Hierarchical Data Format query language (HDFql)

Reference Manual

Version 2.0.1

April 2019

Copyright (C) 2016-2019

This document is part of the Hierarchical Data Format query language (HDFql). For more information about

HDFql, please visit the website http://www.hdfgl.com.

Disclaimer

Every effort has been made to ensure that this document is as accurate as possible. The information contained
in this document is provided without any express, statutory or implied warranties. The founders of HDFqgl shall
have neither liability nor responsibility to any person or entity with respect to any loss or damage arising from

the information in this document or the usage of HDFql.

http://www.hdfql.com/

Hierarchical Data Format query language (HDFql) Reference Manual

TABLE OF CONTENTS

1. INTRODUCGTION ..ccuireiiiiinniineiireireireiressrassrsesisssisesssessrassrassrassrasstossssssssssssasssasssasssasssassssssssnsses 1
7 1 17 Y LY [0 3
2.1 WINDOWIS ..ttt e s e e sttt e s et e e e bt e e e e st e e e s e n e e e e s m b e et e en b e e e s e n e e e e e areeeesanrneeeaan 4

2.2 LINUX ettt ettt et e e e e e et e e bt e e e R et e s e R e et e e r e et e e R e ee e e e R re e e s e rrneesanrneeeaan 4

2.3 IMIACOS ..ttt ettt h bt h ke h bt E £ e h e h e E et en b e e h b et bt bt e R et et e bt e b e e b et ene e bt ebenneneene 5

R U 1Y Y C] N 6
0t OO P PP PP PPPTPPPPPP 6

I € PP P PP T P PPPTOPRTOPPPPP 10

R B A\ VTP PP PP PP PPPTPPPP 14

I A A 1 = [] TP PSPPSR 17

R T - PSPPSR OPRPTP 19

3.6 FORTRAN L.ttt ettt e ettt e st e e e et e e s bt e e e s mr et e e aan e e e e s ane e e e e mn e e e e eamraeeeeanreeeeannreeesanneeeesanres 22

R PSP OPPPI 26

3.8 COMMAND-LINE INTERFAGCE.......cott ittt e e e e e s s s s en e e e e s s s s snnrneeees 29

R 01 1 1 1] | N 32
4.1 DESCRIPTION ..uiiitiititeteitetee ettt ettt b ettt b e bttt b e b e e et e bt s b e b e e et eb e s b e e et esteb et et e e enesrennennennes 32

4.2 SUBCURSOR....cctiuiititeteteitetes ettt ettt b sttt b s bt et st b e e b et et e bt e b e b et e st e bt e b e b et es e e bt et et e e eneerenrentennas 36

4.3 EXAMPLES ..ottt e e e e e e e e e s e et e e e e s rrrr e e e e e e s e aane 39

5. APPLICATION PROGRAMMING INTERFACE......c.ccciiiuiiniieiiiiiiiiiiieisasraenneneessessesssnsesnsens 45
5.1 CONSTANTS ettt ettt ettt ettt s et ettt b et et e e e st e bt s b e b et e bt eb e b e e e st e bt e b e e e e e bt eb e e s et e st eb e et et emeeneebenbenneneene 45

5.2 FUNGCTIONS. ...ttt ettt ettt ettt ettt ettt b e bt e bt e bt b e et b e e b e e et e st e bt n b et e st eben b et eneeneebenrenneneene 53
5.2.1 HDFQL_EXECUTEciutitiiteteutettstentetet ettt et s et ese bt et st sttt et b e s bt e e ese e bt nbenae e eseenenneneenis 58

5.2.2 HDFQL_EXECUTE_GET_STATUS ...eitiititiiteteietertenteeeieet sttt ese bt ee e ebe st sae e st b sne s ebesnenneeens 60

5.2.3 HDFQL_ERROR_GET_LINE....cc.titirteieiirtinientetetentesteteie et sttt ese st st see e ebe st sae e st b sae e e esesnenneneens 61

