);

Version 1.4.0 Page 112 of 252

Hierarchical Data Format query language (HDFql)

5.2.55 HDFQL_VARIABLE_UNREGISTER

Syntax

int hdfgl_variable_unregister(const void *variable)

Description

Reference Manual

Unregister a variable named variable. In other words, HDFgl will free up any memory that may have been

allocated to manage the variable as well as the number assigned to it (the number may then be assigned to a

new variable registered subsequently). In general, it is advisable to unregister a variable as soon as itis no

longerused by HDFql (this is especially relevant in C# as variables are unpinned when unregistered and thus

may again be moved by the Garbage Collector). If variable has never been registered or has already been

unregistered, an error is returned.

Parameter(s)

variable —variable to unregister.

Return

int — depending on the success in unregistering the variable, it can either be HDFQL SUCCESS,

HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables
char script][1’
short data[3];

// create a dataset named "my dataset'" of type short of one dimension (size 3)

hdfgl execute("CREATE DATASET my dataset AS SMALLINT(3)");

// assign values to variable "data"

data[] = ;
dataf[l] = 2
data[’] = ;

// register variable "data" for subsequent use (by HDFqgl)

Version 1.4.0

Page 113 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

hdfgl variable register (&data);

// prepare script to insert (i.e. write) values from variable "data" into dataset

"my dataset"

~

NTO my dataset VALUES FROM MEMORY %u',

sprintf (script, "INSERT

hdfql variable get number (&data));

// execute script

hdfgl execute(script);

// unregister variable '"data" as it is no longer used/needed (by HDFql)
hdfgl variable unregister (&data);

5.2.56 HDFQL_VARIABLE_GET_NUMBER

Syntax
int hdfgl_variable_get_number(const void *variable)

Description

Get the number of a variable named variable. This refers to the number that was calculated by HDFql and

assignedtothe variable upon registering it with the function hdfql_variable_register. If variable has never been

registered or has been unregistered, an error is returned.

Parameter(s)

variable —variable to get the number (calculated by HDFql) assigned to it.
Return

int — depending on the success in getting the number assigned to the variable, it can either be 2 0,

HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables

short dataO[3];

Version 1.4.0 Page 114 of 252

Hierarchical Data Format query language (HDFql)

Reference Manual

float datall[5];

// register variable "dataO" for subsequent use (by HDFql)

hdfgl variable register (&datal);

// register variable

"datal" for subsequent use (by HDFql)

hdfgl variable register (&datal);

// display number

printf ("Number of

// display number

printf ("Number of

of variable

variable 1is

of variable

variable 1is

"dataO" (should be 0)
¢d\n", hdfgl variable get number (&latal));

"datal" (should be 1)
¢d\n", hdfql variable get number (&datal));

5.2.57 HDFQL_VARIABLE_GET_DATATYPE

Syntax

int hdfgl_variable_get_datatype(const void *variable)

Description

Get the datatype of a variable named variable. This function should help the programmer to better handle the

content stored in variable. The datatype refers to the result of a DATA QUERY LANGUAGE (DQL) or DATA

INTROSPECTION LANGUAGE (DIL) operation redirected into memory — and not the datatype of variable

declaredinthe program. If variable has neverbeen registered, populated (through the redirection of the result

of a DATA QUERY LANGUAGE (DQL) or DATA INTROSPECTION LANGUAGE (DIL) operation into memory), orin

case it has been unregistered, the returned datatype is undefined (HDFQL_UNDEFINED). Please refer to Table

6.3 for a complete enumeration of HDFql datatypes.

Parameter(s)

variable —variable to get its datatype.

Return

int — depending on the success in getting the datatype of the variable, it can either be HDFQL TINYINT,

HDFQL_UNSIGNED_TINYINT,

Version 1.4.0

HDFQL_SMALLINT,

HDFQL_UNSIGNED_SMALLINT,

HDFQL_INT,

Page 115 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

HDFQL_UNSIGNED_INT, HDFQL BIGINT, HDFQL UNSIGNED_BIGINT, HDFQL_FLOAT, HDFQL _DOUBLE,
HDFQL_CHAR, HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT,
HDFQL_UNSIGNED_VARSMALLINT, =~ HDFQL_VARINT, = HDFQL_UNSIGNED_VARINT, = HDFQL_VARBIGINT,
HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE, HDFQL_VARCHAR, HDFQL_OPAQUE,
HDFQL_UNDEFINED, HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables
char script[1024];

char data[1024];

// register variable "data'" for subsequent use (by HDFql)

hdfql variable register(&data);

// prepare script to get current working directory and populate variable "data" with it

sprintf (script, "SHOW USE DIRECTORY INTO MEMORY 3%u'", hdfql variable get number (&data));

// execute script

hdfgl execute(script);

// display datatype of variable "data" (should be 1024 - i.e. HDFQL CHAR)

printf("Datatype of variable is %d\n", hdfql variable get datatype(&data));

5.2.58 HDFQL_VARIABLE_GET_COUNT

Syntax

int hdfql_variable_get_count(const void *variable)

Description

Get the numberof elements (i.e. result setsize)stored in avariable named variable. This function should help
the programmerto better handle the content stored in variable. If the result set stores data from a dataset or
attribute that does not have a dimension (i.e. if it is scalar), the returned number of elements is one.
Otherwise, if the result set stores datafrom a dataset or attribute that has dimensions, the returned number of

elements equals the multiplication of all its dimensions’ sizes (e.g. if a variable stores a result set of two

Version 1.4.0 Page 116 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

dimensions of size 10x3, the number of elements is 30). If variable has never been populated (through the

redirection of the result of a DATA QUERY LANGUAGE (DQL) or DATA INTROSPECTION LANGUAGE (DIL)

operation into memory), the returned number of elements is zero.
Parameter(s)

variable —variable to get its number of elements (i.e. resut set size).
Return

int — depending on the success in getting the number of elements of the variable, it can either be >0,

HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables
char script[1024];

int data[5][3];

// create a dataset named "my dataset" of type int of two dimensions (size 5x3)

hdfql execute ("CREATE DATASET my dataset AS INT(5, 3)");

// register variable "data" for subsequent use (by HDFql)
hdfgl variable register (&data);

// prepare script to select (i.e. read) dataset "my dataset" and populate variable "data"
with it

sprintf (script, "SELECT FROM my dataset INTO MEMORY 3su',

hdfgl variable get number (&data));

// execute script

hdfgl execute(script);

// display number of elements in variable '"data" (should be 15 - i.e. 5x3)

printf("Number of elements in variable is %d\n", hdfql variable get count (&data));

Version 1.4.0 Page 117 of 252

Hierarchical Data Format query language (HDFql)

5.2.59 HDFQL_VARIABLE_GET_SIZE

Syntax

int hdfgl_variable_get_size(const void *variable)

Description

Reference Manual

Get the size (in bytes) of avariable named variable. This function should help the programmerto better handle

the content stored in variable. The size (in bytes) refers to the result of a DATA QUERY LANGUAGE (DQL) or

DATA INTROSPECTION LANGUAGE (DIL) operation redirected into memory — and not the size (in bytes) that

variable has in the program. If variable has never been registered or has been unregistered, an error is

returned. If variable has never been populated (through the redirection of the result of a DATA QUERY

LANGUAGE (DQL) or DATA INTROSPECTION LANGUAGE (DIL) operationinto memory), the returned sizeis zero.

Please refer to Table 6.3 for a complete enumeration of HDFgl datatypes and their corresponding sizes (in

bytes).

Parameter(s)

variable —variable to get its size (in bytes).

Return

int — depending on the success in getting the size (in bytes) of the variable, it can either be > O,

HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables
char script[17

int data[5][3];

// create a dataset named "my dataset'" of type int of two dimensions (size 5x3)

hdfql execute ("CREATE DATASET my dataset AS INT(5, 3)");

// register variable "data" for subsequent use (by HDFqgl)
hdfql variable register(&data);

Version 1.4.0

Page 118 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

// prepare script to select (i.e. read) dataset "my dataset" and populate variable "data"
with it
sprintf (script, "SELECT FROM my dataset INTO MEMORY %u',

hdfgl variable get number (&data)),;

// execute script

hdfgl execute(script);

// display size (in bytes) of variable '"data" (should be 60 - i.e. 5x3x4)

printf("Size (in bytes) of variable is 3%d\n", hdfgl variable get size(&data));

5.2.60 HDFQL_VARIABLE_GET_DIMENSION_COUNT

Syntax

int hdfgl_variable_get_dimension_count(const void *variable)

Description

Get the number of dimensions of a variable named variable. This function should help the programmer to
better handle the contentstored in variable. The number of dimensions refers to the result of a DATA QUERY
LANGUAGE (DQL) or DATA INTROSPECTION LANGUAGE (DIL) operation redirected into memory —and not the
number of dimensions that variable has in the program. If variable has never been registered or has been
unregistered, an errorisreturned. If variable has never been populated (through the redirection of the result
of a DATA QUERY LANGUAGE (DQL) or DATA INTROSPECTION LANGUAGE (DIL) operation into memory), the

returned number of dimensions is zero.
Parameter(s)

variable —variable to get its number of dimensions.
Return

int — depending on the success in getting the number of dimensions of the variable, it can either be >0,

HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Version 1.4.0 Page 119 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// declare variables
char script][1,

int data[5][3];

// create a dataset named "my dataset'" of type int of two dimensions (size 5x3)

hdfql execute ("CREATE DATASET my dataset AS INT(5, 3)");

// register variable "data" for subsequent use (by HDFql)

hdfgl variable register (&data);

// prepare script to select (i.e. read) dataset "my dataset" and populate variable "data"
with it
sprintf (script, "SELECT FROM my dataset INTO MEMORY %u',

hdfql variable get number (&data));

// execute script

hdfql execute(script);

// display number of dimensions of variable '"data" (should be 2)
printf("Number of dimensions in variable is %d\n",

hdfgl variable get dimension count (&data));

5.2.61 HDFQL_VARIABLE_GET_DIMENSION

Syntax

int hdfgl_variable_get_dimension(const void *variable, int index)

Description

Get the size of a certain dimension specified in index of a variable named variable. This function should help
the programmerto betterhandle the content stored in variable. The size of a certain dimension refers to the
resultof a DATA QUERY LANGUAGE (DQL) or DATA INTROSPECTION LANGUAGE (DIL) operation redirected into
memory — and not the size of a certain dimension that variable has in the program. The index of the first
dimensionis zero (index must be between 0and the value returned by hdfgl_variable_get_dimension_count —

1inclusive). If variable has never been registered, populated (through the redirection of the result of a DATA

Version 1.4.0 Page 120 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

QUERY LANGUAGE (DQL) or DATA INTROSPECTION LANGUAGE (DIL) operation into memory), orin case it has

been unregistered, an error is returned.

Parameter(s)

variable —variable to get the size of one of its dimensions.
index —index of the dimension to get its size.

Return

int — depending on the success in getting the size of a certain dimension of the variable, it can either be 20,

HDFQL_ERROR_NO_ADDRESS, HDFQL_ERROR_NOT_REGISTERED or HDFQL_ERROR_OUTSIDE_LIMIT.

Example(s)

// declare variables
char script[1024];

int data[5][3];

// create a dataset named "my dataset" of type int of two dimensions (size 5x3)

hdfgl execute("CREATE DATASET my dataset AS INT (5, 3)");

// register variable "data'" for subsequent use (by HDFgl)
hdfgl variable register (&data);

// prepare script to select (i.e. read) dataset "my dataset" and populate variable "data"
with it

sprintf (script, "SELECT FROM my dataset INTO MEMORY 3u',

hdfgl variable get number (&data)),;

// execute script

hdfql execute(script);

// display size of the first dimension of variable "data" (should be 5)

printf("Size of first dimension of variable is $%d\n", hdfqgl variable get dimension(0));

// display size of the second dimension of variable "data'" (should be 3)

printf("Size of second dimension of variable is 2d\n", hdfql variable get dimension(1l));

Version 1.4.0 Page 121 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

5.3 EXAMPLES

The following subsections present practical examples on how to use (some of) the HDFgl functions previously
described in the C, C++, Java, Python, C# and Fortran programming languages. The output of executing these

examples can be seen in subsection OUTPUT.

531 C

// include HDFgl C header file (make sure it can be found by the C compiler)

#include "HDFqgl.h"

int main(int argc, char *argv[])

{

// declare variables

HDFQL CURSOR my cursor;

char script[1024];
int values[3][Z];
int x;

int y;

// display HDFgl version in use
printf("HDFql version: $%s\n'", HDFQL VERSION);

// create an HDF file named "example c.h5" and use (i.e. open) it
hdfgl execute ("CREATE FILE example c.hb5");
hdfgl execute("USE FILE example c.h5");

// populate HDFgl default cursor with name of the HDF file in use and display it
hdfql execute ("SHOW USE FILE");

hdfql cursor first(NULL);

printf("File in use: %s\n", hdfql cursor get char (NULL))

// create an attribute named "example attribute" of type float with a value of 12.4

hdfgl execute(""CREATE ATTRIBUTE example attribute AS FLOAT DEFAULT 12.4");

// select (i.e. read) attribute "example attribute" and display its value

hdfgl execute("SELECT FROM example attribute");

Version 1.4.0 Page 122 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

hdfgl cursor first (NULL);
printf("Attribute value: %f\n", #*hdfql cursor get float (NULL));

// create a dataset named "example dataset" of type int of two dimensions (size 3x2)

hdfql execute ("CREATE DATASET example dataset AS INT (3, 2)");

// populate variable "values" with certain values

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
values[x][y] = x * 2 +y + 1,
}
}

// register variable "values" for subsequent use (by HDFql)

hdfgl variable register (&values);

// insert (i.e. write) content of variable "values" into dataset "example dataset"
sprintf (script, "INSERT INTO example dataset VALUES FROM MEMORY 3%u'",

hdfgl variable get number (&values));
hdfgl execute(script);

// populate variable "values" with zeros (i.e. reset variable)

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
values[x] [y] = 0;
}
}

// select (i.e. read) dataset "example dataset" into variable "values"
sprintf (script, "SELECT FROM example dataset INTO MEMORY 3u",

hdfgl variable get number (&values));
hdfql execute(script);

// unregister variable "values" as it is no longer used/needed (by HDFqgl)

hdfgl variable unregister (&values);

// display content of variable "values"

Version 1.4.0 Page 123 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

printf("Variable:\n");

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
printf("%d\n", values[x][y]):
}
}

// another way to select (i.e. read) dataset "example dataset" using HDFgl default
cursor

hdfgl execute("SELECT FROM example dataset");

// display content of HDFql default cursor
printf("Cursor:\n"),;
while (hdfgl cursor next (NULL) == HDFQL SUCCESS)
{

printf("sd\n", *hdfqgl cursor get int (NULL));

// initialize cursor "my cursor" and use it
hdfgl cursor initialize(&my cursor);

hdfql cursor use(&my cursor);

// populate cursor "my cursor" with size of dataset "example dataset" and display it
hdfgl execute("SHOW SIZE example dataset");

hdfgl cursor first (NULL);

printf("Dataset size: %d\n", *hdfql cursor get int (NULL));

return 0;

5.3.2 C++

// include HDFgl C++ header file (make sure it can be found by the C++ compiler)
#include <iostream>

#include "HDFgl.hpp"

Version 1.4.0 Page 124 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

int main(int argc, char *argv[])

{

// declare variables
HDFqgl::Cursor myCursor;,
char script[1024];

int values[3][”];

int x;

int y;

// display HDFgl version in use
std::cout << "HDFgl version: " << HDFqgl::Version << std::endl;

// create an HDF file named "example cpp.hb5" and use (i.e. open) it
HDFql::execute ("CREATE FILE example cpp.h5");

HDFqgl::execute ("USE FILE example cpp.hb5");

// populate HDFql default cursor with name of the HDF file in use and display it
HDFgl::execute ("SHOW USE FILE") ;

HDFqgl::cursorFirst(),;

std::cout << "File in use: " << HDFqgl::cursorGetChar() << std::endl;

// create an attribute named "example attribute" of type float with a value of 12.4

HDFqgl::execute ("CREATE ATTRIBUTE example attribute AS FLOAT DEFAULT 12.4");

// select (i.e. read) attribute "example attribute" and display its value
HDFql::execute ("SELECT FROM example attribute");

HDFql::cursorFirst(),;

std::cout << "Attribute value: " << *HDFql::cursorGetFloat() << std::endl;

// create a dataset named "example dataset" of type int of two dimensions (size 3x2)

HDFgl::execute ("CREATE DATASET example dataset AS INT(3, 2)");

// populate variable "values" with certain values

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
values[x][y] = x * 2 + y + 1;
}
}

Version 1.4.0 Page 125 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

// register variable "values'" for subsequent use (by HDFql)

HDFql::variableRegister (&values);,

// insert (i.e. write) content of variable "values" into dataset "example dataset"
sprintf (script, "INSERT INTO example dataset VALUES FROM MEMORY 3su",
HDFqgl::variableGetNumber (&values)),;

HDFqgl::execute(script);

// populate variable "values'" with zeros (i.e. reset variable)

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
values[x][y] = 0;
}
}

// select (i.e. read) dataset "example dataset'" into variable "values"
sprintf (script, "SELECT FROM example dataset INTO MEMORY 3u",
HDFql::variableGe tNumber (&values)),;

HDFgl::execute(script);

// unregister variable "values" as it is no longer used/needed (by HDFql)

HDFqgl::variableUnregister (&values),;

// display content of variable "values"
std::cout << "Variable:" << std::endl;

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
std::cout << values([x][y] << std::endl,
}
}

// another way to select (i.e. read) dataset "example dataset" using HDFql default
cursor

HDFql::execute ("SELECT FROM example dataset");

// display content of HDFgl default cursor

Version 1.4.0 Page 126 of 252

Hierarchical Data Format query language (HDFql)

Reference Manual

std::cout << "Cursor:" << std::endl;
while (HDFqgl: :cursorNext () == HDFql::Success)

{
std::cout << *HDFqgl::cursorGetInt() << std::endl;

// use cursor "myCursor"

HDFql::cursorUse (&myCursor);

// populate cursor "myCursor" with size of dataset "example dataset" and display it

HDFqgl::execute ("SHOW SIZE example dataset");
HDFgl::cursorFirst (),
std::cout << "Dataset size: " << *HDFql::cursorGetInt() << std::endl;

return 0;

5.3.3 JAVA

public class HDFglExample

{

public static void main(String args[])

{
// declare variables
HDFqlCursor myCursor;
int values[][];
int x;
int y;
// load HDFql shared library (make sure it can be found by the JVM)
System. loadLibrary ("HDFqgl") ;
// display HDFgl version in use
System.out.println("HDFql version: " + HDFql.VERSION);
// create an HDF file named "example java.h5" and use (i.e. open) it
HDFgl.execute ("CREATE FILE example java.hb5");
HDFql.execute ("USE FILE example java.h5");

Version 1.4.0 Page 127 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

// populate HDFql default cursor with name of the HDF file in use and display it
HDFql.execute ("SHOW USE FILE");

HDFgl.cursorFirst (),

System.out.println("File in use: " 4+ HDFql.cursorGetChar())

// create an attribute named "example attribute" of type float with a value of 12.4

HDFqgl.execute ("CREATE ATTRIBUTE example attribute AS FLOAT DEFAULT 12.4");

// select (i.e. read) attribute "example attribute" and display its value
HDFgl.execute ("SELECT FROM example attribute");

HDFgl.cursorFirst (),

System.out.println("Attribute value: " 4+ HDFqgl.cursorGetFloat ());,

// create a dataset named "example dataset" of type int of two dimensions (size
3x2)
HDFql.execute ("CREATE DATASET example dataset AS INT (3, 2)");

// create variable "values" and populate it with certain values
values = new int[3][”];

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
values[x][y] = x * 2 + y + 1,
}
}

// register variable "values" for subsequent use (by HDFql)

HDFqgl.variableRegister (values);,;

// insert (i.e. write) content of variable "values" into dataset "example dataset"
HDFqgl.execute ("INSERT INTO example dataset VALUES FROM MEMORY " +
HDFql.variableGetNumber (values)),

// populate variable "values'" with zeros (i.e. reset variable)
for(x = 0; x < 3; x++)
{
for(y = 0; y < Z2; y++)
{
values[x][y] = 0;

Version 1.4.0 Page 128 0f 252

Hierarchical Data Format query language (HDFql)

Reference Manual

// select (i.e. read) dataset "example dataset'" into variable "values"
HDFqgl.execute ("SELECT FROM example dataset INTO MEMORY " +

HDFqgl.variableGetNumber (values)),;

// unregister variable "values" as it is no longer used/needed (by HDFql)

HDFgl.variableUnregister (values);

// display content of variable "values"
System. out.println("Variable:")
for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
System.out.println(values[x][y]) s
}
}

// another way to select (i.e. read) dataset "example dataset'" using HDFgl default

cursor
HDFqgl.execute ("SELECT FROM example dataset");
// display content of HDFgl default cursor
System.out.println("Cursor:");
while (HDFgl. cursorNext () == HDFql.SUCCESS)
{
System.out.println (HDFql.cursorGetInt())
}
// create cursor "myCursor" and use it
myCursor = new HDFglCursor ();
HDFql.cursorUse (myCursor),;
// populate cursor "myCursor" with size of dataset "example dataset" and display it
HDFgl.execute ("SHOW SIZE example dataset");
HDFqgl.cursorFirst (),
System.out.println("Dataset size: " + HDFqgl.cursorGetInt());
}
}
Version 1.4.0 Page 129 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

5.34 PYTHON

import HDFgl module (make sure it can be found by the Python interpreter)
import HDFql
import numpy

display HDFql version in use
print ("HDFgl version: $s" % HDFql.VERSION)

create an HDF file named "example python.h5" and use (i.e. open) it
HDFqgl.execute ("CREATE FILE example python.h5")
HDFql.execute ("USE FILE example python.h5")

populate HDFql default cursor with name of the HDF file in use and display it
HDFql.execute ("SHOW USE FILE")

HDFql.cursor first()

print("File in use: $s" & HDFql.cursor get char())

create an attribute named "example attribute" of type float with a value of 12.4

HDFql.execute ("CREATE ATTRIBUTE example attribute AS FLOAT DEFAULT 12.4")

select (i.e. read) attribute "example attribute" and display its value
HDFql.execute ("SELECT FROM example attribute')

HDFqgl.cursor first()

print("Attribute value: ¢f" % HDFql.cursor get float())

create a dataset named "example dataset'" of type int of two dimensions (size 3x2)

HDFql.execute ("CREATE DATASET example dataset AS INT(3, 2)")

create variable '"values" and populate it with certain values
values = numpy.zeros((3, 2), dtype = numpy.int32)
for x in range(3) :

for y in range(2) :

values[x][y] = x * 2 + y + 1

register variable "values" for subsequent use (by HDFgl)

HDFqgl.variable register (values)

insert (i.e. write) content of variable "values" into dataset "example dataset"”