Version 2.0.1

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.4 HDFQL_ERROR_GET_POSITIONooivermeeeieeeeseeesseeseseesseesseesseesssessesssssssseessssssssssssssesseens 62
5.2.5 HDFQL_ERROR_GET_IMESSAGEooveumveeeeeeeeesseeeseesseesssesssesssssssssssssssssessesssesssessssssseens 63
5.2.6 HDFQL_CURSOR_INITIALIZE........oveereeeeeeeseesseesseesseesseesseesssessssssessssssssssessssssssssesssessseens 64
5.2.7 HDFQL_CURSOR _USE.ooorveumreeereeesesssssessesinssassssessssassssssssssssssssnas 65
5.2.8 HDFQL_CURSOR_USE_DEFAULTorvvemveereeeeeseseeesesssessssssssssssssssssssssssssssssessssssssssssssssssssesnas 66
5.2.9 HDFQL_CURSOR_CLEAR.........vveereeereeesesesesssessssasssssssssssnssenns 67
5.2.10 HDFQL_CURSOR_CLONEoovvemveeceeecesesesssssssesesesssessssssssssssssssssssssssssssssessssessssssssssssnssnnas 63
5.2.11 HDFQL_CURSOR_GET_DATA TYPE....oooeieeeeeeenseensesssessssssssssssssssssssssssssssessssssssssssssssnssnnns 70
5.2.12 HDFQL_CURSOR_GET_COUNT......omvermeeereeiseeesseeesesssessssessssssssssssssssssssssssssessssssssssssssssnsennns 71
5.2.13 HDFQL_SUBCURSOR_GET_COUNTrvvvemeeeeeeseeseesseesssesssessssssssessssssssssesssesssssssssssessenns 72
5.2.14 HDFQL_CURSOR_GET_POSITIONoumveereeeeeeenseesseesseessesssessssssssessssssssssssessssssssssssssssessssnens 73
5.2.15 HDFQL_SUBCURSOR_GET_POSITIONveuveereeeseeeseeesesssesssssssesssssssssssesssssssesssssessssenns 74
5.2.16 HDFQL_CURSOR_FIRST ..ooveueveereeeeeesseesseesssesseesssesssesssssssssss s ssesssssssseessssssssssessseessseenn 76
5.2.17 HDFQL_SUBCURSOR_FIRST......ccveeieeeieeeseesssesseesssessssessesssseessssssessssessseessesssesssesssessseens 77
5.2.18 HDFQL_CURSOR_LAST w..oooveeieeeeeeeseeeeeeeeseeeesseesssesss e ss e ssssess s sssesssees s ssse s sseessseen 78
5.2.19 HDFQL_SUBCURSOR_LAST.......ocrveereeteeeeesesesssnsssessssssssssssssssssssssssssnsssssssssesssssssssssssssnssnens 79
5.2.20 HDFQL_CURSOR_NEXT .ooovvuorveenreeeeeessseeesesessssessssssssssssessssssssssssssssssesssssssssesssessssesssnsssnsssens 80
5.2.21 HDFQL_SUBCURSOR_NEXTooovreroeeeeeensesinsssnssssessssssssessssnssssssssnsssssssssnssssessssssssssssssssssnsssnns 81
5.2.22 HDFQL_CURSOR_PREVIOUSooorveeeeeereeiesseenseeesssssssssssssssssssssssssnssssnssssesssssssssssssssssnsonans 83
5.2.23 HDFQL_SUBCURSOR_PREVIOUSocrveereeecreeseeinsssnsssssssnsssssssnssssesssessssesssssssssssssnssssnsssens 84
5.2.24 HDFQL_CURSOR_ABSOLUTEorveeeeeeseeieesseesssesssssssssssssssssssssssssssssnssssesssssssessssssssnssnens 85
5.2.25 HDFQL_SUBCURSOR_ABSOLUTEooumveeeeeeeeeseesseesseesseessesssssssesssssssssssessssssssssssssssseenns 87
5.2.26 HDFQL_CURSOR_RELATIVE........oeeiveeeeeeseeeseesseesseesseesseessessssesssssssssssssssessesssssssssssesssoens 88
5.2.27 HDFQL_SUBCURSOR_RELATIVEooumoeeieeeeeeeiseesseeeseess s sessesssssssssseessssssesssssseesseens 90
5.2.28 HDFQL_CURSOR_GET SIZEoooreeeieeeeeeeseesssesseeeseesseessssssssssssssssssssssssssesssssssssssssesssneens 91
5.2.29 HDFQL_SUBCURSOR_GET_SIZErveeeeeeeeeeeesseeeseeeseesseesseesssessesssssesseesssssssssssssessneens 92
5.2.30 HDFQL_CURSOR_GET w..ooooveeeeeeeeeseesseesseees e eesses s sssssss s esssssssss s sesessssssssssssseessnsens 94

Version 2.0.1 ii

Hierarchical Data Format query language (HDFql) Reference Manual

Version 2.0.1

5231

5.2.32

5.2.33

5.2.34

5.2.35

5.2.36

5.2.37

5.2.38

5.2.39

5.2.40

5.241

5.2.42

5.2.43

5.2.44

5.2.45

5.2.46

5.2.47

5.2.48

5.2.49

5.2.50

5.251

5.2.52

5.2.53

5.2.54

5.2.55

5.2.56

5.2.57

HDFQL_SUBCURSOR_GETeuoveereeeseeoseeseseessseeeeseesssssssssessseesssssssssssessssessssssssssssessssessssessssenes 95
HDFQL_CURSOR_GET_TINYINT .o.oooveereeeeeeeesieeseeeseeesseesesseseseesssesesssesessssesesssssssessessssessssessssenes 9%
HDFQL_SUBCURSOR_GET_TINYINT ...ocvverveerieoreeeseesseessssessseessseessssssesssseseesssessssse e ssssessseeees 97
HDFQL_CURSOR_GET_UNSIGNED_TINYINT w...coovvorveermeereesseesesssssesssssessssesssssssesssssessssssssees 99
HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINT.......oomveemreerrreseeeseesessssesssssesesssssssssssesessnseenns 100
HDFQL_CURSOR_GET_SMALLINTcovverrverreeeeeeeseeessessessesessasssssssssssssssssssssssssssssssssssessssnsenons 101
HDFQL_SUBCURSOR_GET_SMALLINTveuvveeereeereesseessseessssssssessssessssssssssssssssssssssssesssnseenns 103
HDFQL_CURSOR_GET_UNSIGNED_SMALLINTcvverreereeeeeeesseessssessseesssssssssssesssssssssesnseeons 104
HDFQL_SUBCURSOR_GET_UNSIGNED_SMALLINToooveereereeeseeeessseesssessseessessssssssseesneeons 105
HDFQL_CURSOR_GET _INToeooeeeeeeeeeeseeessessseessssssssssssessssssassssssssssssssssssssssessssssssssssesssanennns 107
HDFQL_SUBCURSOR_GET _INT w..ooovveereereeessseeeseessssesssssssssessessssssenons 108
HDFQL_CURSOR_GET_UNSIGNED_INT.....ouuvvereeeeeeeeeessseessessssssssssessssssssssssessssessssssessssnennns 109
HDFQL_SUBCURSOR_GET_UNSIGNED_INTvveeveeeeeeeeeeeeeeseseeseseessseeessesseesssesssessseeesseens 110
HDFQL_CURSOR_GET_BIGINTcovveeeeeeeeeeeeeseseeseeeesssee s sese s sesssesesssse s ssse s esee s 112
HDFQL_SUBCURSOR_GET BIGINTeeevvereeeeeeeeeeessseeseseesesessseessssesssessssesssessseessssesseessseens 113
HDFQL_CURSOR_GET_UNSIGNED_BIGINTccvveereerreenreeeseeessssessseesssssssssesssssssssssssesssnseeans 115
HDFQL_SUBCURSOR_GET_UNSIGNED_BIGINTcveoveeeeeeeeeeeeeeeseeeseseeseseessesseessseeseeessees 116
HDFQL_CURSOR_GET_FLOATooovveoeeeeeeeeeeeeeseeessseesssassssnsesans 117
HDFQL_SUBCURSOR_GET_FLOAToveoreeeereeeseesssesssssssssessssssssssssssssssssssssessssssssssssssassssssenans 118
HDFQL_CURSOR_GET_DOUBLEcovveereeeeeeeeeeeesssesssssssessessssssssssssssssssssssssssssssssssssssessssnssnans 120
HDFQL_SUBCURSOR_GET_DOUBLE.............oveerreerreessesssssessssssssssssssssssssssssssssnsssssssesssnsenans 121
HDFQL_CURSOR_GET_CHARveovveereeeseesseessseessssesssssssessessssennns 122
HDFQL_SUBCURSOR_GET_CHARvverreerereeseseeseseesseeesseeesesessssesessesssss s ssssssssssses s 124
HDFQL_VARIABLE_REGISTERcovveeeeerseeseseeseseessseesseesssesesssssssssssssessssssssssssssssssssssss s 125
HDFQL_VARIABLE_UNREGISTERvveereerieeeeseeseseesseesssseesessessssssssssssssssssesssssssssssssssssessseenns 127
HDFQL_VARIABLE_GET_NUMBERoveorvereeeeeeeeseessseesseeesssesssssssssesssssssssssseesssssesssseseesseens 129
HDFQL_VARIABLE_GET_DATA_TYPEocovveiveeeeeeeeeeeseeesseeesesesssss e sssss s s es s 130
iii