Version 1.4.0 Page 130 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

HDFqgl.execute ("INSERT INTO example dataset VALUES FROM MEMORY 3%d" %

HDFqgl.variable get number (values))

populate variable "values" with zeros (i.e. reset variable)
for x in range(3) :
for y in range(2) :
values[x][y] = 0

select (i.e. read) dataset "example dataset" into variable "values"
HDFql.execute ("SELECT FROM example dataset INTO MEMORY 3%d" %

HDFqgl.variable get number (values))

unregister variable "values" as it is no longer used/needed (by HDFql)

HDFqgl.variable unregister (values)

display content of variable "values"
print("Variable:")
for x in range(3) :
for y in range(2) :
print(values[x][y])

another way to select (i.e. read) dataset "example dataset" using HDFql default cursor

HDFql.execute ("SELECT FROM example dataset")

display content of HDFql default cursor

print("Cursor:")

while HDFql.cursor next() == HDFql.SUCCESS:
print (HDFgQl.cursor get int())

create cursor "my cursor" and use it
my cursor = HDFql.Cursor()

HDFgl.cursor use(my cursor)

populate cursor "my cursor" with size of dataset "example dataset" and display it
HDFqgl.execute ("SHOW SIZE example dataset')

HDFql.cursor first()

print("Dataset size: $d" % HDFql.cursor get int())

Version 1.4.0 Page 131 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

535 C#

public class HDFglExample

{

public static void Main(string []args)

{

3x2)

// declare variables
HDFglCursor myCursor;
int [,]values;,

int x;

int y;

// display HDFgl version in use

System. Console.WriteLine ("HDFgl version: {0}'", HDFql.Version) ;

// create an HDF file named "example csharp.h5" and use (i.e. open) it
HDFql.Execute ("CREATE FILE example csharp.h5");
HDFqgl.Execute ("USE FILE example csharp.h5");

// populate HDFql default cursor with name of the HDF file in use and display it
HDFqgl.Execute ("SHOW USE FILE"),
HDFgl.CursorFirst (),

System. Console.WriteLine("File in use: {0}", HDFql.CursorGetChar()),

// create an attribute named "example attribute" of type float with a value of 12.4

HDFqgl.Execute ("CREATE ATTRIBUTE example attribute AS FLOAT DEFAULT 12.4");

// select (i.e. read) attribute "example attribute" and display its value
HDFgl.Execute ("SELECT FROM example attribute");

HDFqgl.CursorFirst (),

System. Console.WriteLine ("Attribute value: {0}", HDFql.CursorGetFloat())

// create a dataset named "example dataset" of type int of two dimensions (size

HDFql.Execute ("CREATE DATASET example dataset AS INT (3, 2)");

// create variable "values" and populate it with certain values
values = new int[3, 2];
for(x = 0; x < 3; x++)
{
for(y = 0; y < 2; y++)

Version 1.4.0 Page 132 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

values[x, y] =x * 2 + y + 1,

// register variable "values" for subsequent use (by HDFql)

HDFqgl.VariableRegister (values);,;

// insert (i.e. write) content of variable "values" into dataset "example dataset"
HDFqgl.Execute ("INSERT INTO example dataset VALUES FROM MEMORY " +

HDFqgl.VariableGetNumber (values)),;

// populate variable "values'" with zeros (i.e. reset variable)

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
values[x, y] = 0;
}
}

// select (i.e. read) dataset "example dataset'" into variable "values"
HDFqgl.Execute ("SELECT FROM example dataset INTO MEMORY " +

HDFqgl.VariableGetNumber (values)),;

// unregister variable "values" as it is no longer used/needed (by HDFql)

HDFgl.VariableUnregister (values),;

// display content of variable "values"
System. Console.WriteLine ("Variable:"),

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
System. Console.WriteLine (values[x, v]);
}
}

// another way to select (i.e. read) dataset "example dataset" using HDFgl default
cursor

HDFql.Execute ("SELECT FROM example dataset");

Version 1.4.0 Page 133 0f 252

Hierarchical Data Format query language (HDFql)

Reference Manual

// display content of HDFql default cursor
System. Console.WriteLine ("Cursor:");
while (HDFgl. CursorNext () == HDFqgl.Success)

{
System. Console.WriteLine (HDFql.CursorGetInt()) ;

// create cursor "myCursor" and use it

myCursor = new HDFglCursor ();

HDFgl.CursorUse (myCursor) ;

// populate cursor "myCursor" with size of dataset
HDFgl.Execute ("SHOW SIZE example dataset");
HDFql.CursorFirst (),

System. Console.WriteLine ("Dataset size: {0}",

HDFql .CursorGetInt()),

"example dataset" and display it

5.3.6 FORTRAN

PROGRAM HDFqlExample

USE HDFql

! declare variables

TYPE (HDFQL CURSOR) my cursor

CHARACTER string number
INTEGER, DIMENSION(3, ”) values
INTEGER state

INTEGER :: x
INTEGER :: y

! display HDFqgl version in use

*) ", HDFQL VERSION

WRITE (*, "HDFgl version:

sState =

! use HDFgl module (make sure it can be found by the Fortran compiler)

! create an HDF file named "example fortran.h5" and use (i.e.

hdfgl execute("CREATE FILE example fortran.h5" // CHAR(0))

open) it

Version 1.4.0

Page 134 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

state = hdfgl execute("USE FILE example fortran.h5" // CHAR(0))

! populate HDFgl default cursor with name of the HDF file in use and display it
state = hdfgl execute("SHOW USE FILE" // CHAR(0))

state = hdfgl cursor first()

WRITE(*, *) "File in use: ", hdfqgl cursor get char()

! create an attribute named "example attribute" of type float with a value of 12.4

state = hdfgl execute("CREATE ATTRIBUTE example attribute AS FLOAT DEFAULT 12.4" //

CHAR (0))

! select (i.e. read) attribute "example attribute" and display its value
state = hdfgl execute("SELECT FROM example attribute" // CHAR(0))

state = hdfql cursor first()

WRITE(*, *) "Attribute value: ", hdfgl cursor get float()

! create a dataset named "example dataset" of type int of two dimensions (size 3x2)

state = hdfgl execute("CREATE DATASET example dataset AS INT (3, 2)" // CHAR(0))

! populate variable "values" with certain values
DO x =1, ~
DOy =1, 3
values(y, x) = x * 3 +y = 3
END DO
END DO

! register variable "values" for subsequent use (by HDFQgl)
state = hdfgl variable register (LOC(values))
WRITE (string number, " (I0)") state

! insert (i.e. write) content of variable '"values" into dataset "example dataset"

state = hdfgl execute("INSERT INTO example dataset VALUES FROM MEMORY " [/
string number // CHAR(0))

! populate variable "values" with zeros (i.e. reset variable)

DO x =1, ~
DOy =1, 3
values(y, x) = 0
END DO

END DO

Version 1.4.0 Page 135 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

! select (i.e. read) dataset "example dataset" into variable "values"

state = hdfgl execute("SELECT FROM example dataset INTO MEMORY " // string number //

CHAR (0))

! unregister variable "values" as it is no longer used/needed (by HDFQql)

state = hdfql variable unregister (LOC (values))

! display content of variable "values"
WRITE(*, *) "Variable:"

DO x =1, 2

WRITE (*, *) values(y, x)
END DO
END DO

! another way to select (i.e. read) dataset "example dataset" using HDFgl default

cursor

state = hdfgl execute("SELECT FROM example dataset" // CHAR(0))

! display content of HDFql default cursor

WRITE (*, *) "Cursor:"

DO WHILE (hdfql cursor next() .EQ. HDFQL SUCCESS)
WRITE(*, *) hdfgl cursor get int()

END DO

! use cursor "my cursor"

state = hdfql cursor use(my cursor)

! populate cursor "my cursor" with size of dataset "example dataset" and display it
state = hdfgl execute("SHOW SIZE example dataset" // CHAR(0))

state = hdfgl cursor first()

WRITE (*, *) "Dataset size: ", hdfgl cursor get int()

END PROGRAM

5.3.7 OUTPUT

HDFql version: 1.4.0

File in use: example c.hb

Version 1.4.0 Page 136 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

Attribute value: 12.400000

Variable:

a N W N R

Cursor:

a N W N =

Dataset size: 24

Version 1.4.0 Page 137 of 252

6. LANGUAGE

HDFqglis a high-level language to manage HDF filesin a simple and natural way. It was designed to be similar to
SQL (wherever possible) so that its learning effort is kept at minimum while still providing great power and
flexibility to the programmer. This chapter describes datatypes, post-processing options to further process
result sets, and operations (i.e. the language itself) available in HDFql. It also introduces text formatting
conventions used throughout this chapterto describe HDFqgl operations (Table 6.1), and a summary of existing
operations (Table 6.2). Before continuing, itis highly recommended to first read the HDF User’s Guide available
at http://www.hdfgroup.org/HDF5/doc/UG/HDF5 Users_Guide.pdf to facilitate the understanding of the

current chapter.

Convention Description Example
Bold Keyword that must be typed exactlyas shown CREATE
Italic Value that the programmer must supply dataset_name
Between brackets ([]) Optional keyword/value [DATASET]
Between braces ({}) Logical grouping of keywords/values {[TRUNCATE] BINARY FILE file_name}
Separated by pipe (|) | Setofkeywords/values from which one must be chosen GROUP | DATASET | ATTRIBUTE
Ellipsis (...) Keyword/value that can be repeated/supplied severaltimes dim1, ..., dimX

Table 6.1 —HDFql operations text formatting conventions

Operation Description

CREATE DIRECTORY Create a directory
CREATE FILE Create an HDF file
CREATE GROUP Create an HDF group

Version 1.4.0 Page 138 of 252

http://www.hdfgroup.org/HDF5/doc/UG/HDF5_Users_Guide.pdf

Hierarchical Data Format query language (HDFql)

Reference Manual

CREATE DATASET

Create an HDF dataset

CREATE ATTRIBUTE

Create an HDF attribute

CREATE [SOFT | HARD] LINK

Create an HDF soft or hard link

CREATE EXTERNAL LINK

Create an HDF external link

ALTER DIMENSION

Alter (i.e. change) dimensions of an existing HDF dataset

RENAME DIRECTORY

Rename (or move) an existing directory

RENAME FILE

Rename (or move) an existing file

RENAME [GROUP | DATASET | ATTRIBUTE]

Rename (or move) an existing HDF group, dataset or attribute

COPY FILE

Copy an existing file

COPY [GROUP | DATASET | ATTRIBUTE]

Copyan existing HDF group, dataset or attribute

DROP DIRECTORY

Drop (i.e. delete) an existing directory

DROP FILE

Drop (i.e.delete) an existing file

DROP [GROUP | DATASET | ATTRIBUTE]

Drop (i.e. delete) an existing HDF group, dataset or attribute

INSERT

Insert (i.e. write) data into an HDF dataset or attribute

SELECT

Select (i.e. read) data from an HDF dataset or attribute

SHOW FILE VALIDITY

Getvalidity of a file (i.e. whetheritis a valid HDF file or not)

SHOW USE DIRECTORY

Get working directory currentlyin use

SHOW USE FILE

Get HDF file currentlyin use

SHOW ALL USE FILE

Getall HDF files in use (i.e. open)

SHOW USE GROUP

Get HDF group currentlyin use

SHOW [GROUP | DATASET | ATTRIBUTE]

GetHDF objects (i.e. groups, datasets orattributes) or check existence of an

object

SHOW TYPE

Get type of an HDF object (i.e. group, dataset or attribute)

SHOW STORAGE TYPE

Get storage type of an HDF dataset

SHOW [DATASET | ATTRIBUTE] DATATYPE

Get datatype of an HDF dataset or attribute

Version 1.4.0

Page 139 of 252

Hierarchical Data Format query language (HDFql)

Reference Manual

SHOW [DATASET | ATTRIBUTE] ENDIANNESS

Getendianness of an HDF dataset or attribute

SHOW [DATASET | ATTRIBUTE] CHARSET

Get charset of an HDF dataset or attribute

SHOW STORAGE DIMENSION

Get storage dimensions of an HDF dataset

SHOW [DATASET | ATTRIBUTE] DIMENSION

Getdimensions of an HDF dataset or attribute

SHOW [DATASET | ATTRIBUTE] MAX DIMENSION

Get maximum dimensions of an HDF dataset or attribute

SHOW [ATTRIBUTE] ORDER

Get (creation) order strategy of an HDF group or dataset

SHOW [DATASET | ATTRIBUTE] TAG

Gettag of an HDF dataset or attribute named object_name

SHOW FILE SIZE

Getsize (in bytes) of a file

SHOW [DATASET | ATTRIBUTE] SIZE

Getsize (in bytes) of an HDF dataset or attribute

SHOW RELEASE DATE

Getrelease date of HDFql library

SHOW HDFQL VERSION

Get version of HDFql library

SHOW HDF VERSION

Get version of HDF library used by HDFql

SHOW PCRE VERSION

Get version of PCRE library used by HDFql

SHOW ZLIB VERSION

Get version of ZLIB library used by HDFql

SHOW DIRECTORY

Get directory names within a directory

SHOW FILE

Getfile names within a directory or check existence of a file

SHOW MAC ADDRESS

Get MAC address(es) of the machine where HDFql is executed

SHOW EXECUTE STATUS

Get execution status of the last operation

SHOW [[USE] FILE | DATASET] CACHE

Get cache parameters foraccessing HDF files or datasets

SHOW FLUSH

Get status of the automatic flushing

SHOW DEBUG

Get status of the debug mechanism

USE DIRECTORY

Use a directory for subsequent operations

USE FILE

Use (i.e.open) an HDF file for subsequent operations

USE GROUP

Use (i.e. open) an HDF group for subsequent operations

FLUSH [GLOBAL | LOCAL]

Flush the entire virtual HDF file (global) or only the HDF file (local) currentlyin

Version 1.4.0

Page 140 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

use
CLOSE FILE Close HDF file currentlyin use
CLOSE ALL FILE Close all HDF files in use
CLOSE GROUP Close HDF group currentlyin use
SET [FILE | DATASET] CACHE Set cache foraccessing HDF files or datasets
ENABLE FLUSH [GLOBAL | LOCAL] Enable automaticflushingof the entire virtual HDF file or only the HDF file
ENABLE DEBUG Enable debug mechanism
DISABLE FLUSH Disable automatic flushing of the entire virtual HDF file or only the HDF file
DISABLE DEBUG Disable debug mechanism
RUN Run (i.e. execute) an external command

Table 6.2 —HDFql operations

6.1 DATATYPES

A datatype is a classification identifying one of various types of data such as integer, real or string, which
determines the possible values for that type, the operations that can be done on values of that type, the
meaning of the data, and the way values of that type can be stored. In other words, a datatype is a
classification of datathattells HDFgl how the userintends to use it. The following table summarizes all existing

HDFql datatypes and how these map with the HDF5 datatypes®.

Range of Values

-128 to 127
TINYINT H5T_NATIVE_CHAR
(1 byte)
0to 255
UNSIGNED TINYINT H5T_NATIVE_UCHAR
(1 byte)

! For a detailed explanation of HDF5 datatypes please refer to https://support.hdfgroup.org/HDF5/docl.8/UG/HDF5 Users Guide-Responsive
HTML5/index.html#t=HDF5 Users Guide/Datatypes/HDF5 Datatypes.htm.

Version 1.4.0 Page 141 of 252

https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide/Datatypes/HDF5_Datatypes.htm
https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide/Datatypes/HDF5_Datatypes.htm

Hierarchical Data Format query language (HDFql)

Reference Manual

-32,768 to 32,767

SMALLINT H5T_NATIVE_SHORT
(2 bytes)
0to 65,535
UNSIGNED SMALLINT H5T_NATIVE_USHORT
(2 bytes)

-2,147,483,648 to 2,147,483,647

INT HS5T_NATIVE_INT
(4 bytes)
0 to 4,294,967,295
UNSIGNED INT HS5T_NATIVE_UINT
(4 bytes)
-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
BIGINT H5T_NATIVE_LLONG

(8 bytes)

UNSIGNED BIGINT

H5T_NATIVE_ULLONG

0to 18,446,744,073,709,551,615
(8 bytes)

-3.4E + 38 to 3.4E + 38

FLOAT H5T_NATIVE_FLOAT
(4 bytes)
-1.79E + 308 to 1.79E + 308
DOUBLE HS5T_NATIVE_DOUBLE
(8 bytes)
0 to 255
CHAR H5T _C_S1
(size * 1 byte)
-128 to 127
VARTINYINT H5T_NATIVE_CHAR

(size * 1 byte)

UNSIGNED VARTINYINT

H5T_NATIVE_UCHAR

0to 255
(size * 1 byte)

VARSMALLINT

H5T_NATIVE_SHORT

-32,768 to 32,767
(size * 2 bytes)

UNSIGNED VARSMALLINT

H5T_NATIVE_USHORT

0 to 65,535
(size * 2 bytes)

VARINT

H5T_NATIVE_INT

-2,147,483,648 to 2,147,483,647
(size * 4 bytes)

UNSIGNED VARINT

H5T_NATIVE_UINT

0 to 4,294,967,295
(size * 4 bytes)

VARBIGINT

H5T_NATIVE_LLONG

-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
(size * 8 bytes)

UNSIGNED VARBIGINT

H5T_NATIVE_ULLONG

0 to 18,446,744,073,709,551,615
(size * 8 bytes)

Version 1.4.0

Page 142 of 252

Hierarchical Data Format query language (HDFql)

Reference Manual

-3.4E + 38 to 3.4E + 38
VARFLOAT H5T_NATIVE_FLOAT
(size * 4 bytes)
-1.79E + 308 to 1.79E + 308
VARDOUBLE H5T_NATIVE_DOUBLE
(size * 8 bytes)
0to 255
VARCHAR H5T _C_S1
(size * 1 byte)
0to 255
OPAQUE H5T_OPAQUE
(size * 1 byte)

Table 6.3 —HDFql datatypes and their corresponding definitions in HDF5

6.1.1 TINYINT

The TINYINT HDFql datatype corresponds to the H5T_NATIVE_CHAR HDF5 datatype. It may store a value

between -128 and 127, and occupies 1 byte in memory. Depending on the programming language supported

by HDFql, the TINYINT datatype is represented by:

In C, the “char” datatype.

In C++, the “char” datatype.

In Java, the “byte” datatype orits corresponding wrapper class “Byte”.

In Python, the “int8” NumPy datatype.

In C#, the “SByte” datatype or its alias “sbyte”.

In Fortran, the “INTEGER(KIND =1)” datatype.

6.1.2 UNSIGNED TINYINT

The UNSIGNED TINYINT HDFql datatype correspondsto the H5T_NATIVE_UCHAR HDF5 datatype. It may store a

value between 0and 255, and occupies 1 byte in memory. Depending on the programminglanguage supported

by HDFql, the UNSIGNED TINYINT datatype is represented by:

Version 1.4.0

Page 143 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

e InC, the “unsigned char” datatype.

e |n C++, the “unsigned char” datatype.

e InJava’, the “byte” datatype or its corresponding wrapper class “Byte”.
e In Python, the “uint8” NumPy datatype.

e In C#, the “Byte” datatype or its alias “byte”.

e InFortran’, the “INTEGER(KIND = 1)” datatype.

6.1.3 SMALLINT

The SMALLINT HDFqgl datatype corresponds to the H5T_NATIVE_SHORT HDF5 datatype. It may store a value

between -32,768 and 32,767, and occupies 2 bytes in memory. Depending on the programming language

supported by HDFgl, the SMALLINT datatype is represented by:

e InC, the “short” datatype.

e In C++, the “short” datatype.

e InJava, the “short” datatype or its corresponding wrapper class “Short”.
e In Python, the “int16” NumPy datatype.

e In C#, the “Int16” datatype orits alias “short”.

e In Fortran, the “INTEGER(KIND = 2)” datatype.

2 By design, Java does not support unsigned datatypes. Therefore, the programmer is responsible for making the conversion from a signed number toits
equivalent unsigned inJava.

® Although there has been some effort tospecify unsigned datatypesin Fortran, nothing concrete is available. Therefore, the programmeris responsible
for making the conversion from a signed number toits equivalentunsigned in Fortran.

Version 1.4.0 Page 144 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.14 UNSIGNED SMALLINT

The UNSIGNED SMALLINT HDFgl datatype corresponds to the H5T_NATIVE_USHORT HDF5 datatype. It may
store a value between 0 and 65,535, and occupies 2 bytes in memory. Depending on the programming

language supported by HDFqgl, the UNSIGNED SMALLINT datatype is represented by:
e InC, the “unsigned short” datatype.

o In C++, the “unsigned short” datatype.

e InJava®, the “short” datatype or its corresponding wrapper class “Short”.

e In Python, the “uint16” NumPy datatype.

e In C#, the “Ulnt16” datatype orits alias “ushort”.

e InFortran’, the “INTEGER(KIND = 2)” datatype.

6.1.5 INT

The INT HDFql datatype corresponds to the H5T_NATIVE_INT HDF5 datatype. It may store a value between -
2,147,483,648 and 2,147,483,647, and occupies 4 bytes in memory. Depending on the programming language
supported by HDFql, the INT datatype is represented by:

e InC, the “int” datatype.

e In C++, the “int” datatype.

e InJava, the “int” datatype orits corresponding wrapper class “Integer”.
e In Python, the “int32” NumPy datatype.

4 By design, Java does not support unsigned datatypes. Therefore, the programmer is responsible for making the conversion from a signed number toits

equivalent unsigned inJava.

* Although there has been some effort tospecify unsigned datatypes in Fortran, nothing concrete is available. Therefore, the p rogrammeris responsible
for making the conversion from a signed number toits equivalentunsigned in Fortran.

Version 1.4.0 Page 145 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

e In C#, the “Int32” datatype orits alias “int”.

e InFortran, the “INTEGER(KIND =4)” or “INTEGER” datatypes.

6.1.6 UNSIGNED INT

The UNSIGNED INT HDFql datatype corresponds to the HST_NATIVE_UINT HDF5 datatype. It may store a value
between 0 and 4,294,967,295, and occupies 4 bytes in memory. Depending on the programming language

supported by HDFgl, the UNSIGNED INT datatype is represented by:

In C, the “unsigned int” datatype.

e In C++, the “unsigned int” datatype.

e InJava®, the “int” datatype or its corresponding wrapper class “Integer”.
e In Python, the “uint32” NumPy datatype.

e In C#, the “UInt32” datatype or its alias “uint”.

e InFortran’, the “INTEGER(KIND =4)” or “INTEGER” datatypes.

6.1.7 BIGINT

The BIGINT HDFgl datatype corresponds to the H5T NATIVE_LLONG HDF5 datatype. It may store a value
between -9,223,372,036,854,775,808 and 9,223,372,036,854,775,807, and occupies 8 bytes in memory.

Depending on the programming language supported by HDFql, the BIGINT datatype is represented by:

e InC, the “longlong” datatype.

® By design, Java does not support unsigned datatypes. Therefore, the programmer is responsible for making the conversion from a signed number toits

equivalent unsigned inJava.

7 Although there has been some effort tospecify unsigned datatypes in Fortran, nothing concrete is available. Therefore, the p rogrammeris responsible
for making the conversion from a signed number toits equivalentunsigned in Fortran.

Version 1.4.0 Page 146 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

In C++, the “long long” datatype.

e InJava, the “long” datatype orits corresponding wrapper class “Long”.

e In Python, the “int64” NumPy datatype.

e In C#, the “Int64” datatype or its alias “long”.

e |In Fortran, the “INTEGER(KIND = 8)” datatype.

6.1.8 UNSIGNED BIGINT

The UNSIGNED BIGINT HDFql datatype corresponds to the H5T_NATIVE_ULLONG HDF5 datatype. It may store a
value between 0 and 18,446,744,073,709,551,615, and occupies 8 bytes in memory. Depending on the

programming language supported by HDFgl, the UNSIGNED BIGINT datatype is represented by:

In C, the “unsigned long long” datatype.

e In C++, the “unsigned long long” datatype.

e InJava®, the “long” datatype or its corresponding wrapper class “Long”.
e In Python, the “uint64” NumPy datatype.

o In C#, the “UInt64” datatype or its alias “ulong”.

e InFortran’, the “INTEGER(KIND = 8)” datatype.

8 By design, Java does not support unsigned datatypes. Therefore, the programmer is responsible for making the conversion from a signed number toits
equivalent unsigned inJava.

® Although there has been some effort tospecify unsigned datatypesin Fortran, nothing concrete is available. Therefore, the programmeris responsible
for making the conversion from a signed number toits equivalentunsigned in Fortran.

Version 1.4.0 Page 147 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.19 FLOAT

The FLOAT HDFql datatype corresponds to the H5T _NATIVE_FLOAT HDF5 datatype. It may store a value

between -3.4E + 38 and 3.4E + 38, and occupies 4 bytes in memory. Depending on the programming language

supported by HDFqgl, the FLOAT datatype is represented by:

e InC, the “float” datatype.

o In C++, the “float” datatype.

e InJava, the “float” datatype or its corresponding wrapper class “Float”.

e In Python, the “float32” NumPy datatype.

e In C#, the “Single” datatype or its alias “float”.

e InFortran, the “REAL(KIND =4)” or “REAL” datatypes.

6.1.10 DOUBLE

The DOUBLE HDFgl datatype corresponds to the H5T_NATIVE_DOUBLE HDF5 datatype. It may store a value
between -1.79E + 308 and 1.79E + 308, and occupies 8 bytes in memory. Depending on the programming

language supported by HDFqgl, the DOUBLE datatype is represented by:

e InC, the “double” datatype.

e In C++, the “double” datatype.

e InJava, the “double” datatype orits corresponding wrapper class “Double”.

e In Python, the “float64” NumPy datatype.

e In C#, the “Double” datatype orits alias “double”.

e |In Fortran, the “REAL(KIND = 8)” or “DOUBLE PRECISION” datatypes.

Version 1.4.0 Page 148 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.1.11 CHAR

The CHAR HDFqgl datatype corresponds to the H5T_C_S1 HDF5 datatype. It may store a value between 0 and
255, and occupies size * 1 byte in memory (size being the length of the string). The CHAR datatype is useful for
storing fixed-length strings. Depending on the programminglanguage supported by HDFgl, the CHAR datatype

is represented by:

e InC, the “char [size]” datatype.

e In C++, the “char [size]” datatype.

e InJava, the “String” object.

e In Python, the “Ssize” NumPy datatype.

o In C#, the “String” datatype or its alias “string”.

e In Fortran, the “CHARACTER(LEN =size)” datatype.

6.1.12 VARTINYINT

The VARTINYINT HDFql datatype corresponds to the H5T_NATIVE_CHAR HDF5 datatype. It may store a value
between -128 and 127, and occupies size * 1 byte in memory (size being the number of elements composing
the VARTINYINT datatype). Depending on the programming language supported by HDFql, the VARTINYINT

datatype is represented by:

e InC, the “char” datatype.

e In C++, the “char” datatype.

e InJava, the “byte” datatype or its corresponding wrapper class “Byte”.

e In Python, the “int8” NumPy datatype.

e In C#, the “SByte” datatype orits alias “sbyte”.

In Fortran, the “INTEGER(KIND =1)" datatype.

Version 1.4.0 Page 149 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.1.13 UNSIGNED VARTINYINT

The UNSIGNED VARTINYINT HDFql datatype corresponds to the H5T_NATIVE_UCHAR HDF5 datatype. It may
store a value between 0 and 255, and occupies size * 1 byte in memory (size being the number of elements

composing the VARTINYINT datatype). Depending on the programming language supported by HDFql, the
UNSIGNED VARTINYINT datatype is represented by:

In C, the “unsigned char” datatype.

e In C++, the “unsigned char” datatype.

e InJava®™, the “byte” datatype or its corresponding wrapper class “Byte”.
e In Python, the “uint8” NumPy datatype.

e In C#, the “Byte” datatype orits alias “byte”.

e InFortran™, the “INTEGER(KIND = 1)” datatype.

6.1.14 VARSMALLINT

The VARSMALLINT HDFql datatype corresponds to the H5T_NATIVE_SHORT HDF5 datatype. It may store a
value between -32,768 and 32,767, and occupies size * 2 bytesin memory (size being the number of elements
composing the VARSMALLINT datatype). Depending on the programming language supported by HDFql, the
VARSMALLINT datatype is represented by:

e InC, the “short” datatype.

e In C++, the “short” datatype.

10 By design, Java does not support unsigned datatypes. Therefore, the programmer is responsible for making the conversion from a signed number toits

equivalent unsigned inJava.

1 Although there has been some effort tospecify unsigned datatypes in Fortran, nothing concrete is available. Therefore, the p rogrammeris responsible
for making the conversion from a signed number toits equivalentunsigned in Fortran.

Version 1.4.0 Page 150 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

e InJava, the “short” datatype orits corresponding wrapper class “Short”.
e In Python, the “int16” NumPy datatype.

e In C#, the “Int16” datatype or its alias “short”.

e In Fortran, the “INTEGER(KIND = 2)” datatype.

6.1.15 UNSIGNED VARSMALLINT

The UNSIGNED VARSMALLINT HDFqgl datatype corresponds tothe HST_NATIVE_USHORT HDF5 datatype. It may
store a value between 0and 65,535, and occupies size * 2 bytesin memory (size being the number of elements
composing the VARSMALLINT datatype). Depending on the programming language supported by HDFq]l, the
UNSIGNED VARSMALLINT datatype is represented by:

In C, the “unsigned short” datatype.

e In C++, the “unsigned short” datatype.

e InJava®, the “short” datatype or its corresponding wrapper class “Short”.
e In Python, the “uint16” NumPy datatype.

e In C#, the “UInt16” datatype or its alias “ushort”.

e InFortran®®, the “INTEGER(KIND = 2)” datatype.

12 By design, Java does not support unsigned datatypes. Therefore, the programmer is res ponsible for making the conversion from a signed number toits
equivalent unsigned inJava.

13 Although there has been some effort tospecify unsigned datatypes in Fortran, nothing concrete is available. Therefore, the p rogrammeris responsible
for making the conversion from a signed number toits equivalentunsigned in Fortran.

Version 1.4.0 Page 151 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.1.16 VARINT

The VARINTHDFql datatype correspondstothe H5T _NATIVE_INTHDF5 datatype. It may store a value between
-2,147,483,648 and 2,147,483,647, and occupies size * 4 bytes in memory (size being the number of elements
composing the VARINT datatype). Depending on the programming language supported by HDFqgl, the VARINT

datatype is represented by:

o InC, the “int” datatype.

e In C++, the “int” datatype.

e InJava, the “int” datatype or its corresponding wrapper class “Integer”.
e In Python, the “int32” NumPy datatype.

o In C#, the “Int32” datatype orits alias “int”.

e In Fortran, the “INTEGER(KIND = 4)” datatype.

6.1.17 UNSIGNED VARINT

The UNSIGNED VARINT HDFqgl datatype corresponds to the H5T _NATIVE_UINT HDF5 datatype. It may store a
value between 0and 4,294,967,295, and occupies size * 4 bytesin memory (size beingthe number of elements
composing the UNSIGNED VARINT datatype). Depending on the programming language supported by HDFql,
the UNSIGNED VARINT datatype is represented by:

e InC, the “unsigned int” datatype.
e In C++, the “unsigned int” datatype.
e InJava', the “int” datatype or its corresponding wrapper class “Integer”.

e In Python, the “uint32” NumPy datatype.

14 By design, Java does not support unsigned datatypes. Therefore, the programmer is res ponsible for making the conversion from a signed number toits
equivalent unsigned inJava.

Version 1.4.0 Page 152 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

e In C#, the “UInt32” datatype or its alias “uint”.

e InFortran®®, the “INTEGER(KIND = 4)” datatype.

6.1.18 VARBIGINT

The VARBIGINT HDFql datatype corresponds to the H5T_NATIVE_LLONG HDF5 datatype. It may store a value
between -9,223,372,036,854,775,808 and 9,223,372,036,854,775,807, and occupies size * 8 bytes in memory
(size being the number of elements composing the VARBIGINT datatype). Depending on the programming

language supported by HDFql, the VARBIGINT datatype is represented by:
e InC, the “longlong” datatype.

e In C++, the “long long” datatype.

e InJava, the “long” datatype or its corresponding wrapper class “Long”.
e In Python, the “int64” NumPy datatype.

e In C#, the “Int64” datatype or its alias “long”.

e InFortran, the “INTEGER(KIND = 8)” datatype.

6.1.19 UNSIGNED VARBIGINT

The UNSIGNED VARBIGINT HDFql datatype corresponds to the H5T_NATIVE_ULLONG HDF5 datatype. It may
store a value between 0 and 18,446,744,073,709,551,615, and occupies size * 8 bytes in memory (size being
the number of elements composing the UNSIGNED VARBIGINT datatype). Depending on the programming
language supported by HDFgl, the UNSIGNED VARBIGINT datatype is represented by:

e InC, the “unsigned long long” datatype.

1% Although there has been some effort tospecify unsigned datatypes in Fortran, nothing concrete is available. Therefore, the programmeris responsible
for making the conversion from a signed number toits equivalentunsigned in Fortran.

Version 1.4.0 Page 153 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

e In C++, the “unsigned long long” datatype.

e InJava', the “long” datatype or its corresponding wrapper class “Long”.
e In Python, the “uint64” NumPy datatype.

e In C#, the “UInt64” datatype or its alias “ulong”.

e InFortran®’, the “INTEGER(KIND = 8)” datatype.

6.1.20 VARFLOAT

The VARFLOAT HDFql datatype corresponds to the HST_NATIVE_FLOAT HDF5 datatype. It may store a value
between -3.4E + 38 and 3.4E + 38, and occupies size * 4 bytes in memory (size being the number of elements

composing the VARFLOAT datatype). Depending on the programming language supported by HDFql, the
VARFLOAT datatype is represented by:

e InC, the “float” datatype.

e In C++, the “float” datatype.

e InJava, the “float” datatype or its corresponding wrapper class “Float”.
e In Python, the “float32” NumPy datatype.

e In C#, the “Single” datatype or its alias “float”.

e In Fortran, the “REAL(KIND =4)” datatype.

16 By design, Java does not support unsigned datatypes. Therefore, the programmer is res ponsible for making the conversion from a signed number toits

equivalent unsigned inJava.

7 Although there has been some effort tospecify unsigned datatypes in Fortran, nothing concrete is available. Therefore, the p rogrammeris responsible
for making the conversion from a signed number toits equivalentunsigned in Fortran.

Version 1.4.0 Page 154 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.1.21 VARDOUBLE

The VARDOUBLE HDFql datatype correspondsto the HST_NATIVE_DOUBLE HDF5 datatype. It may store a value
between -1.79E + 308 and 1.79E + 308, and occupies size * 8 bytes in memory (size being the number of
elements composing the VARDOUBLE datatype). Depending on the programming language supported by
HDFql, the VARDOUBLE datatype is represented by:

In C, the “double” datatype.

e |n C++, the “double” datatype.

e InJava, the “double” datatype or its corresponding wrapper class “Double”.

e In Python, the “float64” NumPy datatype.

o In C#, the “Double” datatype or its alias “double”.

e In Fortran, the “REAL(KIND = 8)” or “DOUBLE PRECISION” datatypes.

6.1.22 VARCHAR

The VARCHAR HDFgl datatype corresponds to the H5T C_S1 HDF5 datatype. It may store a value between 0
and 255, and occupies size * 1 byte in memory (size being the length of the string). The VARCHAR datatype is
useful for storing variable-length strings. Depending on the programming language supported by HDFqgl, the

VARCHAR datatype is represented by:

In C, the “char [size]” datatype.

e In C++, the “char [size]” datatype.

e InJava, the “String” object.

e In Python, the “Ssize” NumPy datatype.

e In C#, the “String” datatype or its alias “string”.

In Fortran, the “CHARACTER(LEN = size)” datatype.

Version 1.4.0 Page 155 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.1.23 OPAQUE

The OPAQUE HDFql datatype correspondstothe H5T_C_S1 HDF5 datatype. It may store a value between 0 and
255, and occupies size * 1 byte in memory (size being the number of elements composing the OPAQUE

datatype). Depending on the programming language supported by HDFgl, the VARCHAR datatype is

represented by:

e InC, the “char [size]” datatype.

e In C+4, the “char [size]” datatype.

e InJava, the “byte [size]” datatype or its corresponding wrapper class “Byte [size]”.
e In Python, the “Ssize” NumPy datatype.

o In C#, the “SByte [size]” datatype orits alias “sbyte [size]”.

e In Fortran, the “CHARACTER(LEN = size)” datatype.

6.2 POST-PROCESSING

Post-processing options enable processing (i.e. transformation) results of a query according to the
programmer’s needs such as ordering or redirecting. These options are optional and may be used to create a
(linear) pipeline to further process result sets returned by DATA QUERY LANGUAGE (DQL) and DATA
INTROSPECTION LANGUAGE (DIL) operations. In case a pipeline is composed of two or more options, the order
inwhichtheyare usedis important and should always follow this sequence: ORDER, TOP, BOTTOM, STEP and
INTO (e.g. usage of TOP followed by INTO is permitted, while the inverse—i.e. usage of INTO followed by TOP —

is not permitted). The next subsections describe the post-processing options provided by HDFql.

Post-processing Option Description

ORDER Order (i.e.sort) a resultsetin an ascending, descending or reverse way

TOP Truncate a resultset after a certain given position in a topmost way

Version 1.4.0 Page 156 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

BOTTOM Truncate a result set after a certain given position in a bottommost way
STEP Step (i.e. jump) the result set at every given position
INTO Redirect (i.e. write) result sets returned into a file or memory

Table 6.4 —HDFql post-processing options

6.2.1 ORDER

Syntax

ORDER {ASC | DESC | {REV, .., REV} | CREATION}

Description

Order (i.e.sort) a resultsetinan ascending, descending or reverse way using either the keyword ASC, DESC or
REV respectively. Whenin an ascending ordescending order, HDFgl automatically uses all available CPU cores
to speed-up the task completion. Additionally, when performing this type of ordering on a result set coming
from a dataset or attribute with two or more dimensions, the ordering is done only on the last dimension.
Whenreverse ordering aresultset coming from a dataset or attribute with two or more dimensions, multiple
REV keywords may be specified to enable the ordering of specific dimensions (e.g. if “ORDER REV, , REV” is
specified, reverse ordering is done both on the first and third dimensions while the second remains
unchanged). Finally, aspecial type of ordering can be performed on a SHOW [GROUP | DATASET | ATTRIBUTE]
operation using the keyword CREATION allowing HDF objects (i.e. groups, datasets and attributes) to be
returned accordingto theirtime of creation —in contrast to the default behaviour which returns objects in an

ascending order.
Parameter!s[
None

Return

If the INTO post-processing optionis not specified, the cursorin use (which stores the result set) is ordered in

function of the keyword used, namely ASC, DESC, REV or CREATION. If the INTO post-processing option is

Version 1.4.0 Page 157 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

specified (besides the ORDER post-processing option), the cursorin use remains unchanged. Pleasereferto the

chapter CURSOR and subsection INTO for additional information.

Example(s)

// create a dataset named "my dataset(0" of type float of three dimensions (size 5x8x4)

hdfgl execute("CREATE DATASET my dataset(O AS FLOAT(5, 8, 4)");

// populate cursor in use with the dimensions of dataset "my dataset0" (should be 5, 8,
4)
hdfgl execute("SHOW DIMENSION my dataset0");

// populate cursor in use with the dimensions of dataset "my dataset0" in ascending order
(should be 4, 5, 8)

hdfgl execute("SHOW DIMENSION my dataset(O ORDER ASC");

// populate cursor in use with the dimensions of dataset "my dataset0" in descending
order (should be 8, 5, 4)
hdfgl execute("SHOW DIMENSION my dataset(O ORDER DESC");

// populate cursor in use with the dimensions of dataset '"my dataset0" in reversed order
(should be 4, 8, 5)

hdfgl execute("SHOW DIMENSION my datasetO ORDER REV");

// create a dataset named "my datasetl" of type double of two dimensions (size 3x2)

hdfgl execute("CREATE DATASET my datasetl AS DOUBLE (3, 2)");

// insert (i.e. write) values into dataset "my datasetl"
y_

hdfgl execute("INSERT INTO my datasetl VALUES((3.2, 1.3), (0, 0.2), (9.1, 6.5))");

// populate cursor in use with data from dataset "my datasetl" (should be 3.2, 1.3, 0,
0.2, Yod; 6.5)
hdfgl execute("SELECT FROM my datasetl");

// populate cursor in use with data from dataset "my datasetl" in ascending order (should
be 1.3, 3.2, 0, 0.2, 6.5, 9.1)

hdfgl execute("SELECT FROM my datasetl ORDER ASC");

// populate cursor in use with data from dataset "my datasetl" in descending order

Version 1.4.0 Page 158 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

(should be 3.2, 1.3, 0.2, 0, 9.1, 6.5)

hdfgl execute("SELECT FROM my datasetl ORDER DESC");

// populate cursor in use with data from dataset "my datasetl" in reversed order on the
first dimension only (should be 9.1, 6.5, 0, 0.2, 3.2, 1.3)

hdfgl execute("SELECT FROM my datasetl ORDER REV");

// populate cursor in use with data from dataset "my datasetl" in reversed order on the
second dimension only (should be 1.3, 3.2, 0.2, 0, 6.5, 9.1)

hdfql execute("SELECT FROM my datasetl ORDER , REV");

// populate cursor in use with data from dataset "my datasetl" in reversed order on both
the first and second dimensions (should be 6.5, 9.1, 0.2, 0, 1.3, 3.2)

hdfgl execute("SELECT FROM my datasetl ORDER REV, REV");

6.2.2 TOP

Syntax

TOP top_value

Description

Truncate a result set after position top_value in a topmost way. In other words, all elements after position
top_value are discarded from the result set. If top_value is negative, the TOP option will behave as the
BOTTOM option with a positive top _value. Of note, the TOP option is not available in a DATA QUERY
LANGUAGE (DQL) operation as the hyperslab functionalities found in such operation make this option

redundant.

Parameter(s)

top_value —to be defined.
Return

If the INTO post-processing optionis not specified, the cursorin use (which stores the resultset) is truncated in

a topmost way infunction of the position provided. If the INTO post-processing option is specified (besides the

Version 1.4.0 Page 159 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

TOP post-processing option), the cursor in use remains unchanged. Please refer to the chapter CURSOR and

subsection INTO for additional information.

Example(s)

// create a dataset named "my dataset" of type float of three dimensions (size 5x8x4)

hdfql execute ("CREATE DATASET my dataset AS FLOAT(5, 8, 4)");

// populate cursor in use with the dimensions of dataset "my dataset" (should be 5, 8, 4)

hdfql execute("SHOW DIMENSION my dataset");

// populate cursor in use with the topmost (i.e. first) dimension of dataset "my dataset"
(should be 5)

hdfgl execute("SHOW DIMENSION my dataset TOP 1");

// populate cursor in use with the two topmost dimensions of dataset "my dataset" (should
be 5, 8)

hdfql execute("SHOW DIMENSION my dataset TOP 2");

// populate cursor in use with the two bottommost dimensions of dataset "my dataset"
(should be 8, 4)
hdfgl execute("SHOW DIMENSION my dataset TOP -2");

6.2.3 BOTTOM

Syntax

BOTTOM bottom value

Description

Truncate a result set after position bottom_value in a bottommost way. In other words, all elements before
position bottom_value are discarded from the result set. If bottom_value is negative, the BOTTOM option will
behave asthe TOP option with a positive bottom_value. Of note, the BOTTOMoptionis not available ina DATA
QUERY LANGUAGE (DQL) operation as the hyperslab functionalities found in such operation make this option

redundant.

Version 1.4.0 Page 160 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)
bottom_value —to be defined.
Return

If the INTO post-processing optionis not specified, the cursorin use (which stores the resultset) istruncated in
a bottommost way in function of the position provided. If the INTO post-processing option is specified (besides
the BOTTOM post-processing option), the cursor in use remains unchanged. Please refer to the chapter

CURSOR and subsection INTO for additional information.

Example(s)

// create a dataset named "my dataset" of type float of three dimensions (size 5x8x4)

hdfql execute ("CREATE DATASET my dataset AS FLOAT(5, 8, 4)");

// populate cursor in use with the dimensions of dataset '"my dataset" (should be 5, 8, 4)

hdfql execute("SHOW DIMENSION my dataset");

// populate cursor in use with the bottommost (i.e. last) dimension of dataset
"my dataset" (should be 4)
hdfgl execute("SHOW DIMENSION my dataset BOTTOM 1");

// populate cursor in use with the two bottommost dimensions of dataset "my dataset"”
(should be 8, 4)
hdfgl execute("SHOW DIMENSION my dataset BOTTOM 2");

// populate cursor in use with the two topmost dimensions of dataset "my dataset" (should
be 5, 8)
hdfgl execute("SHOW DIMENSION my dataset BOTTOM -2");

6.24 STEP

Syntax

STEP step_value

Version 1.4.0 Page 161 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Step (i.e. jump) the result set at every step_value position. In other words, all elements between steps are
discarded from the result set. Of note, the STEP option is not available in a DATA QUERY LANGUAGE (DQL)

operation as the hyperslab functionalities found in such operation make this option redundant.

Parameter(s)

step_value —to be defined.
Return

If the INTO post-processing optionis not specified, the cursor in use (which stores the result set) is steppedin
function of the position provided. If the INTO post-processing option is specified (besides the STEP post-
processingoption), the cursor in use remains unchanged. Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// create a dataset named "my dataset" of type float of three dimensions (size 5x8x4)

hdfql execute ("CREATE DATASET my dataset AS FLOAT(5, 8, 4)");

// populate cursor in use with the dimensions of dataset "my dataset" (should be 5, 8, 4)

hdfgl execute("SHOW DIMENSION my dataset'");

// populate cursor in use with the dimensions of dataset "my dataset" (should be 5, 8, 4)

hdfgl execute("SHOW DIMENSION my dataset STEP 1");

// populate cursor in use with every second dimension of dataset "my dataset" (should be
5, 4)

hdfql execute("SHOW DIMENSION my dataset STEP 2");

// populate cursor in use with every third dimension of dataset "my dataset" (should be
5)

hdfql execute("SHOW DIMENSION my dataset STEP 3");

Version 1.4.0 Page 162 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.2.5 INTO

Syntax

INTO {{TRUNCATE] [DOS | UNIX] [TEXT] FILE file_name [SEPARATOR separator_value] [SPLIT
split_value]} | {{TRUNCATE] BINARY FILE file_ name} | {MEMORY variable_number [SIZE variable_size]}]

Description

Redirect (i.e. write) result sets returned by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION
LANGUAGE (DIL) operationsinto afile ormemory (by default—i.e. when the INTO post-processing option is not
specified — a result set is stored in the cursor in use at the moment of executing the operation). More

specifically, the redirection can be done into:

e Atextfile using optional parameters such as which terminator to use — DOS (CR+LF) or UNIX (LF) —for the

end of line (EOL), which separatorto use between elements (of the result set), or the number of elements

to write per line before starting writing remaining elements in a new line.
e Abinaryfile.
e Avariable that was previously registered through the function hdfgl_variable_register.