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.58 HDFQL_VARIABLE_GET_COUNT ...cooveeeeeeeeeseeeseeeseesseessseesssesessesssseessseesssessssesssssesssessssessnees 131
5.2.59 HDFQL_VARIABLE_GET_SIZE w..oooveeeveeeeeeeeeeseesseeesseeesseeessseessseesssesssseessseesssessssesssssssssessseesssees 132
5.2.60 HDFQL_VARIABLE_GET_DIMENSION_COUNToeurveereeeeeeseeeseseeesseeessseesseeesseesssesesseessseeesnees 134
5.2.61 HDFQL_VARIABLE_GET_DIMENSIONoverrveeeeeeseeeeneeeessessseessssssssssssssssssssssssssssssssnnees 135
5.2.62 HDFQL_MPI_GET_SIZE ...ouveoreeereeeeeeeeseeesseessessssessees 136
5.2.63 HDFQL_MPI_GET_RANKoorveereeeeieeseeessesesesesssees 137
5.3 EXAMPLES «..oooveeoeeteeeoseeeesseesseesssesssessssssssesssssssessssessssessssesss s sssessssessssessssessssessssssssesssssessssesseensesees 138
ST 5 ol 138
T 302 o OO 141
5.3.3 JAVA oottt 144
5.3.4 PYTHON ..ooooeeceeeeeeseeeseesseseeseees e es s ssessssesss s ss s ssesss s s s sses s essssssssssssesssenssessessssnnees 147
5.3.5 CH covooveeoeeeeseeeeseeeessses e s s se s s s ettt enees 149
5.3.6 FORTRANooumveeeeeeseeeeseessseesseeesseess e s eeesssesssesssseeseseesesesseeesseeesseeesseess s ssseeesseeesssessseeeseesssees 152
T T SO 155
5.3.8 OUTPUT coooooeeeeeeeeeees oo eeees e es s es e es s es e eseeees s es s eesseeesseeesseeeseesenees 157
6. LANGUARGEccuiiiiiiiiiiieiitiieiieiieteeetesiastescaestestantassesstsstastossassssstassassssssastassessssssassassasssnssassas 159
8.1 DATATYPES .ooooeeoeeoeeeeseeeseeeseeses s eesssessss s ss e ses s sessesss s s ses s see s es s es s sessssessssesssees s sessssessesssssees 162
.11 TINYINT oo ee s se e ss s ss s ss s ss s s essses s s ss s es e esssesssesseessesenees 164
6.1.2 UNSIGNED TINYINT w.ooooovereeoeeeoeseeeeseeesseeseseesesssesssssesssssssssssssssssssssssssssssssssssssesssessssssssssnees 165
B.1.3 SIMIALLINT ..o se e sss s se s e s esss s s e s s s s es s s ssesseesseenees 166
6.1.4 UNSIGNED SMALLINT ...ooovveerveereeeesesesesesessesssesssssssssssssssssssssssssssnssssssssssssnsssnsssnssssssssnsees 166
B.1.5 INT eoooeeeoeeetceeeceeeeeeseesesesssseses s ssesss st ss s ss s ss s ss s ss s ss s ss s ssee st e e s e ees s sn e snnnees 167
B.1.6 UNSIGNED INT...ooovveoveereeseeeieseeesssessssessssessssesssessssssssssssssssssssssnsssesssssssssssnsssnsssesssnsssnsoes 168
B.1.7 BIGINT wooveeoeeeoceeeeeeeeseeseseseesesesseesssesssesssesssses s s ssessssesssesssesssnsssnsssnessessssesssnsssnssnnsssnsens 168
6.1.8 UNSIGNED BIGINT ...oovvorveeerveeseeaseeeeseseesessessssesssessssssssssssssssssnsssnsssnsssssssssssnssssnsssnsssnsssnsees 169
B.1.9 FLOAT .ottt eeeeseeseseseseeesssesssessses s ssesss s ssesss s st se e s e s esssnessesssesssnsssessnnssnnnens 170
B.1.10 DOUBLEoeooveeeeeeceesseesesseesseesseessssssssessssessssssssssssssssnsssnsssnsssssssnsssnssssnsssnsssnsssnsssnsees 170
Version 2.0.1 iv