When redirecting a result set into a file that already exists, the result setis appended to it. To overwrite an

existing file, specify the keyword TRUNCATE (ALL DATA STORED IN THE FILE WILL BE PERMANENTLY LOST).

Parameter!s[

file_name —to be defined.
separator_value —to be defined.
split_value —to be defined.

variable_number — number of the variable that will store the result set (i.e. data) returned by DATA QUERY
LANGUAGE (DQL) and DATA INTROSPECTION LANGUAGE (DIL) operations. The number is returned by the
function hdfqgl_variable_register upon registering the variable or, subsequently, returned by the function

hdfgl variable_get number.

Version 1.4.0 Page 163 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

variable_size —to be defined.
Return

The cursor in use remains unchanged when using the INTO post-processing option. Please refer to the chapter

CURSOR for additional information.

Example(s)

// create a dataset named "my dataset(0" of type short of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset(O AS SMALLINT(3)");

// insert (i.e. write) values into dataset "my datasetO"

hdfgl execute("INSERT INTO my dataset(O VALUES (65, 66, 67)");

// populate cursor in use with data from dataset "my dataset0" (should be 65, 66, 67)
hdfgl execute("SELECT FROM my dataset0");

// select (i.e. read) data from dataset "my dataset(0" and write it into a text file named
"my file.txt" using default separator "," (should be "65,66,67" in one single line)

hdfql execute("SELECT FROM my dataset(O INTO FILE my file.txt");

// select (i.e. read) data from dataset "my datasetO" and write it into a text file named
"my file.txt" using separator "**" (should be "65**66**67" in one single line)

hdfgl execute("SELECT FROM my dataset(O INTO TEXT FILE my file.txt SEPARATOR **");

// select (i.e. read) data from dataset "my datasetO" and write it into a text file named
"my file.txt" splitting every two values in a new line using a UNIX-based EOL terminator
(should be "65,65" in the first line and "67" in the second line)

hdfgl execute("SELECT FROM my dataset(O INTO UNIX TEXT FILE my file.txt SPLIT 2");

// select (i.e. read) data from dataset "my dataset(0" and write it into a binary file
(truncate it if it already exists) named "my file.bin" (should be "ABC")
hdfql execute("SELECT FROM my dataset(O INTO TRUNCATE BINARY FILE my file.bin");

// declare variables
char script[1024];
double data[3][2];

int x;

Version 1.4.0 Page 164 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

int y;

// create a dataset named "my datasetl" of type double of two dimensions (size 3x2)
hdfgl execute("CREATE DATASET my datasetl AS DOUBLE (3, 2)");
// insert (i.e. write) values into dataset "my datasetl"”

hdfgl execute("INSERT INTO my datasetl VALUES((3.2, 1.3), (0, 0.2), (9.1, 6.5))");

// register variable "data" for subsequent use (by HDFql)

hdfql variable register(&data);

// prepare script to select (i.e. read) dataset "my datasetl"” and populate variable
"data" with it
sprintf (script, "SELECT FROM my datasetl INTO MEMORY 3su',

hdfql variable get number (&data));

// execute script

hdfql execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)

hdfql variable unregister (&data);

// display content of variable "data" (should be 3.2, 1.3, 0, 0.2, 9.1, 6.5)

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{

printf("2d\n", data[x][y])

6.3 DATA DEFINITION LANGUAGE (DDL)

Data Definition Language (DDL) is, generally speaking, syntax for defining and modifying structures that store
data. In HDFql, the DDL assembles the operations that enable the creation, alteration, renaming, copying and
deletion of HDF files, groups, datasets, attributes and links. These operations begin either with the keyword

CREATE, ALTER, RENAME, COPY or DROP.

Version 1.4.0 Page 165 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.3.1 CREATE DIRECTORY

Syntax

CREATE DIRECTORY directory_namel, ..., directory_nameX

Description

Create a directory named directory_name. Multiple directories can be created at once by separatingthese with
acomma (,). If directory_name already exists, it will not be overwritten, no subsequent directories are created,
and an error is raised. In case directory_name has intermediate directories that do not exist, besides
directory_name being created, all these intermediate directories will be created on the fly (e.g. when creating

the directory “my_directory/my_subdirectory/my_subsubdirectory”, besides “my_subsubdirectory” being

created, “my_directory” and “my_subdirectory” will be created in case they do not exist).
Parameter(s)

directory_name —name of the directory to create. Multiple directories are separated with a comma (,).
Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

create a directory named "my directory0" (the directory will not be overwritten if it
already exists)

CREATE DIRECTORY my directory(

create a directory named "my directoryl" in a root directory named "data" (neither
directory will be overwritten if they already exist,; directory "data" will be created on
the fly if it does not exist)

CREATE DIRECTORY /data/my directoryl

create two directories named "my directory2" and "my directory3" (neither directory
will be overwritten if they already exist)

CREATE DIRECTORY my directoryZ2, my directory3

Version 1.4.0 Page 166 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.3.2 CREATE FILE

Syntax

CREATE [TRUNCATE] FILE file_namel, ..., file_nameX

Description

Create an HDF file named file_name. Multiple files can be created at once by separating these with a comma
(,). If file_name already exists, it will not be overwritten, no subsequentfiles are created, and an error is raised.
To overwrite an existing file, specify the keyword TRUNCATE (ALL DATA STORED IN THE FILE WILL BE
PERMANENTLY LOST).

Parameter(s)
file_name —name of the HDF file to create. Multiple files are separated with a comma (,).
Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

create an HDF file named "my file(O.h5" (the file will not be overwritten if it already

exists)

CREATE FILE my file0O.h5

create an HDF file named "my filel.h5" in a root directory named "data" (the file will
not be overwritten if it already exists)

CREATE FILE /data/my filel.h5

create two HDF files named "my file2.h5" and "my file3.h5" (both files will be
overwritten if they already exist)

CREATE TRUNCATE FILE my file2.hb5, my file3.h5

Version 1.4.0 Page 167 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.3.3 CREATE GROUP

Syntax
CREATE [TRUNCATE] GROUP group_namel, ..., group_nameX
[ORDER {TRACKED | INDEXED}]
[STORAGE COMPACT object max_compact DENSE object min_dense]

[ATTRIBUTE [ORDER {TRACKED | INDEXED}] [STORAGE COMPACT attribute_max_compact DENSE

attribute_min_dense]]

Description

Create an HDF group named group_name. Multiple groups can be created at once by separating these with a
comma (,). If group_name already exists, it will not be overwritten, no subsequent groups are created, and an
error is raised. To overwrite an existing group, specify the keyword TRUNCATE (ALL DATA STORED IN THE
GROUP WILL BE PERMANENTLY LOST). In case group_name has intermediate groups that do not exist, besides
group_name being created, all these intermediate groups will be created on the fly (e.g. when creating the
group “my_group/my_subgroup/my_subsubgroup”, besides “my_subsubgroup” being created, “my_group”

and “my_subgroup” will be created in case they do not exist).

Parameter(s)

group_name —name of the HDF group to create. Multiple groups are separated with a comma (,).
object_max_compact —to be defined.

object_min_dense —to be defined.

attribute_max_compact —to be defined.

attribute_min_dense —to be defined.

Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Version 1.4.0 Page 168 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

create an HDF group named "my group0O" (the group will not be overwritten if it already
exists)

CREATE GROUP my group0

create an HDF group named "my groupl" in a root group named "data" (neither group will
be overwritten if they already exist; group "data" will be created on the fly if it does
not exist)

CREATE GROUP /data/my groupl

create two HDF groups named "my group2" and "my group3" (both groups will be
overwritten if they already exist)

CREATE TRUNCATE GROUP my group2, my group3

create an HDF group named '"my group4" that tracks the objects’ (i.e. groups and
datasets) creation order within the group and using compact storage

CREATE GROUP my group4 ORDER TRACKED STORAGE COMPACT DENSE

create an HDF group named "my groupb5'" that indexes the attributes’ creation order

CREATE GROUP my group5 ATTRIBUTE ORDER INDEXED

6.3.4 CREATE DATASET

Syntax

CREATE [TRUNCATE] [CONTIGUOUS | COMPACT | {CHUNKED [(chunked_dim1, ..., chunked_dimX)]}]
DATASET dataset_namel, ..., dataset_ nameX AS [NATIVE | LITTLE ENDIAN | BIGENDIAN | ASCII |
UTF8] datatype [(UNLIMITED | {dataset dim1 [TO {dataset max_dim1 | UNLIMITED}]}, ..., UNLIMITED |

{dataset_dimX [TO {dataset_max_dimX | UNLIMITED}]})]

[TAG tag_value]

[DEFAULT default_value]

[ATTRIBUTE [ORDER {TRACKED | INDEXED}] [STORAGE COMPACT attribute_max_compact DENSE

attribute_min_dense]]

Version 1.4.0 Page 169 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

[ENABLE [SHUFFLE] [SCALEOFFSET [scaleoffset value]] [NBIT PRECISION precision _value OFFSET
offset_value] [ZLIB [LEVEL level _value]] [FLETCHER32]]

Description

Create an HDF dataset named dataset_name. Multiple datasets can be created at once by separating these
with a comma (,). If dataset_name already exists, it will not be overwritten, no subsequent datasets are

created, and an error is raised. To overwrite an existing dataset, specify the keyword TRUNCATE (ALL DATA
STORED IN THE DATASET WILL BE PERMANENTLY LOST).

Parameter(s)

chunked_dim —to be defined.
dataset_name —name of the HDF dataset to create. Multiple datasets are separated with a comma (,).
datatype —to be defined.

dataset_dim —to be defined.
dataset_max_dim —to be defined.
tag_value —to be defined.
default_value —to be defined.
attribute_max_compact —to be defined.
attribute_min_dense —to be defined.
scaleoffset_value —to be defined.
precision_value —to be defined.
offset_value —to be defined.

level value — to be defined.

Version 1.4.0 Page 170 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

create an HDF dataset named '"my dataset(0" of type int (the dataset will not be
overwritten if it already exists)

CREATE DATASET my dataset(AS INT

create an HDF dataset named "my datasetl" of type char in a root group named "data"
(the dataset will not be overwritten if it already exists)

CREATE DATASET /data/my datasetl AS CHAR

create two HDF datasets named "my dataset2" and "my dataset3" of type short (both
datasets will be overwritten if they already exist)

CREATE TRUNCATE DATASET my dataset2, my dataset3 AS SMALLINT

create an HDF dataset named "my dataset4" of type unsigned long long using a big endian

representation

CREATE DATASET my dataset4 AS BIG ENDIAN UNSIGNED BIGINT

create an HDF dataset named "my dataset5" of type int using a little endian
representation with a default value 80178

CREATE DATASET my dataset5 AS LITTLE ENDIAN INT DEFAULT 50178

create an HDF dataset named "my dataseté6" of type char using an ASCII representation

CREATE DATASET my dataset6 AS ASCII CHAR

create an HDF dataset named "my dataset7" of type float of one dimension (size 1024)

CREATE DATASET my dataset?7 AS FLOAT(1024)

create a compact HDF dataset named "my dataset8" of type double of three dimensions
(size 2x5x10)

CREATE COMPACT DATASET my dataset8 AS DOUBLE(Z, 5, 10)

Version 1.4.0 Page 171 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

create a chunked (20x100) HDF dataset named "my dataset9" of type unsigned char of two
dimensions (size 500x1000)

CREATE CHUNKED (20, 100) DATASET my dataset9 AS UNSIGNED TINYINT (500, 1000)

create an HDF dataset named "my datasetl0" of type int of two dimensions (size 20x400)
using the N-bit data compression filter

CREATE DATASET my datasetl(0 AS INT (20, 40(0) ENABLE NBIT PRECISION 16 OFFSET 4

create an HDF dataset named "my datasetll" of type float of one dimension (size 500000)
using both the ZLIB data compression and Fletcher32 checksum error detection filters

CREATE DATASET my datasetll AS FLOAT (500000) ENABLE ZLIB LEVEL 5 FLETCHER32

create an HDF dataset named "my datasetl2" of type variable-length float
CREATE DATASET my datasetl2 AS VARFLOAT

create an HDF dataset named "my datasetl3" of type variable-length short of one
dimension (size 5) with a default value 876

CREATE DATASET my datasetl3 AS VARSMALLINT(5) DEFAULT 876

create an HDF dataset named "my datasetl4" of type variable-length char with a default
value "Hierarchical Data Format"

CREATE DATASET my datasetl4 AS VARCHAR DEFAULT "Hierarchical Data Format"

create an HDF dataset named "my datasetl5" of type opaque
CREATE DATASET my datasetlb5 AS OPAQUE

create an HDF dataset named "my datasetl6" of type opaque of one dimension (size 6)
with the default ASCII values 72, 68, 70, 0, 113 and 108 (i.e. "HDF\0gl")
CREATE DATASET my datasetl6 AS OPAQUE (6) DEFAULT /2, ¢5, /0, 0, 113, 108

create an HDF dataset named "my datasetl?7" of type opaque of two dimensions (size
10x1024) with a tag value "Raw data"
CREATE DATASET my datasetl?7 AS OPAQUE (10, 1024) TAG "Raw data'"

Version 1.4.0 Page 172 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

create an HDF dataset named "my datasetl8" of type float of one dimension (size 5 and
extendible up to 10)
CREATE CHUNKED DATASET my datasetl8 AS FLOAT (5 TO)

create an HDF dataset named '"my datasetl9" of type variable-length int of one dimension
(size 1 and extendible to an unlimited size)

CREATE CHUNKED DATASET my datasetl9 AS VARINT (UNLIMITED)

create an HDF dataset named "my dataset20" of type double of three dimensions (first
dimension with size 3 and extendible up to 5; second dimension with size 7; third
dimension with size 20 and extendible to an unlimited size)

CREATE CHUNKED DATASET my dataset20 AS DOUBLE(3 TO 5, 7/, TO UNLIMITED)

6.3.5 CREATE ATTRIBUTE

Syntax

CREATE [TRUNCATE] ATTRIBUTE attribute_namel, ..., attribute_nameX AS [NATIVE | LITTLE ENDIAN |
BIG ENDIAN | ASCIl | UTF8] datatype [(attribute_dim1, ..., attribute_dimX)]

[TAG tag_value]
[DEFAULT default_value]

Description

Create an HDF attribute named attribute_name. Multiple attributes can be created atonce by separatingthese
with a comma (,). If attribute_name already exists, it will not be overwritten, no subsequent attributes are
created, and an error is raised. To overwrite an existing attribute, specify the keyword TRUNCATE (ALL DATA

STORED IN THE ATTRIBUTE WILL BE PERMANENTLY LOST).

Parameter(s)

attribute_name —name of the HDF attribute to create. Multiple attributes are separated with a comma (,).
datatype —to be defined.

attribute_dim —to be defined.

Version 1.4.0 Page 173 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

tag value —to be defined.
default_value —to be defined.
Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

create an HDF attribute named "my attribute(" of type int (the attribute will not be
overwritten if it already exists)

CREATE ATTRIBUTE my attribute(O AS INT

create an HDF attribute named "my attributel" of type char in a root group named "data"
(the attribute will not be overwritten if it already exists)

CREATE ATTRIBUTE /data/my attributel AS CHAR

create two HDF attributes named "my attribute2" and "my attribute3" of type short (both
attributes will be overwritten if they already exist)

CREATE TRUNCATE ATTRIBUTE my attribute2, my attribute3 AS SMALLINT

create an HDF attribute named "my attribute4" of type unsigned long long using a big
endian representation

CREATE ATTRIBUTE my attribute4 AS BIG ENDIAN UNSIGNED BIGINT

create an HDF attribute named "my attributeb" of type int using a little endian
representation with a default value 80178

CREATE ATTRIBUTE my attributeb5 AS LITTLE ENDIAN INT DEFAULT 50178

create an HDF attribute named "my attributeé6" of type char using an UTF8 representation

CREATE ATTRIBUTE my attribute6 AS UTF8 CHAR

create an HDF attribute named "my attribute?7" of type float of one dimension (size 512)

CREATE ATTRIBUTE my attribute7 AS FLOAT(512)

Version 1.4.0 Page 174 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

create an HDF attribute named "my attribute8" of type unsigned char of two dimensions
(size 500x1000)
CREATE ATTRIBUTE my attribute8 AS UNSIGNED TINYINT (500, 1000)

create an HDF attribute named "my attribute9" of type variable-length float
CREATE ATTRIBUTE my attribute9 AS VARFLOAT

create an HDF attribute named "my attributel(0" of type variable-length short of one
dimension (size 5) with a default value 876

CREATE ATTRIBUTE my attributel(0 AS VARSMALLINT (5) DEFAULT 876

create an HDF attribute named "my attributell"” of type variable-length char with a
default value "Hierarchical Data Format"

CREATE ATTRIBUTE my attributell AS VARCHAR DEFAULT "Hierarchical Data Format"

create an HDF attribute named "my attributel2" of type opaque
CREATE ATTRIBUTE my attributel? AS OPAQUE

create an HDF attribute named "my attributel3" of type opaque of one dimension (size 6)
with the default ASCII values 72, 68, 70, 0, 113 and 108 (i.e. "HDF\0ql")
CREATE ATTRIBUTE my attributel3 AS OPAQUE (6) DEFAULT /2, ¢5, /0, 0, 113, 108

create an HDF attribute named "my attributeld4'" of type opaque of two dimensions (size
10x1024) with a tag value "Raw data"
CREATE ATTRIBUTE my attributel4 AS OPAQUE (10, 1024) TAG "Raw data'

6.3.6 CREATE [SOFT | HARD] LINK

Syntax

CREATE [TRUNCATE] [SOFT | HARD] LINK link_namel, ..., link_nameX TO object namel, ...,

object_nameX

Version 1.4.0 Page 175 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Create an HDF soft or hard link named link_nameto a group or dataset named object_name. Multiple links can
be created at once by separatingthese withacomma (,). If ink_name already exists, it willnot be overwritten,
no subsequent links are created, and an error is raised. To overwrite an existing link, specify the keyword

TRUNCATE. If neither the keyword SOFT nor HARD is specified, asoftlinkis created by default. To create a hard

link, the keyword HARD must be specified.

Parameter(s)

link_name —name of the HDF soft or hard link to create. Multiple links are separated with a comma (,).
object_ name —to be defined.

Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

create an HDF group named "my group0"

CREATE GROUP my group(

create an HDF dataset named "my datasetO" of type variable-length unsigned int

CREATE DATASET my dataset(AS UNSIGNED VARINT

create an HDF soft link named "my 1inkO" to group "my groupO" (the soft link will not
be overwritten if it already exists)

CREATE LINK my 1ink(0O TO my group0

create an HDF soft link named "my 1inkl" to dataset "my dataset(O" (the soft link will
not be overwritten if it already exists)

CREATE SOFT LINK my 1inkl TO my dataset0

create two HDF soft links named "my 1ink2" and "my 1ink3" to dataset "my dataset0" and
group "my group0" respectively (both soft links will be overwritten if they already
exist)

CREATE TRUNCATE SOFT LINK my 1link2, my 1ink3 TO my dataset(O, my group0

Version 1.4.0 Page 176 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

create an HDF group named "my groupl"

CREATE GROUP my groupl

create an HDF dataset named "my datasetl" of type variable-length unsigned int

CREATE DATASET my datasetl AS UNSIGNED VARINT

create an HDF hard link named "my 1link4" to group "my groupl" (the hard link will not
be overwritten if it already exists)

CREATE HARD LINK my 1ink4 TO my groupl

create an HDF hard link named "my 1ink5" to dataset "my datasetl" (the hard link will
not be overwritten if it already exists)

CREATE HARD LINK my 1ink5 TO my datasetl

create two HDF hard links named "my 1ink6" and "my 1ink7" to dataset "my datasetl" and
group "my groupl'" respectively (both hard links will be overwritten if they already
exist)

CREATE TRUNCATE HARD LINK my 1link6, my 1link7 TO my datasetl, my groupl

6.3.7 CREATE EXTERNAL LINK

Syntax

CREATE [TRUNCATE] EXTERNAL LINK /ink_namel, ..., link_nameX TO file_ namel object namel, ...,

file_nameX object_nameX

Description

Create an HDF external link named link_nameto agroup or dataset named object_name belonging to another
HDF file named file_name. Multiple external links can be created at once by separating these with acomma (,).
If ink_name already exists, it willnot be overwritten, no subsequent external links are created, and an error is

raised. To overwrite an existing external link, specify the keyword TRUNCATE.

Parameter(s)

link_name —name of the HDF external link to create. Multiple external links are separated with a comma (,).

Version 1.4.0 Page 177 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

file_name —to be defined.
object_name —to be defined.
Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

use (i.e. open) an HDF file named "my file0.h5"
USE FILE my file0.h5

create an HDF group named "my group"

CREATE GROUP my group

create an HDF dataset named "my dataset" of type variable-length unsigned int

CREATE DATASET my dataset AS UNSIGNED VARINT

use (i.e. open) an HDF file named "my file.h5"
USE FILE my filel.hb

create an HDF external link named "my 1ink0" to group "my group" in file "my file(0.h5"
(the external link will not be overwritten if it already exists)

CREATE EXTERNAL LINK my 1link0 TO my file0.h5 my group

create an HDF external 1ink named "my 1inkl" to dataset "my dataset” in file
"my fileO.h5" (the external link will be overwritten if it already exists)

CREATE TRUNCATE EXTERNAL LINK my linkl TO my file(O.h5 my dataset

create two HDF external links named "my 1ink2" and "my 1ink3" to dataset "my dataset"
and group "my group" in file "my fileO.h5" (neither external links will be overwritten if
they already exist)

CREATE EXTERNAL LINK my 1ink2, my 1ink3 TO my file0.h5 my dataset, my file(0.h5 my group

Version 1.4.0 Page 178 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.3.8 ALTER DIMENSION

Syntax

ALTER DIMENSION dataset_namel, ..., dataset_nameX TO (dim1, ..., dimX)

Description

Alter(i.e. change) the dimensions of an existing dataset named dataset_name. Multiple datasets can have their
dimensions altered at once by separating these with a comma (,). If dataset_name was not found or its
dimensions could not be altered (due to unknown/unexpected reasons), no subsequent datasets are altered,
and an error is raised. Depending on the prefix of the value specified (in dim1, ..., dimX), one of the following

behaviors applies:

o Ifits prefixis “+”, the dimension will have its size increased by this value.

o n

o Ifits prefixis “-”, the dimension will have its size decreased by this value.

" n

e Incase its prefix is neither “+” nor “-”, the dimension will carry the size of this value.

To preserve the value of a certain dimension (i.e. for its size not to be altered), it should be skipped with a

comma (,).

Parameter(s)

dataset_name—name of the HDF dataset whose dimensions are to be altered (i.e. changed). Multiple datasets

are separated with acomma (,).
dim —to be defined.
Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

create an HDF dataset named "my dataset" of type double of three dimensions (first

Version 1.4.0 Page 179 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

dimension with size 2 and extendible up to 10; second dimension with size 7, third
dimension with size 20 and extendible to an unlimited size)

CREATE CHUNKED DATASET my dataset AS DOUBLE(Z TO 10, 7/, 20 TO UNLIMITED)

show (i.e. get) current dimensions of dataset "my dataset" (should be 2, 7, 20)

SHOW DIMENSION my dataset

alter (i.e. change) dimensions of dataset "my dataset" to set its first dimension size
to 6, and increase the third dimension size by 10 (the second dimension size remains
intact)

ALTER DIMENSION my dataset TO (6, , +10)

show (i.e. get) current dimensions of dataset "my dataset" (should be 6, 7, 30)

SHOW DIMENSION my dataset

alter (i.e. change) dimensions of dataset "my dataset" to increase its first dimension
size by 2, to set the second dimension size to 3, and to decrease the third dimension
size by 5

ALTER DIMENSION my dataset TO (+2, 3, =5)

show (i.e. get) current dimensions of dataset "my dataset" (should be 8, 3, 25)

SHOW DIMENSION my dataset

6.3.9 RENAME DIRECTORY

Syntax

RENAME DIRECTORY directory_namel, ..., directory_nameX AS new_directory_namel, ...,

new_directory_nameX

Description

Rename (ormove) an existing directory named directory_name as new_directory_name. Multiple directories
can be renamed (or moved) at once by separating these with a comma (,). If new_directory_name already

exists, it will not be overwritten, no subsequent directories are renamed (or moved), and an error is raised.

Version 1.4.0 Page 180 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

directory_name—name of the directory torename (or move). Multiple directories are separated witha comma

().

new_directory_name —to be defined.
Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

rename a directory named "my directory0" as "my directoryl" (the directory
"my directoryl" will not be overwritten if it already exists)

RENAME DIRECTORY my directory0 AS my directoryl

rename two directories named "my directory2" and "my directory3" as "my directory4" and
"my directoryb5" respectively (neither directory will be overwritten if it already exists)

RENAME DIRECTORY my directory2, my directory3 AS my directory4, my directoryb

move a directory named "my directoryé" into a root directory named '"data" and rename it
as "my directory7" (the directory "my directory7" will not be overwritten if it already
exists)

RENAME DIRECTORY my directory6 AS /data/my directory7

move a directory named "my directory8" into a relative directory named "backup" (the
directory "my directory8" will not be overwritten if it already exists)

RENAME DIRECTORY my directory8 AS backup/

6.3.10 RENAME FILE

Syntax

RENAME [TRUNCATE] FILE file_namel, ..., file_nameX AS new_file_namel, ..., new_file_nameX

Version 1.4.0 Page 181 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Rename (or move) an existing file named file_name as new_file_name. Multiple files can be renamed (or

moved) at once by separating these with a comma (,). If new_file_name already exists, it will not be

overwritten, nosubsequentfiles are renamed (or moved), and an error is raised. To overwrite an existing file,

specify the keyword TRUNCATE (ALL DATA STORED IN THE FILE WILL BE PERMANENTLY LOST).
Parameter(s)

file_name —name of the file to rename (or move). Multiple files are separated with acomma (,).
new_file_name —to be defined.

Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

overwritten if it already exists)

RENAME FILE my file0O.h5 AS my filel.h5

link will not be overwritten if it already exists)

RENAME TRUNCATE FILE my file2.h5 AS my file3.h5
rename two files named "my file4.h5" and "my file5.h5" as "my file6.h5" and

"my file7.h5" respectively (both files will be overwritten if they already exist)
RENAME TRUNCATE FILE my file4.h5, my file5.h5 AS my file6.h5, my file7.h5

RENAME FILE my file8.h5 AS /data/my file9.h5

"my filel(0.h5" will not be overwritten if it already exists)

RENAME FILE my filel0.h5 AS backup/

rename a file named "my file0.h5" as "my filel.h5" (the file "my filel.h5" will not be

rename a file named "my file2.h5" as "my file3.h5" in file "my file(0.h5" (the external

move a file named "my file8.h5" into a root directory named '"data" and rename it as

"my file9.h5" (the file "my file9.h5" will not be overwritten if it already exists)

move a file named "my filelO.h5" into a relative directory named "backup" (the file

Version 1.4.0

Page 182 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.3.11 RENAME [GROUP | DATASET | ATTRIBUTE]

Syntax

RENAME [TRUNCATE] [GROUP | DATASET | ATTRIBUTE] object_ namel, ..., object_ nameX AS

new_object namel, ..., new_object nameX

Description

Rename (or move) an existing HDF group, dataset or attribute named object_name as new_object_name.
Multiple groups, datasets or attributes can be renamed (or moved) at once by separating these with a comma
(,). If new_object_ name already exists, it will not be overwritten, no subsequent objects are renamed (or
moved), and an error is raised. To overwrite an existing object, specify the keyword TRUNCATE (ALL DATA
STORED IN THE OBJECT WILL BE PERMANENTLY LOST). In case (1) a group and an attribute or (2) a dataset and
an attribute with identical names (object_name) are stored in the same location (i.e. group) and neither the
keyword GROUP, DATASET nor ATTRIBUTE is specified, the object to be renamed is the group or dataset (the
attribute will notbe renamed —to rename it, the operation must be executed again). To explicitly rename an
object according to its type, the keyword GROUP, DATASET or ATTRIBUTE must be specified. While the
renaming (or moving) of groups and datasets to a different location is supported by the HDF library, this is not
the case for attributes; HDFgl overcomes this limitation by (1) creating a new attribute with the same
characteristics as the existingone (e.g. datatype, number of dimensions) using the new specified location and
name, (2) writing the data from the existing attribute to the newly created attribute, and (3) deleting the

existing attribute.

Parameter(s)

object_name —name of the object to rename (or move). Multiple objects are separated with acomma (,).
new_object_ name —to be defined.

Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Version 1.4.0 Page 183 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// TO BE DEFINED

6.3.12 COPY FILE

Syntax
COPY [TRUNCATE] FILE file_namel, ..., file_nameX TO new_file_namel, ..., new_file_nameX

Description

Copy an existing file named file_name to new_file_name. Multiple files can be copied at once by separating
these with a comma (,). If new_file_name already exists, it will not be overwritten, no subsequent files are
copied, andan error is raised. To overwrite an existing file, specify the keyword TRUNCATE (ALL DATA STORED
IN THE FILE WILL BE PERMANENTLY LOST).

Parameter(s)

file_name —name of the file to copy. Multiple files are separated with a comma (,).
new_file_name —to be defined.

Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

// TO BE DEFINED

Version 1.4.0 Page 184 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.3.13 COPY [GROUP | DATASET | ATTRIBUTE]

Syntax

COPY [TRUNCATE] [GROUP | DATASET | ATTRIBUTE] object_namel, ..., object_nameX TO

new_object namel, ..., new_object nameX

Description

Copy an existing HDF group, dataset or attribute named object_name to new_object_name. Multiple groups,
datasets or attributes can be copied at once by separatingthese withacomma (,). If new_object name already
exists, it will not be overwritten, no subsequent objects are copied, and an error is raised. To overwrite an
existing object, specify the keyword TRUNCATE (ALL DATA STORED IN THE OBJECT WILL BE PERMANENTLY
LOST). In case (1) a group and an attribute or (2) a datasetand an attribute withidentical names (object_name)
are stored in the same location (i.e. group) and neither the keyword GROUP, DATASET nor ATTRIBUTE is
specified, the objectto be copiedis the group or dataset. To explicitly copy an object according to its type, the

keyword GROUP, DATASET or ATTRIBUTE must be specified.

Parameter(s)

object_name —name of the object to copy. Multiple objects are separated with a comma (,).
new_object_name —to be defined.

Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

// TO BE DEFINED

Version 1.4.0 Page 185 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.3.14 DROP DIRECTORY

Syntax

DROP DIRECTORY directory_namel, ..., directory_nameX

Description

Drop (i.e. delete)an existing directory named directory_name. Multiple directories can be dropped at once by
separatingthese withacommal(,). If directory_name contains directories or files (i.e. if itis not empty), it will

not be dropped, no subsequent directories are dropped, and an error is raised.

Parameter(s)

directory_name—name of the directory todrop (i.e. delete). Multiple directories are separated with a comma

().
Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

// TO BE DEFINED

6.3.15 DROP FILE

Syntax

DROP FILE file_namel, ..., file_nameX

Description

Drop (i.e. delete)an existing file named file_name. Multiple files can be dropped at once by separating these
witha comma (,). If file_name was not found or could not be dropped (due to unknown/unexpected reasons),

no subsequent files are dropped, and an error s raised.

Version 1.4.0 Page 186 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)
file_name —name of the file to drop (i.e. delete). Multiple files are separated with a comma (,).
Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

// TO BE DEFINED

6.3.16 DROP [GROUP | DATASET | ATTRIBUTE]

Syntax

DROP {GROUP | DATASET | ATTRIBUTE} | {{GROUP | DATASET | ATTRIBUTE] [{object namel, ...,

object_ nameX} | {[object_name] LIKE regular_expression [DEEP deep_valuel}]}

Description

Drop (i.e. delete)an existing HDF group, dataset or attribute named object_name. Multiple groups, datasets or
attributes can be dropped at once by separating these withacommal(,). If object name was notfound or could
not be dropped (due to unknown/unexpected reasons), no subsequent objects are dropped, and an error is
raised. Incase (1) a group and an attribute or(2) a datasetand an attribute withidentical names (object_name)
are stored in the same location (i.e. group) and neither the keyword GROUP, DATASET nor ATTRIBUTE is
specified, the objectto be dropped is the group or dataset (the attribute will not be dropped —to drop it, the
operation must be executed again). To explicitly drop an object according to its type, the keyword GROUP,

DATASET or ATTRIBUTE must be specified.

Parameter(s)
object_name —name of the object to drop (i.e. delete). Multiple objects are separated with a comma (,).

regular_expression —to be defined.

Version 1.4.0 Page 187 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

deep_value —to be defined.
Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

// TO BE DEFINED

6.4 DATA MANIPULATION LANGUAGE (DML)

Data Manipulation Language (DML) is, generally speaking, syntax for defining and modifying data stored in
structures. In HDFqgl, the DML is composed of only one operation (INSERT), which enables the insertion (i.e.

writing) of data into HDF datasets or attributes.

6.4.1 INSERT

Syntax

INSERT INTO [DATASET | ATTRIBUTE] object namel, ..., object nameX [(startl:stridel:countl:blockl, ...,

startX:strideX:countX:blockX)]

[VALUES {(vali, ..., valX) | FROM {{[DOS | UNIX] [TEXT] FILE file_name [SEPARATOR
separator_value]} | {BINARY FILE file_ name} | {MEMORY variable_number [SIZE variable_size]}}]

Description

Insert (i.e. write) datainto an HDF dataset or attribute named object_name. Multiple datasets or attributes can
be written at once by separatingthese withacommal(,). If object_ name was not found or could not be written
(due to unknown/unexpected reasons), no subsequent objects are written, and an error is raised. HDFql

provides several ways of inserting data into a dataset or attribute from disparate input sources, namely:

Version 1.4.0 Page 188 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

e Acursor (defaultinput source when nothing is explicity specified). Example: “INSERT INTO my_dataset”.
o Directvalues. Example: “INSERT INTO my_dataset VALUES(O, 2, 4, 6, 8)”.

o Atextfile using optional parameters such as which terminator to use — DOS (CR+LF) or UNIX (LF) —for the
end of line (EOL) or which separator to use between elements (of the result set). Example: “INSERT INTO

my_dataset FROM TEXT FILE my _file.txt”.
e Abinary file. Example: “INSERT INTO my_dataset FROM BINARY FILE my _file.bin”.

e Avariable thatwas previously registered through the function hdfql_variable_register. Example: “INSERT
INTO my_dataset FROM MEMORY 0".

In case a dataset and an attribute with identical names (object_name) are stored in the same location (i.e.
group) and neither the keyword DATASET nor ATTRIBUTE is specified, the object that will have datainserted
into it is the dataset. To explicitly insert data into an object according to its type, the keyword DATASET or
ATTRIBUTE must be specified.

By default, the entire object_nameis written when performinganinsertoperation. To write only a subset (i.e.
portion) of object_name, hyperslab®® functionalities can be used (these are only available for datasets; i.e. not
for attributes™). To enable hyperslabs, the start, stride, count and block parameters may be specified and
separated by a colon (:). For each dimension of object name, a set of such parameters may be specified and
each set should be separated by acomma (,). In case start is not specified, its default value is O (i.e. the first
position of the dimension in question); in case start is negative, its value will be the last position of the
dimensionin question minus the value of start. In case stride is not specified, its default value is equal to the
value of block. In case countis not specified, its default valueis 1. In case block is not specified, its default value
isthe size of the dimensionin question minus the value of start. Since hyperslabs can be complicated to set up,

the operation ENABLE DEBUG may be helpful to obtain info/debug information in case of errors.

18 At the time of writing, only regular hyperslabs are supported by HDFgl. Additional hyperslabs will be supported in the near future, namely irregular
hyperslabs and per element hyperslabs.

19 By design, hyperslabs for attributes are not supported by the HDF5 API. To overcome this limitation, HDFql will implement (pseudo) hyperslabs to
enable writing a subset ofan attribute in the near future.

Version 1.4.0 Page 189 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

object_name — name of the HDF dataset or attribute to insert (i.e. write) data into. Multiple datasets or

attributes are separated with a comma (,).
start —to be defined.

stride — to be defined.

count —to be defined.

block —to be defined.

val—to be defined.

file_name —to be defined.
separator_value —to be defined.

variable_number — number of the variable whose data will be inserted (i.e. written) into the HDF dataset or
attribute. The number is returned by the function hdfqgl_variable_register upon registering the variable or,

subsequently, returned by the function hdfgl_variable_get number.
variable_size —to be defined.
Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

create dataset named "my dataset(0" of type short of one dimension (size 3)

CREATE DATASET my dataset(AS SMALLINT (5)

create dataset named "my datasetl" of type int of one dimension (size 5)

CREATE DATASET my datasetl AS INT(5)

insert (i.e. write) values into dataset "my datasetO"

INSERT INTO my dataset(O VALUES (65, ,)

Version 1.4.0 Page 190 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

populate cursor in use with data from dataset "my dataset(0" (should be 65, 66, 67)
SELECT FROM my datasetO

insert (i.e. write) values into dataset "my datasetl" from cursor in use (should be 65,
66, 67, 0, 0)
INSERT INTO my datasetl

create dataset named "my dataset2" of type float of one dimension (size 512)

CREATE DATASET my dataset2 AS FLOAT(512)

insert (i.e. write) values into dataset "my dataset2" from a text file named
"my fileO.txt" that has values separated with "," (i.e. default separator)

INSERT INTO my dataset2? VALUES FROM FILE my file(.txt

insert (i.e. write) values into dataset "my dataset2" from a text file named
"my filel.txt" that has a DOS-based end of line (EOL) terminator and values separated
with "*#*"

INSERT INTO my dataset2 VALUES FROM DOS TEXT FILE my filel.txt SEPARATOR **

// insert (i.e. write) values into dataset "my dataset2" from a binary file named
"my file.bin"
INSERT INTO my dataset? VALUES FROM BINARY FILE my file.bin

create dataset named "my dataset3" of type short of one dimension (size 5)

CREATE DATASET my dataset3 AS SMALLINT (5)

insert (i.e. write) value 9 into position #3 of dataset "my dataset3" using hyperslabs

INSERT INTO my dataset3(3) VALUES(9)

populate cursor in use with data from dataset "my dataset3" (should be 0, 0, 0, 9, 0)
SELECT FROM my dataset3

insert (i.e. write) value 9 into position #4 of dataset "my dataset3" using hyperslabs

INSERT INTO my dataset3(-1) VALUES (/)

populate cursor in use with data from dataset "my dataset3" (should be 0, 0, 0, 9, 7)
SELECT FROM my dataset3

Version 1.4.0 Page 191 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

insert (i.e. write) values 5 and 3 into position #0 and #1 of dataset "my dataset3"
using hyperslabs
INSERT INTO my dataset3(:::”) VALUES (5, 3)

populate cursor in use with data from dataset "my dataset3" (should be 5, 3, 0, 9, 7)
SELECT FROM my dataset3

create dataset named "my dataset4" of type int of two dimensions (size 3x3)

CREATE DATASET my dataset4 AS INT(35, 3)

insert (i.e. write) value 8 into position #2 of the first dimension and position #1 of
the second dimension of dataset "my dataset4" using hyperslabs

INSERT INTO my dataset4(”, 1) VALUES (8)

populate cursor in use with data from dataset "my dataset4" (should be 0, 0, 0, 0, O,
o, 0, 8, 0)
SELECT FROM my dataset4

insert (i.e. write) values 4 and 6 into position #2 of the first dimension and position
#1 of the second dimension of dataset "my dataset4" using hyperslabs

INSERT INTO my dataset4 (1, 1:) VALUES(4, ©)

populate cursor in use with data from dataset "my dataset4" (should be 0, 0, 0, 0, 4,
6, 0, 8, @)
SELECT FROM my dataset4

// declare variables
char script[1024];
double data[2][2];

// create a dataset named "my dataset3" of type double of two dimensions (size 2x2)

hdfgl execute("CREATE DATASET my dataset3 AS DOUBLE (2, 2)");

// assign values to variable "data"

data[0] [0] = 21.1;
data[0] [1] = 18.8;
data[l] [0] = 75.6;
data[l] [1] = 56.3;

Version 1.4.0 Page 192 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

// register variable "data" for subsequent use (by HDFql)

hdfql variable register(&data);

// prepare script to insert (i.e. write) values from variable "data" into dataset
"my dataset3"
n

sprintf (script, "INSERT INTO my dataset3 VALUES FROM MEMORY 3su",

hdfql variable get number (&data));

// execute script

hdfgl execute(script);

// unregister variable '"data" as it is no longer used/needed (by HDFql)

hdfgl variable unregister (&data);

6.5 DATA QUERY LANGUAGE (DQL)

Data Query Language (DQL) is, generally speaking, syntax for retrieving data stored in structures. In HDFql, the
DQL is composed of only one operation (SELECT). It enables retrieval (i.e. reading) of data stored in HDF

datasets or attributes according to certain criteria. Moreover, it supports POST-PROCESSING options to further

process/transform results of the operation according to the programmer’s needs.

6.5.1 SELECT

Syntax

SELECT FROM [DATASET | ATTRIBUTE] object name [(start1:stridel:countl:blockl, ...,

startX:strideX:countX:blockX)]

[CACHE [SLOTS {slots_value | DEFAULT | FILE}] [SIZE {size_value | DEFAULT | FILE}] [PREEMPTION

{preemption_value | DEFAULT | FILE}]]

[post_processing_optionl ... post_processing_optionX]

Version 1.4.0 Page 193 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Select (i.e. read) data from an HDF dataset or attribute named object_name. In case the keyword CACHE is
specified, the dataset is read using cache parametrized with the values slots value, size value and
preemption_value (this will overwrite any dataset cache parameters that may have been set through the
operation SET [FILE | DATASET] CACHE). HDFql provides several ways of writing data that was read from a

dataset or attribute into disparate output sources, namely:
e A cursor (default output source when nothingis explicity specified). Example: “SELECT FROM my_dataset”.

o Atextfile using optional parameters such as which terminator to use — DOS (CR+LF) or UNIX (LF) —for the
end of line (EOL) or which separatorto use between elements (of the result set). Example: “SELECT FROM
my_dataset INTO TEXT FILE my_file.txt”.

e Abinaryfile. Example: “SELECT FROM my_dataset INTO BINARY FILE my_file.bin”.

e Avariable thatwas previously registered through the function hdfql_variable_register. Example: “SELECT

FROM my_dataset INTO MEMORY 0”.

In case a dataset and an attribute with identical names (object_name) are stored in the same location (i.e.
group) and neitherthe keyword DATASET nor ATTRIBUTE is specified, the object for which data will be read is
the dataset. To explicitly read data from an object according to its type, the keyword DATASET or ATTRIBUTE
must be specified. Post-processing options may be applied to the result of the operation such as ordering and

redirecting (please refer to the section POST-PROCESSING for additional information).

By default, the entire object_name is read when performing a select operation. To read only a subset (i.e.
portion) of object_name, hyperslab®® functionalities can be used (these are only available for datasets; i.e. not
for attributes®'). To enable hyperslabs, the start, stride, count and block parameters may be specified and
separated by a colon (:). For each dimension of object_name, a set of such parameters may be specified and
each set should be separated by acomma (,). In case start is not specified, its default value is O (i.e. the first

position of the dimension in question); in case start is negative, its value will be the last position of the

20 At the time of writing, only regular hyperslabs are s upported by HDFgl. Additional hyperslabs will be supported in the near future, namely irregular

hyperslabs and per element hyperslabs.

1 By design, hyperslabs for attributes are not supported by the HDF5 API. To overcome this limitation, HDFql will impleme nt (pseudo) hyperslabs to
enable readinga subset ofan attribute in the near future.

Version 1.4.0 Page 194 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

dimensionin question minus the value of start. In case stride is not specified, its default value is equal to the
value of block. In case countis not specified, its default valueis 1. In case block is not specified, its default value
isthe size of the dimension in question minus the value of start. Since hyperslabs can be complicated to set up,

the operation ENABLE DEBUG may be helpful to obtain info/debug information in case of errors.
Parameter(s)

object_name —name of the HDF dataset or attribute to select (i.e. read) data from.
start —to be defined.

stride — to be defined.

count —to be defined.

block —to be defined.

slots_value —to be defined.

size_value —to be defined.

preemption_value —to be defined.

Return

If the INTO post-processing option is not specified, the cursorin use is populated with data of the dataset or
attribute in case the operation succeeded;in case the operation failed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

Version 1.4.0 Page 195 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.6 DATA INTROSPECTION LANGUAGE (DIL)

HDFql has certain operations that retrieve information about the internals of HDF files but also about HDFq|
itself and the runtime environment. These operations are part of the Data Introspection Language (DIL) and
they all begin with the keyword SHOW. Moreover, these operations support POST-PROCESSING options to
further process/transform the result of operations according to the programmer’s needs. Typically, a DIL

operation has the following syntactical form:

SHOW operation_name [post_processing_optionl ... post_processing_optionX]

6.6.1 SHOW FILE VALIDITY

Syntax
SHOW FILE VALIDITY file_namel, ..., file_nameX
[post_processing_optionl ... post_processing_optionX]

Description

Get the validity of afile named file_name. Multiple files’ validities can be checked at once by separating these
witha comma (,). If file_name was not found or its validity could not be checked (due to unknown/unexpected
reasons), no subsequent files are checked, and an error is raised. The result of the operation can either be
HDFQL_YES or HDFQL_NO dependingon whether file_name is a valid HDF file or not. Post-processing options
may be applied to the result of the operation such as ordering and redirecting (please refer to the section

POST-PROCESSING for additional information).