Hierarchical Data Format query language (HDFql) Reference Manual

6.2

6.3

6.4

Version 2.0.1

B.1.11 CHAR e a e a e 171
6.1.12 VARTINYINT ettt s ab s s aa e e s b s e e s 171
6.1.13 UNSIGNED VARTINYINT ..eoitiiiiiiiiiinin it 172
6.1.14 VARSIMALLINT .ottt bbb s ba e saae s 173
6.1.15 UNSIGNED VARSMALLINT ..coutiiitiiiii ittt 174
6.1.16 VARINT ..ottt bbb 174
6.1.17 UNSIGNED VARINT ..ottt ettt 175
6.1.18 VARBIGINT ..ottt bbb s s a e b e ra s 176
6.1.19 UNSIGNED VARBIGINToetiiiiiiiiiiiiii ittt s 176
6.1.20 VARFLOAT ..ottt bbb bbb e s b e s eba e s bbb e s b e rae s 177
6.1.21 VARDOUBLE ..ottt 178
6.1.22 VARCHAR ... oottt bbb e a e ra s 178
6.1.23 OPAQUE ...ttt s a e s a s e e s ean 179
POST-PROCESSING ...cciiiiiiiiiiiiiiniitc ittt a e e s ab s e e s aa e e e s saba e e s snna s 180
6.2.1 ORDER ...ttt s s a e s a e e s eans 180
B.2.2 TOP ..ot e 183
6.2.3 BOTTOM. oottt bbb bbb s e aae s 185
6.2.4 FROM TO ..ciiiiiiiiiiiiiii it sb s b e nae s 187
6.2.5 STEP .o s 189
REDIRECTINGottt s e b e s aa e s sab s st res 191
6.3.1 FROM ..ot e s 191
6.3.2 INTO e 198
DATA DEFINITION LANGUAGE (DDL)...cttrtteuterienieniteteniesieeee e ste st estestestesseesessesbesasensessesseensensessesneensenses 204
6.4.1 CREATE DIRECTORY ...ttt ab s aa s aa e 204
6.4.2 CREATE FILE.. ..o 205
6.4.3 CREATE GROUPcuiiiiiii i 207
6.4.4 CREATE DATASET ..o 209
v