Parameter(s)

file_name —name of the file whose validity is to be obtained. Multiple files are separated with a comma (,).
Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the

operationin case the operation succeeded; in case the operationfailed, the cursorin use is cleared. If the INTO

Version 1.4.0 Page 196 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

create an HDF file named "my file(Q.h5"
CREATE FILE my file0.hb

show (i.e. get) validity of file "my file0.hb5" (should be 0 — i.e. HDFQL YES)
SHOW FILE VALIDITY my_fileO.h5

run touch command to create an empty file named "not an hdf file"

Wi ~gq~ + A hAF F11a M
RUN "touch not an hdf file

show (i.e. get) validity of file "not an hdf file" (should be -1 - i.e. HDFQL NO)
SHOW FILE VALIDITY not an hdf file

show (i.e. get) validity of both files "my file.h5" and "not an hdf file" at once
(should be 0, -1)
SHOW FILE VALIDITY my file(0.h5, not an hdf file

6.6.2 SHOW USE DIRECTORY

Syntax
SHOW USE DIRECTORY
[post_processing_optionl ... post_processing_optionX]

Description

Get the working directory currently in use. Post-processing options may be applied to the result of the
operation such as ordering and redirecting (please refer to the section POST-PROCESSING for additional

information).

Version 1.4.0 Page 197 of 252

Hierarchical Data Format query language (HDFql)

Parameter(s)
None

Return

Reference Manual

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the

operationin case the operation succeeded; in case the operation failed, the cursorin use is cleared. If the INTO

post-processing option is specified, the cursor in use remains unchanged after executing the operation (and

independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

set working directory currently in use to "/"

USE DIRECTORY /

show (i.e. get) current working directory (should be /)

SHOW USE DIRECTORY

create a directory named '"my directory"

CREATE DIRECTORY my directory

set working directory currently in use to "my directory" (more precisely

"/my directory")
USE DIRECTORY my directory

show (i.e. get) current working directory (should be /my directory)

SHOW USE DIRECTORY

create two directories named "my subdirectory(0" and "my subdirectoryl" (both

directories will be created in directory "/my directory")

CREATE DIRECTORY my subdirectory(0, my subdirectoryl

set directory currently in use to "my subdirectory0O" (more precisely

"/my directory/my subdirectory0")
USE DIRECTORY my subdirectory0

set directory currently in use to "my subdirectoryl" located one level up (more

precisely "/my directory/my subdirectoryl")

Version 1.4.0

Page 198 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

USE DIRECTORY ../my subdirectoryl

set directory currently in use two levels up (should be /)

USE DIRECTORY ../..

6.6.3 SHOW USE FILE

Syntax

SHOW USE FILE

[post_processing_optionl ... post_processing_optionX]

Description

Get the HDF file currently in use. If no file is in use, the result of the operation is empty. Post-processing
options may be applied to the result of the operation such as ordering and redirecting (please refer to the

section POST-PROCESSING for additional information).

Parameter(s)
None
Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded;in case the operation failed, the cursorin useis cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

Version 1.4.0 Page 199 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.64 SHOW ALL USE FILE

Syntax

SHOW ALL USE FILE

[post_processing_optionl ... post_processing_optionX]

Description

Get all HDF files in use (i.e. open). If no files are in use, the result of the operation is empty. Post-processing
options may be applied to the result of the operation such as ordering and redirecting (please refer to the

section POST-PROCESSING for additional information).

Parameter!s[

None
Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operationfailed, the cursorinuse iscleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.5 SHOW USE GROUP

Syntax
SHOW USE GROUP

[post_processing_optionl ... post_processing_optionX]

Version 1.4.0 Page 200 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get the HDF group currently in use. If no file is in use, the result of the operation is empty. Post-processing
options may be applied to the result of the operation such as ordering and redirecting (please refer to the

section POST-PROCESSING for additional information).

Parameter(s)

None
Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operation failed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

use (i.e. open) an HDF file named "my_file.hE”
USE FILE my file.h5

show (i.e. get) current working group (should be /)
SHOW USE GROUP

create an HDF group named "my group"

CREATE GROUP my group

set group currently in use to "my group" (more precisely "/my group")

USE GROUP my group

show (i.e. get) current working group (should be /my group)
SHOW USE GROUP

create two HDF groups named "my subgroupO" and "my subgroupl" (both groups will be
created in group "/my group")

CREATE GROUP my subgroup(O, my subgroupl

Version 1.4.0 Page 201 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

set group currently in use to "my subgroup0" (more precisely "/my group/my subgroup0")

USE GROUP my subgroup0

show (i.e. get) current working group (should be /my group/my subgroup0)

SHOW USE GROUP

set group currently in use to ".'" (the group currently in use will not change as "."
refers to the current working group itself)

USE GROUP .

show (i.e. get) current working group (should be /my group/my subgroup0)
SHOW USE GROUP

set group currently in use to "my subgroupl" located one level up (more precisely

"/my group/my subgroupl")
USE GROUP .. /my subgroupl

set group currently in use two levels up (should be /)

USE GROUP .. /..

6.6.6 SHOW [GROUP | DATASET | ATTRIBUTE]

Syntax

SHOW [GROUP | DATASET | ATTRIBUTE] [object_name] [LIKE regular_expression [DEEP deep_value]]
[WHERE condition]
[post_processing_optionl ... post_processing_optionX]

Description

Get HDF obijects (i.e. groups, datasets or attributes) within an HDF group or dataset named object_name or
check the existence of an objectnamed object_name. If object_nameis notspecified, all objects are returned —
to return only objects of type group, dataset or attribute, specify the keyword GROUP, DATASET or ATTRIBUTE

respectively. If object name is specified, one of the following behaviors applies:

Version 1.4.0 Page 202 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

e Ifitendswith“/”, object name willbe treated as a group or dataset, and all groups, datasets or attributes

stored in object_ name are returned.

e If it does not end with “/”, object_name will be checked for its existence. If it does exist, object_name is

returned; otherwise, if it does not exist, an error is raised.

If the keyword LIKE is specified, only objects with names complying with a regular expression named
regular_expression willbe returned (in HDFql, regular expressions are the ones specified by PCRE which closely
follow PERL5 syntax — please refer to http://www.pcre.org and http://perldoc.perl.org/perlre.html for
additional information). If regular_expression includes “**”, recursive search is performed (i.e. HDFql will
search in all existing groups and subgroups). To limit the recursiveness, the keyword DEEP may be specified
alongwith a value deep_value representing the maximum recursiveness limit. Post-processing options may be
applied to the result of the operation such as ordering and redirecting (please refer to the section POST-

PROCESSING for additional information).

Parameter(s)

object_ name —to be defined.
reqular_expression —to be defined.
deep_value —to be defined.
condition —to be defined.

Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operation failed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

set group currently in use to "/" (i.e. the root of the HDF file)
USE GROUP /

Version 1.4.0 Page 203 of 252

http://www.pcre.org/
http://perldoc.perl.org/perlre.html

Hierarchical Data Format query language (HDFql) Reference Manual

create two HDF groups named "my group0" and "my groupl" (both groups will be created in
ngUp n/n)
CREATE GROUP my group(O, my groupl

create one HDF dataset named "my datasetO" of type unsigned short (it will be created
in group "/")
CREATE DATASET my dataset(O AS UNSIGNED SMALLINT

create one HDF dataset named "my datasetl"” of type short (it will be created in group
"/my group0")
CREATE DATASET my groupO/my datasetl AS SMALLINT

create two HDF attributes named "my attribute(O" and "my attributel”" of type long long
(both attributes will be created in group "/")
CREATE ATTRIBUTE my attribute(O, my attributel AS BIGINT

create one HDF attribute named "my attributel2" of type char (it will be created in
group "/my group0")
CREATE ATTRIBUTE my group(O/my attribute2 AS TINYINT

create one HDF attribute named "my attribute3" of type unsigned char (it will be
created in dataset "/my dataset0")

CREATE ATTRIBUTE my datasetO/my attribute3 AS UNSIGNED TINYINT

show (i.e. get) all HDF objects existing in group "/" (should be my group(0, my groupl,
my dataset(0, my attribute0O, my attributel)
SHOW

show (i.e. get) all HDF groups existing in group "/" (should be my group0, my groupl)
SHOW GROUP

show (i.e. get) all HDF datasets existing in group "/" (should be my dataset0)
SHOW DATASET

check if HDF object "my groupX" exists (should raise an error)

SHOW my groupX

check if HDF object "my group0" exists (should be my group0)
SHOW my group0

Version 1.4.0 Page 204 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

show (i.e. get) all HDF objects existing within group "my groupO" (should be
my datasetl and my attributeZ)
SHOW my group0/

show (i.e. get) all HDF attributes existing within group "my group0" (should be
my attributeZ)
SHOW ATTRIBUTE my group0/

show (i.e. get) all HDF objects existing within dataset "my dataset(0" (should be
my attribute3)
SHOW my dataset0/

create an HDF group named "my groupl" that tracks the objects’ (i.e. groups and
datasets) creation order within the group

CREATE GROUP my groupl ORDER TRACKED

create two HDF groups named "subgroupl" and "subgroupO" (both groups will be created in
group "/my groupl")
CREATE GROUP my groupl/subgroupl, my groupl/subgroup0

create two HDF datasets named "datasetl" and "dataset0" of type float (both datasets
will be created in group "/my groupl")
CREATE DATASET my groupl/datasetl, my groupl/dataset(O AS FLOAT

show (i.e. get) all HDF objects existing within group "my groupl" (should be datasetO,
datasetl, subgroup(O and subgroupl)
SHOW my groupl/

show (i.e. get) all HDF objects existing within group "my groupl" ordered by their time
of creation (should be subgroupl, subgroup0O, datasetl and dataset?2)
SHOW my groupl/ ORDER CREATION

create an HDF dataset named "my datasetl" of type double that tracks the attributes’
creation order within the dataset

CREATE DATASET my datasetl AS DOUBLE ATTRIBUTE ORDER TRACKED

create two HDF attributes named "attributel" and "attributeO" of type int (both

attributes will be created in dataset "/my_datasetl ")

CREATE ATTRIBUTE my datasetl/attribute2, my datasetl/attribute0 AS INT

Version 1.4.0 Page 205 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

create an HDF attribute named "attributel" of type short (it will be created in dataset
"/my datasetl")
CREATE ATTRIBUTE my_datasetl/attributel AS SMALLINT

show (i.e. get) all HDF objects existing within dataset "my datasetl" (should be
attributeO, attributel and attributel2)
SHOW my datasetl/

show (i.e. get) all HDF objects existing within dataset "my datasetl" ordered by their
time of creation (should be attribute?, attribute(O and attributel)

SHOW my datasetl/ ORDER CREATION

6.6.7 SHOW TYPE

Syntax

SHOW TYPE object namel, ..., object nameX

[post_processing_optionl ... post_processing_optionX]

Description

Get type of an object named object_name. Multiple objects’ types can be obtained at once by separating these
witha comma (,). If object_name was notfound or its type could not be checked (due to unknown/unexpected
reasons), no subsequent objects are checked, and an error is raised. The result of the operation can either be
HDFQL_GROUP, HDFQL DATASET or HDFQL ATTRIBUTE depending on whether object name is a group,
datasetor attribute respectively. Post-processing options may be applied to the result of the operation such as

ordering and redirecting (please refer to the section POST-PROCESSING for additional information).

Parameter(s)

object_name—name of the object whose type is to be obtained. Multiple objects are separated with a comma

().

Version 1.4.0 Page 206 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operationfailed, the cursorinuseiscleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

create an HDF group named "my objectO"

CREATE GROUP my object(

create an HDF dataset named "my objectl" of type double
CREATE DATASET my objectl AS DOUBLE

create an HDF attribute named "my object2" of type float
CREATE ATTRIBUTE my object2 AS FLOAT

show (i.e. get) type of object "my object0" (should be 4 - i.e. HDFQL GROUP)
SHOW TYPE my objectO

show (i.e. get) type of object "my objectl" (should be 8 - i.e. HDFQL DATASET)
SHOW TYPE my objectl

show (i.e. get) type of object "my object2" (should be 16 — i.e. HDFQL ATTRIBUTE)
SHOW TYPE my object2

show (i.e. get) type of both objects "my object0" and "my object2" at once (should be
4, 16)
SHOW TYPE my object(O, my object2

6.6.8 SHOW STORAGE TYPE

Syntax

SHOW STORAGE TYPE dataset_namel, ..., dataset_nameX

Version 1.4.0 Page 207 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

[post_processing_optionl ... post_processing_optionX]

Description

Get storage type of an HDF dataset named dataset_name. Multiple datasets’ storage types can be obtained at
once by separating these with a comma (,). If dataset_name was not found or its storage type could not be
checked (due to unknown/unexpected reasons), no subsequent datasets are checked, and an error is raised.
The result of the operation can either be HDFQL CONTIGUOUS, HDFQL COMPACT or HDFQL CHUNKED
depending on whether the storage type is contiguous, compact or chunked respectively. Post-processing
options may be applied to the result of the operation such as ordering and redirecting (please refer to the

section POST-PROCESSING for additional information).

Parameter(s)

dataset name — name of the HDF dataset whose storage type is to be obtained. Multiple datasets are

separated with a comma (,).
Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operationfailed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.9 SHOW [DATASET | ATTRIBUTE] DATATYPE

Syntax
SHOW [DATASET | ATTRIBUTE] DATATYPE object namel, ..., object nameX
[post_processing optionl ... post_processing_optionX]

Version 1.4.0 Page 208 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get datatype of an HDF dataset or attribute named object_name. Multiple objects’ datatypes can be obtained
at once by separating these with a comma (,). If object name was not found or its datatype could not be
checked (due to unknown/unexpected reasons), no subsequent objects are checked, and an error is raised. The
result of the operation can either be HDFQL TINYINT, HDFQL_UNSIGNED_TINYINT, HDFQL SMALLINT,
HDFQL_UNSIGNED_SMALLINT, HDFQL_INT, HDFQL_UNSIGNED_INT, HDFQL_BIGINT,
HDFQL_UNSIGNED_BIGINT, HDFQL_FLOAT, HDFQL_DOUBLE, HDFQL_CHAR, HDFQL_VARTINYINT,
HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT,
HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL _UNSIGNED_VARBIGINT, HDFQL_VARFLOAT,
HDFQL_VARDOUBLE, HDFQL_VARCHAR or HDFQL_OPAQUE (please refer to Table 6.3 for additional
information about datatypes). In case a datasetand an attribute with identical names (object_name) are stored
in the same location (i.e. group) and neither the keyword DATASET nor ATTRIBUTE is specified, the datatype
returned belongs to the dataset. To explicitly get the datatype of object name according to its type, the
keyword DATASET or ATTRIBUTE must be specified. Post-processing options may be applied to the result of the
operation such as ordering and redirecting (please refer to the section POST-PROCESSING for additional

information).

Parameter(s)

object name — name of the HDF dataset or attribute whose datatype is to be obtained. Multiple datasets or

attributes are separated with a comma (,).
Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operation failed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursorin use remains unchanged after executing the operation (and
independently of the success orfailure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

create an HDF dataset named "my dataset(0" of type double
CREATE DATASET my dataset(O AS DOUBLE

Version 1.4.0 Page 209 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

show (i.e. get) datatype of dataset "my datasetO" (should be 512 - i.e. HDFQL DOUBLE)
SHOW DATATYPE my datasetO

create an HDF dataset named '"my datasetl" of type float
CREATE DATASET my datasetl AS FLOAT

show (i.e. get) datatype of dataset "my datasetl”" (should be 256 - i.e. HDFQL FLOAT)
SHOW DATATYPE my datasetl

create an HDF dataset named "my common" of type short

CREATE DATASET my common AS SMALLINT

create an HDF attribute named "my common" of type int

CREATE ATTRIBUTE my common AS INT

show (i.e. get) datatype of dataset "my common" (should be 4 - i.e. HDFQL SMALLINT)
SHOW DATATYPE my common

show (i.e. get) datatype of dataset "my common'" (should be 4 - i.e. HDFQL SMALLINT)
SHOW DATASET DATATYPE my common

show (i.e. get) datatype of attribute "my common" (should be 16 - i.e. HDFQL INT)
SHOW ATTRIBUTE DATATYPE my common

6.6.10 SHOW [DATASET | ATTRIBUTE] ENDIANNESS

Syntax
SHOW [DATASET | ATTRIBUTE] ENDIANNESS object_namel, ..., object_nameX
[post_processing_optionl ... post_processing_optionX]

Description

Get endianness of an HDF dataset or attribute named object_name. Multiple objects’ endiannesses can be
obtained atonce by separatingthese with acomma (,). If object_name was not found or its endianness could
not be checked (due to unknown/unexpected reasons), no subsequent objects are checked, and an error is

raised. The result of the operation can either be HDFQL_LITTLE_ENDIAN, HDFQL_BIG_ENDIAN or

Version 1.4.0 Page 210 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

HDFQL _UNDEFINED depending on whether the endianness is little, big or undefined (i.e. endianness is not
applicable to object_name)respectively. In case a datasetand an attribute withidentical names (object_name)
are stored inthe same location (i.e. group) and neither the keyword DATASET nor ATTRIBUTE is specified, the
endianness returned belongs to the dataset. To explicitly get the endianness of object_name according to its
type, the keyword DATASET or ATTRIBUTE must be specified. Post-processing options may be applied to the
result of the operation such as ordering and redirecting (please refer to the section POST-PROCESSING for

additional information).

Parameter(s)

object_name—name of the HDF dataset or attribute whose endiannessis to be obtained. Multiple datasets or

attributes are separated with a comma (,).
Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operation failed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success orfailure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.11 SHOW [DATASET | ATTRIBUTE] CHARSET

Syntax
SHOW [DATASET | ATTRIBUTE] CHARSET object_namel, ..., object_nameX

[post_processing_optionl ... post_processing_optionX]

Version 1.4.0 Page 211 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get charset of an HDF dataset or attribute named object_name. Multiple objects’ charsets can be obtained at
once by separating these with acomma (,). If object_name was not found or its charset could not be checked
(due tounknown/unexpected reasons), no subsequent objects are checked, and an error is raised. The result of
the operation can either be HDFQL_ASCII, HDFQL UTF8 or HDFQL _UNDEFINED depending on whether the
charset is ASCIl, UTF8 or undefined (i.e. object name is neither of datatype HDFQL CHAR nor
HDFQL_VARCHAR) respectively. In case a dataset and an attribute with identical names (object_name) are
stored in the same location (i.e. group) and neither the keyword DATASET nor ATTRIBUTE is specified, the
charsetreturned belongs to the dataset. To explicitly get the charset of object_name according to its type, the
keyword DATASET or ATTRIBUTE must be specified. Post-processing options may be applied to the result of the
operation such as ordering and redirecting (please refer to the section POST-PROCESSING for additional

information).

Parameter(s)

object_name —name of the HDF dataset or attribute whose charset is to be obtained. Multiple datasets or

attributes are separated with a comma (,).
Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operationfailed, the cursorinuseiscleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

create an HDF dataset named '"my dataset(0" of type char
CREATE DATASET my dataset(O AS CHAR

show (i.e. get) charset of dataset "my dataset(0" (should be 1 - i.e. HDFQL ASCII)
SHOW CHARSET my dataset0

create an HDF dataset named "my datasetl" of type char of one dimension (size 20)

Version 1.4.0 Page 212 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE DATASET my datasetl AS UTF8 CHAR(20)

show (i.e. get) charset of dataset "my datasetl" (should be 2 - i.e. HDFQL UTF8)
SHOW CHARSET my datasetl

create an HDF dataset named "my common" of type short

CREATE DATASET my common AS UTF8 CHAR

create an HDF attribute named "my common" of type variable-length char

CREATE ATTRIBUTE my common AS ASCII VARCHAR

show (i.e. get) charset of dataset "my common" (should be 2 - i.e. HDFQL UTF8)
SHOW CHARSET my common

show (i.e. get) datatype of dataset "my common" (should be 2 - i.e. HDFQL UTF8)
SHOW DATASET CHARSET my common

show (i.e. get) charset of attribute "my common" (should be 1 - i.e. HDFQL ASCII)
SHOW ATTRIBUTE CHARSET my common

6.6.12 SHOW STORAGE DIMENSION

Syntax
SHOW STORAGE DIMENSION dataset_name
[post_processing_optionl ... post_processing_optionX]

Description

Get storage dimensions of an HDF dataset named dataset_name. If dataset_name is chunked (i.e. its storage
type is HDFQL_CHUNKED), itreturns the chunk layout dimensions; otherwise, if it is not chunked, no result is
returned. Post-processing options may be applied to the result of the operation such as ordering and

redirecting (please refer to the section POST-PROCESSING for additional information).

Parameter(s)

dataset_name —name of the HDF dataset whose storage dimensions are to be obtained.

Version 1.4.0 Page 213 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded;in case the operation failed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

create an HDF dataset named "my dataset0" of type unsigned int

CREATE DATASET my dataset(O AS UNSIGNED INT

show (i.e. get) storage dimensions of dataset "my dataset(0" (should be empty)

SHOW STORAGE DIMENSION my datasetO

create an HDF dataset named '"my datasetl" of type double of one dimension (size 15)

CREATE CHUNKED DATASET my datasetl AS DOUBLE (15)

show (i.e. get) storage dimensions of dataset "my datasetl" (should be 15)

SHOW STORAGE DIMENSION my datasetl

create an HDF dataset named "my dataset2" of type float of three dimensions (size
3x5x20)
CREATE CHUNKED (I, ,) DATASET my dataset2 AS FLOAT (3, ,)

show (i.e. get) storage dimensions of dataset "my dataset2" (should be 1, 2, 10)
SHOW STORAGE DIMENSION my datasetZ

6.6.13 SHOW [DATASET | ATTRIBUTE] DIMENSION

Syntax
SHOW [DATASET | ATTRIBUTE] DIMENSION object name

[post_processing optionl ... post_processing_optionX]

Version 1.4.0 Page 214 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get dimensions of an HDF dataset or attribute named object_name. In case a dataset and an attribute with
identical names (object_name) are stored in the same location (i.e. group) and neither the keyword DATASET
nor ATTRIBUTE is specified, the dimensions returned belong to the dataset. To explicitly get the dimensions of
object_nameaccordingtoits type, the keyword DATASET or ATTRIBUTE must be specified. If object_name does
not have a dimension (i.e.ifitisscalar), the returned value is one. Post-processing options may be applied to
the result of the operation such as ordering and redirecting (please refer to the section POST-PROCESSING for

additional information).

Parameter(s)
object_ name —name of the HDF dataset or attribute whose dimensions are to be obtained.
Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operation failed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursorin use remains unchanged after executing the operation (and
independently of the success orfailure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

create an HDF dataset named "my dataset(0" of type unsigned int

CREATE DATASET my dataset(O AS UNSIGNED INT

show (i.e. get) dimensions of dataset "my dataset(0" (should be 1)
SHOW DIMENSION my dataset(

create an HDF dataset named "my datasetl" of type double of one dimension (size 15)

CREATE DATASET my datasetl AS DOUBLE (15)

show (i.e. get) dimensions of dataset "my datasetl" (should be 15)
SHOW DIMENSION my datasetl

create an HDF attribute named "my attribute(" of type int of one dimension (size 1)

CREATE ATTRIBUTE my attribute(O AS INT (1)

Version 1.4.0 Page 215 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

show (i.e. get) dimensions of attribute "my attributel" (should be 1)
SHOW DIMENSION my attributel

create an HDF attribute named "my attributel" of type short of two dimensions (size
2x3)
CREATE ATTRIBUTE my attributel AS SMALLINT(Z, 3)

show (i.e. get) dimensions of attribute "my attributel" (should be 2, 3)
SHOW DIMENSION myiattributel

create an HDF dataset named "my dataset2" of type float of three dimensions (first
dimension with size 2 and extendible up to 10; second dimension with size 5; third
dimension with size 20 and extendible to an unlimited size)

CREATE CHUNKED DATASET my datasetZ AS FLOAT (3 TO v 9y TO UNLIMITED)

show (i.e. get) dimensions of dataset "my dataset2" (should be 3, 5, 20)
SHOW DIMENSION my dataset?2

6.6.14 SHOW [DATASET | ATTRIBUTE] MAX DIMENSION

Syntax
SHOW [DATASET | ATTRIBUTE] MAX DIMENSION object name

[post_processing optionl ... post_processing_optionX]

Description

Get maximum dimensions of an HDF dataset or attribute named object_ name. In case a dataset and an
attribute with identical names (object name) are stored in the same location (i.e. group) and neither the
keyword DATASET nor ATTRIBUTE is specified, the dimensions returned belong to the dataset. To explicitly get
the maximum dimensions of object_name according to its type, the keyword DATASET or ATTRIBUTE must be
specified. If object_ nhame does not have a dimension (i.e. if it is scalar), the returned value is one. Post-
processing options may be applied to the result of the operation such as ordering and redirecting (please refer

to the section POST-PROCESSING for additional information).

Version 1.4.0 Page 216 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

object_name —name of the HDF dataset or attribute whose maximum dimensions are to be obtained.
Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operation failed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

create an HDF dataset named "my datasetO" of type unsigned int

CREATE DATASET my dataset(O AS UNSIGNED INT

show (i.e. get) maximum dimensions of dataset "my dataset0" (should be 1)

SHOW MAX DIMENSION my datasetO

create an HDF dataset named "my datasetl" of type double of one dimension (size 15)

CREATE DATASET my datasetl AS DOUBLE (15)

show (i.e. get) maximum dimensions of dataset "my datasetl" (should be 15)

SHOW MAX DIMENSION my datasetl

create an HDF attribute named "my attribute(" of type int of one dimension (size 1)

CREATE ATTRIBUTE my attribute(O AS INT (1)

show (i.e. get) dimensions of attribute "my attributel" (should be 1)
SHOW DIMENSION my attributel

create an HDF attribute named "my attributel"”" of type short of two dimensions (size
2x3)

CREATE ATTRIBUTE my attributel AS SMALLINT(Z, 3)

show (i.e. get) maximum dimensions of attribute "my attributel" (should be 2, 3)

SHOW MAX DIMENSION my attributel

create an HDF dataset named "my dataset2" of type float of three dimensions (first

Version 1.4.0 Page 217 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

dimension with size 2 and extendible up to 10, second dimension with size 5, third
dimension with size 20 and extendible to an unlimited size)

CREATE CHUNKED DATASET my datasetZ AS FLOAT (3 TO v Sy TO UNLIMITED)

show (i.e. get) maximum dimensions of dataset "my dataset2" (should be 10, 5, -1)

SHOW MAX DIMENSION my datasetZ

6.6.15 SHOW [ATTRIBUTE] ORDER

Syntax
SHOW [ATTRIBUTE] ORDER object_namel, ..., object_nameX

[post_processing_optionl ... post_processing_optionX]

Description

Get (creation) order strategy of an HDF group or dataset named object_name. Multiple objects’ (creation)
orderstrategies can be obtained at once by separating these with a comma (,). If object_name was not found
or its (creation) order strategy could not be checked (due to unknown/unexpected reasons), no subsequent
objects are checked, and an error is raised. The result of the operation can either be HDFQL_TRACKED,
HDFQL INDEXED or HDFQL UNDEFINED depending on whether the (creation) order strategy is tracked,
indexed or undefined (i.e. object_name was created without any (creation) order strategy) respectively. By
default, the returned (creation) order strategy refers to objects (i.e. groups and datasets) within a group; to
return the (creation) order strategy of attributes within a group or dataset, the keyword ATTRIBUTE must be
specified. Post-processing options may be applied to the result of the operation such as ordering and

redirecting (please refer to the section POST-PROCESSING for additional information).

Parameter!s[

object_name —name of the HDF group or dataset whose (creation) order strategy is to be obtained. Multiple

groups or datasets are separated with a comma (,).

Version 1.4.0 Page 218 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded;in case the operation failed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

create an HDF group named "my group0O"

CREATE GROUP my group0

show (i.e. get) (creation) order strategy of objects within group "my groupO" (should
be -1 - i.e. HDFQLiUNDEFINED)
SHOW ORDER my group0

show (i.e. get) (creation) order strategy of attributes within group "my group0"
(should be -1 — i.e. HDFQL UNDEFINED)

SHOW ATTRIBUTE ORDER my group0

create an HDF group named "my groupl" that tracks both the objects’ (i.e. groups and
datasets) and the attributes’ creation order within the group

CREATE GROUP my groupl ORDER TRACKED ATTRIBUTE ORDER INDEXED

show (i.e. get) (creation) order strategy of objects within group "my groupl" (should
be 1 - i.e. HDFQL TRACKED)
SHOW ORDER my groupl

show (i.e. get) (creation) order strategy of attributes within group "my groupl"
(should be 2 - i.e. HDFQL INDEXED)
SHOW ATTRIBUTE ORDER my groupl

create an HDF dataset named "my datasetQO" of type int that tracks the attributes’

creation order within the dataset

CREATE DATASET my dataset(O AS INT ATTRIBUTE ORDER TRACKED

show (i.e. get) (creation) order strategy of attributes within dataset "my dataset(0"
(should be 1 - i.e. HDFQL_TRACKED)

SHOW ATTRIBUTE ORDER my dataset(

Version 1.4.0 Page 219 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

show (i.e. get) (creation) order strategy of attributes within both group "my groupl"
and dataset "my dataset0" at once (should be 2, 1)

SHOW ATTRIBUTE ORDER my groupl, my dataset(

6.6.16 SHOW [DATASET | ATTRIBUTE] TAG

Syntax
SHOW [DATASET | ATTRIBUTE] TAG object_namel, ..., object_ nameX

[post_processing_optionl ... post_processing_optionX]

Description

Get tag of an HDF dataset or attribute named object_ name. Multiple objects’ tags can be obtained at once by
separating these with a comma (,). If object_name was not found or its tag could not be checked (due to its
datatype not being HDFQL_OPAQUE or for unknown/unexpected reasons), no subsequent objects are checked,
and an error israised. In case a datasetand an attribute with identical names (object_name) are stored in the
same location (i.e. group) and neither the keyword DATASET nor ATTRIBUTE is specified, the tag returned
belongstothe dataset. To explicitly get the tag of object_name according to its type, the keyword DATASET or
ATTRIBUTE must be specified. Post-processing options may be applied to the result of the operation such as

ordering and redirecting (please refer to the section POST-PROCESSING for additional information).

Parameter(s)

object_ name — name of the HDF dataset or attribute whose tag is to be obtained. Multiple datasets or

attributes are separated with a comma (,).
Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operationfailed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Version 1.4.0 Page 220 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

create an HDF dataset named "my dataset(0" of type opaque
CREATE DATASET my dataset(AS OPAQUE

show (i.e. get) tag of dataset "my dataset0" (should be empty)
SHOW TAG my datasetO

create an HDF dataset named "my datasetl" of type opaque of one dimension (size 15)
with a tag value "my tagl"
CREATE DATASET my datasetl AS OPAQUE (15) TAG my tagl

show (i.e. get) tag of dataset "my datasetl" (should be my tagl)
SHOW TAG my datasetl

create an HDF attribute named "my attribute(" of type opaque of two dimensions (size
3x5) with a tag value "Hierarchical Data Format"

CREATE ATTRIBUTE my attribute(O AS OPAQUE (3, 5) TAG "Hierarchical Data Format"

show (i.e. get) tag of attribute "my attribute0" (should be Hierarchical Data Format)
SHOW TAG my attributel

6.6.17 SHOW FILE SIZE

Syntax
SHOW FILE SIZE [file_namel, ..., file_nameX]

[post_processing_optionl ... post_processing_optionX]

Description

Get size (in bytes) of afile named file_name. Multiple files’ sizes can be obtained at once by separating several
file names with a comma (,). If file_name was not found or its size could not be checked (due to
unknown/unexpected reasons), no subsequent files are checked, and an error is raised. If no file is specified
then the size (in bytes) of the file currently in use will be returned instead. Post-processing options may be
applied to the result of the operation such as ordering and redirecting (please refer to the section POST-

PROCESSING for additional information).

Version 1.4.0 Page 221 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

file_name —name of the file whose size (in bytes) is to be obtained. Multiple files are separated with a comma

(,).
Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded;in case the operationfailed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursorin use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.18 SHOW [DATASET | ATTRIBUTE] SIZE

Syntax
SHOW [DATASET | ATTRIBUTE] SIZE object_ namel, ..., object nameX

[post_processing optionl ... post_processing_optionX]

Description

Get size (in bytes) of an HDF dataset or attribute named object_name. Multiple objects’ sizes can be obtained
at once by separating these with acomma (,). If object_name was not found or its size could not be checked
(due to unknown/unexpected reasons), no subsequent objects are checked, and an error is raised. In case a
dataset and an attribute with identical names (object_name) are stored in the same location (i.e. group) and
neitherthe keyword DATASET nor ATTRIBUTE is specified, the size returned belongs to the dataset. To explicitly
getthe size of object_nameaccordingtoitstype, the keyword DATASET or ATTRIBUTE must be specified. Post-
processing options may be applied to the result of the operation such as ordering and redirecting (please refer

to the section POST-PROCESSING for additional information).

Version 1.4.0 Page 222 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

object_name — name of the HDF dataset or attribute whose size is to be obtained. Multiple datasets or

attributes are separated with a comma (,).
Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operation failed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.19 SHOW RELEASE DATE

Syntax
SHOW RELEASE DATE
[post_processing_optionl ... post_processing_optionX]

Description

Get release date of HDFql. The format of the date returned is YYYY/MM/DD. Post-processing options may be
applied to the result of the operation such as ordering and redirecting (please refer to the section POST-

PROCESSING for additional information).

Parameter(s)

None

Version 1.4.0 Page 223 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operationfailed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

show (i.e. get) release date of HDFql (should be something similar to 2017/03/21)
SHOW RELEASE DATE

6.6.20 SHOW HDFQL VERSION

Syntax

SHOW HDFQL VERSION
[post_processing_optionl ... post_processing_optionX]

Description

Get version of HDFql library. The format of the version returned is MAJOR.MINOR.REVISION. Post-processing
options may be applied to the result of the operation such as ordering and redirecting (please refer to the

section POST-PROCESSING for additional information).
Parameter(s)

None

Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operationfailed, the cursorin use is cleared. If the INTO

post-processing option is specified, the cursor in use remains unchanged after executing the operation (and

Version 1.4.0 Page 224 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

show (i.e. get) version of HDFgql library (should be something similar to 1.4.0)
SHOW HDFQL VERSION

6.6.21 SHOW HDF VERSION

Syntax
SHOW HDF VERSION

[post_processing_optionl ... post_processing_optionX]

Description

Get version of the HDF library used by HDFgl. The format of the version returned is MAJOR.MINOR.REVISION.
Post-processing options may be applied to the result of the operation such as ordering and redirecting (please

refer to the section POST-PROCESSING for additional information).

Parameter(s)

None
Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operationfailed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursorin use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Version 1.4.0 Page 225 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

show (i.e. get) version of the HDF library used by HDFqgl (should be something similar
to 1.8.16)
SHOW HDF VERSION

6.6.22 SHOW PCRE VERSION

Syntax

SHOW PCRE VERSION
[post_processing_optionl ... post_processing_optionX]

Description

Get version of the PCRE library used by HDFql. The format of the version returned is MAJOR.MINOR. Post-
processing options may be applied to the result of the operation such as ordering and redirecting (please refer

to the section POST-PROCESSING for additional information).

Parameter(s)
None
Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded;in case the operation failed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

show (i.e. get) version of the PCRE library used by HDFgl (should be something similar
to 8.39)

Version 1.4.0 Page 226 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

SHOW PCRE VERSION

6.6.23 SHOW ZLIB VERSION

Syntax

SHOW ZLIB VERSION

[post_processing_optionl ... post_processing_optionX]

Description

Get version of the ZLIB library used by HDFql. The format of the version returned is MAJOR.MINOR.REVISION.
Post-processing options may be applied to the result of the operation such as ordering and redirecting (please

refer to the section POST-PROCESSING for additional information).

Parameter(s)

None
Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operationfailed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

show (i.e. get) version of the ZLIB library used by HDFqgl (should be something similar
to 1.2.11)
SHOW ZLIB VERSION

Version 1.4.0 Page 227 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.6.24 SHOW DIRECTORY

Syntax
SHOW DIRECTORY [directory_name]

[post_processing_optionl ... post_processing_optionX]

Description

Get directory names withinadirectory named directory_name. If directory_nameis not specified, all directory
names within the current working directory are returned. Otherwise, if directory_name is specified, all
directory names within this directory are returned. Post-processing options may be applied to the result of the
operation such as ordering and redirecting (please refer to the section POST-PROCESSING for additional

information).

Parameter!s[

directory_name —name of the directory whose directory names are to be obtained.
Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operation failed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the op eration (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

Version 1.4.0 Page 228 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.6.25 SHOW FILE

Syntax
SHOW FILE [directory_name | file_name]

[post_processing_optionl ... post_processing_optionX]

Description

Get file names within a directory named directory_name or check existence of a file named file_name. If
neither directory_name nor file_name are specified, all file names within the current working directory are
returned. If directory_name is specified, all file names within this directory are returned. Alternatively, if
file_name is specified, its existence is checked: if the file exists, its name is returned; otherwise (if it does not
exist), an error is raised. Multiple files can be checked for their existence at once by separating these with a

comma (,). Post-processing options may be applied to the result of the operation such as ordering and

redirecting (please refer to the section POST-PROCESSING for additional information).

Parameter(s)

directory_name —to be defined.
file_name —to be defined.
Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operation failed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursorin use remains unchanged after executing the operation (and
independently of the success orfailure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

Version 1.4.0 Page 229 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.6.26 SHOW MAC ADDRESS

Syntax

SHOW MAC ADDRESS

[post_processing_optionl ... post_processing_optionX]

Description

Get MAC address(es) of the machine where HDFqgl is executed. Post-processing options may be applied to the
result of the operation such as ordering and redirecting (please refer to the section POST-PROCESSING for

additional information).

Parameter!s[

None
Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operation failed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

show (i.e. get) MAC address(es) of the machine where HDFql is executed (should be
something similar to E7-2A-E9-8B-CA-4E)
SHOW MAC ADDRESS

6.6.27 SHOW EXECUTE STATUS

Syntax

SHOW EXECUTE STATUS

Version 1.4.0 Page 230 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

[post_processing_optionl ... post_processing_optionX]

Description

Get execution status of the last operation. Post-processing options may be applied to the result of the
operation such as ordering and redirecting (please refer to the section POST-PROCESSING for additional

information).

Parameter(s)

None

Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operationfailed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.28 SHOW [[USE] FILE | DATASET] CACHE

Syntax
SHOW [[USE] FILE | DATASET] CACHE [SLOTS | SIZE | PREEMPTION]

[post_processing optionl ... post_processing_optionX]

Description

Get cache parameter values for accessing HDF files or datasets. In case neither the keyword SLOT, SIZE nor
PREEMPTION is specified, all cache parameter values (i.e. for slots, size and preemption) are returned. To

return a specific cache parameter value, the keyword SLOT, SIZE or PREEMPTION must be specified. In case

Version 1.4.0 Page 231 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

neitherthe keyword FILE, USE FILE nor DATASET is specified, the cache parameters returned refers to files by
default (optionally, the keyword FILE may be specified to make the purpose of this operation clearer). To
explicitly return cache parameters of datasets or the file currently in use, the keyword DATASET or USE FILE

must be specified.

Parameter(s)

None

Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operationfailed, the cursorin use iscleared. If the INTO
post-processing option is specified, the cursorin use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.29 SHOW FLUSH

Syntax

SHOW FLUSH

[post_processing_optionl ... post_processing_optionX]

Description

Get status of the automatic flushing. The status can either be HDFQL_ENABLED or HDFQL_DISABLED. Post-

processing options may be applied to the result of the operation such as ordering and redirecting (please refer

to the section POST-PROCESSING for additional information).

Version 1.4.0 Page 232 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)
None
Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operation failed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursorin use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.6.30 SHOW DEBUG

Syntax
SHOW DEBUG
[post_processing_optionl ... post_processing_optionX]

Description

Get status of the debug mechanism. The status can either be HDFQL_ENABLED or HDFQL DISABLED. Post-
processing options may be applied to the result of the operation such as ordering and redirecting (please refer

to the section POST-PROCESSING for additional information).

Parameter(s)

None

Version 1.4.0 Page 233 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

Return

If the INTO post-processing option is not specified, the cursor in use is populated with the result of the
operationin case the operation succeeded; in case the operationfailed, the cursorin use is cleared. If the INTO
post-processing option is specified, the cursor in use remains unchanged after executing the operation (and
independently of the success or failure of this operation). Please refer to the chapter CURSOR and subsection

INTO for additional information.

Example(s)

// TO BE DEFINED

6.7 MISCELLANEOUS

This section assembles all remaining HDFql operations that — due to their heterogeneous nature and

functionality—do not fitin the previous sections about the language for data definition, manipulation, querying

and introspection.

6.7.1 USE DIRECTORY

Syntax

USE DIRECTORY directory_name

Description

Use a directory named directory_name for subsequent operations. This will change the current working
directory to directory_name thus avoiding the need to explicitly provide the full path of this directory when
working within it (i.e. subsequent operations are done relatively to this directory, unless otherwise specified). If
directory_name was not found or could not be opened (due to unknown/unexpected reasons), an error is

raised.

Version 1.4.0 Page 234 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)
directory_name —name of the directory to use for subsequent operations.
Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

// TO BE DEFINED

6.7.2 USEFILE

Syntax
USE [READONLY] FILE file_ namel, ..., file_nameX

[CACHE [SLOTS {slots_value | DEFAULT}] [SIZE {size_value | DEFAULT}] [PREEMPTION
{preemption_value | DEFAULT}]]

Description

Use (i.e.open) an HDFfile named file_name forsubsequent operations. Multiple files can be opened atonce by
separating these with a comma (,). If file_name was not found or could not be opened (due to
unknown/unexpected reasons), no subsequent files are opened, and an error is raised. By default, the file is
opened with read/write permissions. To open a file with read only permission, the keyword READONLY should
be specified (any subsequent attempt to write into this file will return an error). HDFgl tracks opened filesin a
stack fashion (i.e. LIFO) meaning that the most recently opened file is the one currently in use. In case the
keyword CACHE s specified, HDFql opens the file using cache parametrized with the slots_value, size_value and
preemption_value values (this will overwrite any file cache that may have been set through the operation SET

[FILE | DATASET] CACHE).

Version 1.4.0 Page 235 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

file_name —name of the HDF file to use (i.e. open) for subsequent operations. Multiple files are separated with

acomma(,).

slots_value —to be defined.
size_value —to be defined.
preemption_value —to be defined.
Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

use (i.e. open) an HDF file named "my file0.h5" located in the current working
directory

USE FILE my file0.h5

use (i.e. open) an HDF file named "my filel.h5" located in a root directory named
"data"

USE FILE /data/my filel.hb5

use (i.e. open) two HDF files named "my file2.h5" and "my file3.h5" with read only
permissions (both files are located in the current working directory)

USE READONLY FILE my fileZ2.h5, my file3.h5

use (i.e. open) an HDF file named "my file4.h5" located in the current working
directory with cache slots, size and preemption values of 1523, 262144 and 0.6
respectively

USE FILE my file4.h5 CACHE SLOTS 1575 SIZE 262144 PREEMPTION 0

Version 1.4.0 Page 236 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.7.3 USE GROUP

Syntax

USE GROUP group_name

Description

Use (i.e. open) an HDF group named group_name for subsequent operations. This will change the current
working group to group_name thus avoiding the need to explicitly provide the full path of this group when
working withinit (i.e. subsequent operations are done relatively to this group, unless otherwise specified). If
group_name was notfound or could not be opened (due to unknown/unexpected reasons), an error is raised.
Upon using(i.e. opening) an HDFfile, the group currently inuseis “/” (i.e. the root of the HDF file). Besides the
name of the group to be used for subsequent operations, group_name may be composed of special tokens

(that are not part of the name of the group itself). These are:

e “/”toseparate multiple groups. Example: “USE GROUP my_group/my_subgroup/my_subsubgroup”.

o n

e “”torefertothe group currently in use. Example: “USE GROUP.".

o on

o “.”togo upone level from the group currently in use. Example: “USE GROUP ..”.
Parameter(s)

group_name —name of the HDF group to use (i.e. open) for subsequent operations.
Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

set group currently in use to "/" (i.e. the root of the HDF file)
USE GROUP /

create two HDF groups named "my groupO" and "my groupl'" (both groups will be created in

group n/n)

Version 1.4.0 Page 237 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE GROUP my group(O, my groupl

create an HDF dataset named "my dataset0" of type double (it will be created in group
"/")
CREATE DATASET my dataset(O AS DOUBLE

set group currently in use to "my group(0" (more precisely "/my group0")

USE GROUP my group(

create an HDF dataset named "my datasetl" of type double (it will be created in group
"/my group0")
CREATE DATASET my datasetl AS DOUBLE

create an HDF group named "my subgroup0" (it will be created in group "/my group0")
CREATE GROUP my subgroup0

create an HDF dataset named "my dataset2" of type variable-length double (it will be
created in group "/my groupO/my subgroup0")
CREATE DATASET my subgroup(0/my dataset2 AS VARDOUBLE

create an HDF attribute named "my attributeO" of type float (it will be created in
group n/n)
CREATE ATTRIBUTE . ./my_attributeO AS FLOAT

set group currently in use to "my subgroup0" (more precisely "/my group0/my subgroup0")

USE GROUP my subgroup0

create an HDF attribute named "my attributel" of type char (it will be created in group
"/my groupl")
CREATE ATTRIBUTE ../../my groupl/my attributel AS CHAR

create an HDF attribute named "my attributel2" of type variable-length char (it will be
created in group "/")

CREATE ATTRIBUTE /my attribute? AS VARCHAR

set group currently in use to ".'" (the group currently in use will not change as "."
refers to the current working group itself)

USE GROUP

create an HDF attribute named "my attribute3" of type int (it will be created in group

"/my group0/my subgroup0")

Version 1.4.0 Page 238 0f 252

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE ATTRIBUTE my attribute3 AS INT

set group currently in use one level up (should be /)

USE GROUP ..

create an HDF attribute named "my attribute4" of type short (it will be created in
group "/my group0")
CREATE ATTRIBUTE my attribute4 AS SMALLINT

6.7.4 FLUSH [GLOBAL | LOCAL]

Syntax

FLUSH [GLOBAL | LOCAL]

Description

Flushthe entire virtual HDF file (global) or the specific HDF file (local) currently in use. All buffered data will be
written into the disk. If neither the keyword GLOBAL nor LOCAL is specified, a global flush is performed by
default (optionally, the keyword GLOBAL may be specified to make the purpose of this operation clearer). To

performa local flush, the keyword LOCALmust be specified. If no file is currently used, no flush is performed.
Parameter(s)

None

Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

// TO BE DEFINED

Version 1.4.0 Page 239 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

6.7.5 CLOSE FILE

Syntax

CLOSE FILE [file_name]

Description

Close the HDF file currently in use. Multiple files can be closed at once by separating these with acomma (,). If
file_name is not in use (i.e. open) or it is not possible to close it (due to unknown/unexpected reasons, no
subsequent files are closed, and an error is raised. Before closing afile, all buffered data will be written into it.
After closing a file, the file in use will be the one most recently used before the closed file. If file_name is

specified, itwill be closed regardless of whetheritisthe file currently in use or not. The file_name must match

exactly the name of the file when it was opened (otherwise no file will be closed).
Parameter(s)

file_name —name of the HDF file to close. Multiple files are separated with a comma (,).
Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

// TO BE DEFINED

6.7.6 CLOSE ALLFILE

Syntax

CLOSE ALL FILE

Version 1.4.0 Page 240 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Close all HDF filesin use. All buffered data will be written into the respective files before closing them. If it is
not possible to close afile (due to unknown/unexpected reasons), no subsequentfiles are closed, and an error

is raised.
Parameter(s)
None
Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

// TO BE DEFINED

6.7.7 CLOSE GROUP

Syntax

CLOSE GROUP

Description

Close the HDF group currently in use. Afterclosingit, the group currently in use will be “/” (i.e. the root of the

HDF file). If no file is currently used, no group is closed.

Parameter(s)

None

Version 1.4.0 Page 241 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

// TO BE DEFINED

6.7.8 SET[FILE | DATASET] CACHE

Syntax

SET [FILE | DATASET] CACHE [SLOTS {slots value | DEFAULT | FILE}] [SIZE {size value | DEFAULT |
FILE}] [PREEMPTION {preemption_value | DEFAULT | FILE}]

Description

Set cache parameterstodefaultor specific values for accessing HDF files or datasets. All files or datasets that
are subsequently opened or accessed (through the operations USE FILE or SELECT respectively) will use the

defaultvalues defined by the HDF5 API or user-defined cache parameter values. These cache parameters are:

e Slots — number of chunk slots in the raw data chunk cache of the file or dataset. Due to the hashing
strategy, itsvalue shouldideally be a prime number. When the keyword DEFAULT is specified, its value is
521 (i.e. default value defined by the HDF5 API). When the keyword FILE is specified, its value will be as

defined in the file cache slots parameter.

e Size —total size of the raw data chunk cache in bytes forthe file or dataset. When the keyword DEFAULT is
specified, its value is 1048576 (i.e. 1 MB — default value defined by the HDF5 API). When the keyword FILE

is specified, its value will be as defined in the file cache size parameter.

e Preemption — chunk preemption policy. Its value must be between 0 and 1 inclusive. It indicates the
weighting according to which chunks which have been fully read or written are penalized when

determining which chunks to flush from cache. When the keyword DEFAULT is specified, its value is 0.75

Version 1.4.0 Page 242 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

(i.e.defaultvalue defined by the HDF5API). When the keyword FILE is specified, its value will be as defined

in the file cache preemption parameter.

In case neitherthe keyword FILE nor DATASET is specified, the setting of the cache parametersreferstofiles by
default (optionally, the keyword FILE may be specified to make the purpose of this operation clearer). To

explicitly set the cache parameters to datasets, the keyword DATASET must be specified.

Parameter(s)

slots_value —to be defined.
size_value —to be defined.
preemption_value —to be defined.
Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

use (i.e. open) an HDF file named "my file0O.h5" with cache slots, size and preemption
values of 521, 1048576 and 0.75 respectively (these are the default values defined by the
HDF5 API)

USE FILE my file0O.h5

set cache slots and preemption values to 2297 and 0.9 respectively (the cache size
value remains intact) for subsequent usage (i.e. opening) of HDF files

SET CACHE SLOTS PREEMPTION

use (i.e. open) an HDF file named "my filel.h5" with cache slots, size and preemption
values of 2297, 1048576 and 0.9 respectively
USE FILE my filel.hb

set cache slots, size and preemption values to 1523, 262144 and 0.6 respectively for
subsequent usage (i.e. opening) of HDF files

SET FILE CACHE SLOTS SIZE PREEMPTION

use (i.e. open) an HDF file named "my file2.h5" with cache slots, size and preemption

Version 1.4.0 Page 243 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

values of 1523, 262144 and 0.6 respectively
USE FILE my fileZ.hb

set cache size value to 1048576 (default value defined by the HDF5 API) and preemption
value to 0.4 (the cache slots value remains intact) for subsequent usage (i.e. opening)
of HDF files

SET FILE CACHE SIZE DEFAULT PREEMPTION (.4

use (i.e. open) an HDF file named "my file3.h5" with cache slots, size and preemption
values of 1523, 1048576 and 0.4 respectively
USE FILE my file3.hb

select (i.e. read) an HDF dataset named "my dataset(0" with cache slots, size and
preemption values of 521, 1048576 and 0.75 respectively (these are the default values
defined by the HDF5 API)

SELECT FROM my dataset(

set cache slots and preemption values to 2297 and 0.9 respectively (the cache size
value remains intact) for subsequent selection (i.e. reading) of HDF datasets

SET DATASET CACHE SLOTS ~”9/ PREEMPTION (.9

select (i.e. read) an HDF dataset named "my datasetl" with cache slots, size and
preemption values of 2297, 1048576 and 0.9 respectively
SELECT FROM my datasetl

set cache slots, size and preemption values to 1523, 262144 and 0.6 respectively for
subsequent selection (i.e. reading) of HDF datasets

SET DATASET CACHE SLOTS 1523 SIZE 6”144 PREEMPTION (.0

select (i.e. read) an HDF dataset named "my dataset2" with cache slots, size and
preemption values of 1523, 262144 and 0.6 respectively
SELECT FROM my dataset?2

set cache size value to 1048576 (default value defined by the HDF5 API) and preemption
value to 0.4 (the cache slots value remains intact) for subsequent selection (i.e.
reading) of HDF datasets

SET DATASET CACHE SIZE DEFAULT PREEMPTION (.4

select (i.e. read) an HDF dataset named "my dataset3" with cache slots, size and

Version 1.4.0 Page 244 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

preemption values of 1523, 1048576 and 0.4 respectively
SELECT FROM my dataset3

set cache slots, size and preemption values to 3089, 2048 and 0.85 respectively for
subsequent usage (i.e. opening) of HDF files

SET FILE CACHE SLOTS SIZE PREEMPTION

set cache slots value to 521 (default value defined by the HDF5 API), size value to
1024, and preemption value to 0.85 (defined by the cache preemption value for HDF files)
for subsequent selection (i.e. reading) of HDF datasets

SET DATASET CACHE SLOTS DEFAULT SIZE PREEMPTION FILE

select (i.e. read) an HDF dataset named "my dataset4" with cache slots, size and
preemption values of 521, 1024 and 0.85 respectively
SELECT FROM my dataset4

6.7.9 ENABLE FLUSH [GLOBAL | LOCAL]

Syntax
ENABLE FLUSH [GLOBAL | LOCAL]

Description

Enable automatic flushing of the entire virtual HDF file (global) or only the HDF file (local) currently in use.
Automatic flushing (i.e. all buffered data is written into the disk) will subsequently occur whenever an
operation modifying the file is executed. If neither the keyword GLOBAL nor LOCAL is specified, automatic
global flushingis set by default (optionally, the keyword GLOBAL may be specified to make the purpose of this

operation clearer). To set automatic local flushing, the keyword LOCAL must be specified.
Parameter(s)

None

Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Version 1.4.0 Page 245 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

enable automatic flushing of the entire virtual HDF file (global) currently in use

ENABLE FLUSH

enable automatic flushing of the entire virtual HDF file (global) currently in use

ENABLE FLUSH GLOBAL

enable automatic flushing of only the HDF file (local) currently in use
ENABLE FLUSH LOCAL

6.7.10 ENABLE DEBUG

Syntax

ENABLE DEBUG

Description

Enable debug mechanism (i.e. info/debug messages will be displayed when executing operations). This
operation should help the programmer have abetterunderstanding of the parameters HDFql is receiving, the
operation performed, and the return value of this operation. Additionally, info/debug messages of the HDF5

APl itself are displayed in case of an error.

Parameter(s)
None
Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

enable debug mechanism (i.e. info/debug messages will be displayed when executing

operations)

Version 1.4.0 Page 246 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

ENABLE DEBUG

6.7.11 DISABLE FLUSH

Syntax

DISABLE FLUSH

Description

Disable automatic flushing of the entire virtual HDF file (global) or only the HDF file (local) currently in use.
Parameter(s)

None

Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

disable automatic flushing of the entire virtual HDF file (global) or only the HDF file
(local) currently in use

DISABLE FLUSH

6.7.12 DISABLE DEBUG

Syntax

DISABLE DEBUG

Description

Disable debug mechanism (i.e. info/debug messages will not be displayed when executing operations).

Version 1.4.0 Page 247 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)
None
Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Example(s)

disable debug mechanism (i.e. info/debug messages will not be displayed when executing

operations)

DISABLE DEBUG

6.7.13 RUN

Syntax
RUN commandl, ..., commandX

Description

Run (i.e. execute) an external command named command. Multiple commands can be run at once by
separating these with a comma (,). If command was not found or it was not possible to run (due to

unknown/unexpected reasons), no subsequent commands are run, and an error is raised. If command has

parameters, both the command and parameters should be surrounded by double-quotes (“).

Parameter(s)

command — name of an external command to run (i.e. execute). Multiple external commands are separated

with acomma (,).
Return

The cursor in use remains unchanged after executing the operation (and independently of the success or

failure of this operation). Please refer to the chapter CURSOR for additional information.

Version 1.4.0 Page 248 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

run notepad text editor (if "notepad.exe'" was not found, an error is raised)

RUN notepad. exe

run firefox and open HDFql website (if "firefox" was not found, an error 1is raised)

RUN "firefox http://www.hdfqgl.com"

run notepad text editor to edit file "my file.html" and afterwards (i.e. after closing

notepad) open "my file.html" by running chrome

RUN "notepad.exe my file.html", "chrome my file.html"

Version 1.4.0 Page 249 of 252

GLOSSARY

Application programming interface (API)

An application programming interface (API) specifies how software components should interact with each
other. In practice, an APl comes in the form of a library that includes specifications for functions, data
structures, object classes, constants and variables. A good APl makes it easier to develop a program by

providing all the building blocks.

Attribute

An (HDF) attribute is a metadata object describing the nature and/or intended usage of a primary data object.
A primary data object may be a group, dataset or committed datatype. Attributes are assumed to be very small

as data objects go, so storing them as standard (HDF) datasets would be inefficient.

Cursor

A cursor is a control structure that is used to iterate through the results returned by a query (that was
previously executed). It can be seen as an effective means to abstract the programmer from low-level
implementation details of accessing data stored in specific structures. In HDFqgl, cursors offer several ways to
traverse result sets according to specific needs and they also store result sets returned returned by DATA

QUERY LANGUAGE (DQL) and DATA INTROSPECTION LANGUAGE (DIL) operations.

Dataset

A (HDF) datasetis an object composed of a collection of dataelements and metadata that stores a description
of the data elements, data layout and all other information necessary to write and read the data. A dataset

may be a multidimensional array of data elements and it may have zero or more attributes.

Version 1.4.0 Page 250 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Datatype

A datatype is a classification identifying one of various types of data such as integer, real or string, which
determines the possible values for that type, the operations that can be done on values of that type, the
meaning of the data, and the way values of that type can be stored. In other words, a datatype is a

classification of data that tells HDFgl how the user intends to use it.

Group

A (HDF) group is a container structure which can hold zero or more objects (i.e. datasets and other groups).
Every object must be a member of at least one group, exceptthe root group, which (as the sole exception) may

not belong to any group.

Post-processing

Post-processing options enable processing (i.e. transformation) results of a query according to the
programmer’s needs such as ordering or redirecting. These options are optional and may be used to create a
(linear) pipeline to further process result sets returned by DATA QUERY LANGUAGE (DQL) and DATA
INTROSPECTION LANGUAGE (DIL) operations.

Result set

A result set stores the results returned by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION
LANGUAGE (DIL) operations.

Result subset

A result subset stores the results returned by a DATA INTROSPECTION LANGUAGE (DIL) operation that was

performed on a dataset or attribute of type variable-length.

Version 1.4.0 Page 251 of 252

Hierarchical Data Format query language (HDFql) Reference Manual

Subcursor

A subcursoris meantto complement(i.e. help) cursors in the task of storing data of type variable-length (i.e.
VARTINYINT, UNSIGNED VARTINYINT, VARSMALLINT, UNSIGNED VARSMALLINT, VARINT, UNSIGNED VARINT,
VARBIGINT, UNSIGNED VARBIGINT, VARFLOAT, VARDOUBLE and VARCHAR). In practice, when a dataset or
attribute of type variable-length is read through a DATA QUERY LANGUAGE (DQL) operation, only the first
value of the variable datais storedin the cursor (as expected), whileall values of the variable data are stored in
the subcursor. In other words, each position of the cursor stores the first value of the variable data and also

pointstoa subcursorthat inturn stores all the values of the variable data. Similar to cursors, HDFql subcursors

offer several ways to traverse result subsets.

Version 1.4.0 Page 252 of 252

	1. INTRODUCTION
	2. INSTALLATION
	2.1 WINDOWS
	2.2 LINUX
	2.3 MAC OS X

	3. USAGE
	3.1 C
	3.2 C++
	3.3 JAVA
	3.4 PYTHON
	3.5 C#
	3.6 FORTRAN
	3.7 COMMAND-LINE INTERFACE

	4. CURSOR
	4.1 DESCRIPTION
	4.2 SUBCURSOR
	4.3 EXAMPLES

	5. APPLICATION PROGRAMMING INTERFACE
	5.1 CONSTANTS
	5.2 FUNCTIONS
	5.2.1 HDFQL_EXECUTE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.2 HDFQL_EXECUTE_GET_STATUS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.3 HDFQL_ERROR_GET_LINE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.4 HDFQL_ERROR_GET_POSITION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.5 HDFQL_ERROR_GET_MESSAGE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.6 HDFQL_CURSOR_INITIALIZE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.7 HDFQL_CURSOR_USE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.8 HDFQL_CURSOR_USE_DEFAULT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.9 HDFQL_CURSOR_CLEAR
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.10 HDFQL_CURSOR_CLONE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.11 HDFQL_CURSOR_GET_DATATYPE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.12 HDFQL_CURSOR_GET_COUNT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.13 HDFQL_SUBCURSOR_GET_COUNT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.14 HDFQL_CURSOR_GET_POSITION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.15 HDFQL_SUBCURSOR_GET_POSITION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.16 HDFQL_CURSOR_FIRST
	Syntax
	Description
	Parameter(s)
	Return

	5.2.17 HDFQL_SUBCURSOR_FIRST
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.18 HDFQL_CURSOR_LAST
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.19 HDFQL_SUBCURSOR_LAST
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.20 HDFQL_CURSOR_NEXT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.21 HDFQL_SUBCURSOR_NEXT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.22 HDFQL_CURSOR_PREVIOUS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.23 HDFQL_SUBCURSOR_PREVIOUS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.24 HDFQL_CURSOR_ABSOLUTE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.25 HDFQL_SUBCURSOR_ABSOLUTE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.26 HDFQL_CURSOR_RELATIVE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.27 HDFQL_SUBCURSOR_RELATIVE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.28 HDFQL_CURSOR_GET_SIZE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.29 HDFQL_SUBCURSOR_GET_SIZE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.30 HDFQL_CURSOR_GET
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.31 HDFQL_SUBCURSOR_GET
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.32 HDFQL_CURSOR_GET_TINYINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.33 HDFQL_SUBCURSOR_GET_TINYINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.34 HDFQL_CURSOR_GET_UNSIGNED_TINYINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.35 HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.36 HDFQL_CURSOR_GET_SMALLINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.37 HDFQL_SUBCURSOR_GET_SMALLINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.38 HDFQL_CURSOR_GET_UNSIGNED_SMALLINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.39 HDFQL_SUBCURSOR_GET_UNSIGNED_SMALLINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.40 HDFQL_CURSOR_GET_INT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.41 HDFQL_SUBCURSOR_GET_INT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.42 HDFQL_CURSOR_GET_UNSIGNED_INT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.43 HDFQL_SUBCURSOR_GET_UNSIGNED_INT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.44 HDFQL_CURSOR_GET_BIGINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.45 HDFQL_SUBCURSOR_GET_BIGINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.46 HDFQL_CURSOR_GET_UNSIGNED_BIGINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.47 HDFQL_SUBCURSOR_GET_UNSIGNED_BIGINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.48 HDFQL_CURSOR_GET_FLOAT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.49 HDFQL_SUBCURSOR_GET_FLOAT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.50 HDFQL_CURSOR_GET_DOUBLE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.51 HDFQL_SUBCURSOR_GET_DOUBLE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.52 HDFQL_CURSOR_GET_CHAR
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.53 HDFQL_SUBCURSOR_GET_CHAR
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.54 HDFQL_VARIABLE_REGISTER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.55 HDFQL_VARIABLE_UNREGISTER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.56 HDFQL_VARIABLE_GET_NUMBER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.57 HDFQL_VARIABLE_GET_DATATYPE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.58 HDFQL_VARIABLE_GET_COUNT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.59 HDFQL_VARIABLE_GET_SIZE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.60 HDFQL_VARIABLE_GET_DIMENSION_COUNT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.61 HDFQL_VARIABLE_GET_DIMENSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.3 EXAMPLES
	5.3.1 C
	5.3.2 C++
	5.3.3 JAVA
	5.3.4 PYTHON
	5.3.5 C#
	5.3.6 FORTRAN
	5.3.7 OUTPUT

	6. LANGUAGE
	6.1 DATATYPES
	6.1.1 TINYINT
	6.1.2 UNSIGNED TINYINT
	6.1.3 SMALLINT
	6.1.4 UNSIGNED SMALLINT
	6.1.5 INT
	6.1.6 UNSIGNED INT
	6.1.7 BIGINT
	6.1.8 UNSIGNED BIGINT
	6.1.9 FLOAT
	6.1.10 DOUBLE
	6.1.11 CHAR
	6.1.12 VARTINYINT
	6.1.13 UNSIGNED VARTINYINT
	6.1.14 VARSMALLINT
	6.1.15 UNSIGNED VARSMALLINT
	6.1.16 VARINT
	6.1.17 UNSIGNED VARINT
	6.1.18 VARBIGINT
	6.1.19 UNSIGNED VARBIGINT
	6.1.20 VARFLOAT
	6.1.21 VARDOUBLE
	6.1.22 VARCHAR
	6.1.23 OPAQUE

	6.2 POST-PROCESSING
	6.2.1 ORDER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.2.2 TOP
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.2.3 BOTTOM
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.2.4 STEP
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.2.5 INTO
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.3 DATA DEFINITION LANGUAGE (DDL)
	6.3.1 CREATE DIRECTORY
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.3.2 CREATE FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.3.3 CREATE GROUP
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.3.4 CREATE DATASET
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.3.5 CREATE ATTRIBUTE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.3.6 CREATE [SOFT | HARD] LINK
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.3.7 CREATE EXTERNAL LINK
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.3.8 ALTER DIMENSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.3.9 RENAME DIRECTORY
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.3.10 RENAME FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.3.11 RENAME [GROUP | DATASET | ATTRIBUTE]
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.3.12 COPY FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.3.13 COPY [GROUP | DATASET | ATTRIBUTE]
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.3.14 DROP DIRECTORY
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.3.15 DROP FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.3.16 DROP [GROUP | DATASET | ATTRIBUTE]
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4 DATA MANIPULATION LANGUAGE (DML)
	6.4.1 INSERT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.5 DATA QUERY LANGUAGE (DQL)
	6.5.1 SELECT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6 DATA INTROSPECTION LANGUAGE (DIL)
	6.6.1 SHOW FILE VALIDITY
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.2 SHOW USE DIRECTORY
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.3 SHOW USE FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.4 SHOW ALL USE FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.5 SHOW USE GROUP
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.6 SHOW [GROUP | DATASET | ATTRIBUTE]
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.7 SHOW TYPE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.8 SHOW STORAGE TYPE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.9 SHOW [DATASET | ATTRIBUTE] DATATYPE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.10 SHOW [DATASET | ATTRIBUTE] ENDIANNESS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.11 SHOW [DATASET | ATTRIBUTE] CHARSET
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.12 SHOW STORAGE DIMENSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.13 SHOW [DATASET | ATTRIBUTE] DIMENSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.14 SHOW [DATASET | ATTRIBUTE] MAX DIMENSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.15 SHOW [ATTRIBUTE] ORDER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.16 SHOW [DATASET | ATTRIBUTE] TAG
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.17 SHOW FILE SIZE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.18 SHOW [DATASET | ATTRIBUTE] SIZE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.19 SHOW RELEASE DATE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.20 SHOW HDFQL VERSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.21 SHOW HDF VERSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.22 SHOW PCRE VERSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.23 SHOW ZLIB VERSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.24 SHOW DIRECTORY
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.25 SHOW FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.26 SHOW MAC ADDRESS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.27 SHOW EXECUTE STATUS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.28 SHOW [[USE] FILE | DATASET] CACHE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.29 SHOW FLUSH
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6.30 SHOW DEBUG
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7 MISCELLANEOUS
	6.7.1 USE DIRECTORY
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.2 USE FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.3 USE GROUP
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.4 FLUSH [GLOBAL | LOCAL]
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.5 CLOSE FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.6 CLOSE ALL FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.7 CLOSE GROUP
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.8 SET [FILE | DATASET] CACHE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.9 ENABLE FLUSH [GLOBAL | LOCAL]
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.10 ENABLE DEBUG
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.11 DISABLE FLUSH
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.12 DISABLE DEBUG
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.13 RUN
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	GLOSSARY
	Application programming interface (API)
	Attribute
	Cursor
	Dataset
	Datatype
	Group
	Post-processing
	Result set
	Result subset
	Subcursor