Hierarchical Data Format query language (HDFql) Reference Manual

6.5

6.6

6.7

Version 2.0.1

6.4.5 CREATE ATTRIBUTEooooveeeeoseeoeseeeseesseeeseesseesseesssssssssssessssesssssssssssssessssessssesessssesssssssessnees 215
6.4.6 CREATE [SOFT | HARD] LINK ...oveorveeeeeeeeeeseeseseeeeseeesseeeseessseesssessssessssessseesssessssesssssesssessseessnees 218
6.4.7 CREATE EXTERNAL LINK w..oooveoeveeeeeeeeeeeeeeeseeesee e eeeeseeeesesssseessseesssesssssessssesssesessesssssesssessssessnees 220
6.4.8 ALTER DIMENSIONoooveemrveeeeeeseeeesessseeessssessnsssssssssssssees 222
6.4.9 RENAME DIRECTORYoovvorveereeeseeesasasessessssessssssssssssssssssssssesssssssssssssssssssssssssssssssssssssees 224
6.4.10 RENAME FILE cooooovvooveoseeeeeeeseeesseesssessssessssessssssssssssssssnsssesssssssssssssssssssssssssssnsssssssnsees 225
6.4.11 RENAME [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK] coooovvveerrerrrennes 226
B.8.12 COPY FILE wooooveeoeeeceeeeeeeeseeeeseeesseesssssssessssesssssssssssessses s esssesssessssssssssssssssessssesssnsssnnses 228
6.4.13 COPY [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK]......ovveorvererreereennes 229
6.4.14 DROP DIRECTORYooomrverrieeseeessesesesssssessssessees 231
B.4.15 DROP FILE ..oooveeoeeereeeseeesseesseeesseesssssssssessssesssesssesssessssssssnees 232
6.4.16 DROP [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK] ..vooovveerverrieerieonees 233
DATA MANIPULATION LANGUAGE (DVIL).....coovveureeereeeseeeeseeseseeseseeesseesssee s seseaesseesesee s sesse s ssseeees 235
B.5.1 INSERT c.oveeoeeeeeeeeeeeseessseeseseeesseeseeesssessseesssessseeseseeseseesesesseeessseesseeesseeesseeessesesseeessseesseeeseesesees 235
DATA QUERY LANGUAGE (DQL) «...veooveeoeeeseeeseeseseeeeseeeeseeseseeseseeseseeesseesssesesseesesessesessesssssseesesse s esseesees 245
B.6.1 SELECT worveeoreeeoceeeeeeeseesessssessssessssessssesssessssessssesssesssesssesssesssesssesssesssessssssssnsssnsssessnnssnsnsees 245
DATA INTROSPECTION LANGUAGE (DIL)......veoreeereeeeeeeeeeesseessesessssssssessnes 256
6.7.1 SHOW FILE VALIDITY w.oooooereveeeeeoeseeeeseseseeessssesssesssssssssssssssssnssssssssssssssssssssnsssnsssnssssnssnnsens 257
6.7.2 SHOW USE DIRECTORY ...ooovvoreveereeesosasessessssessssessssssssssssssssssnsssssssssssssssssssssesssnsssssssnssnsnsons 258
B.7.3 SHOW USE FILE ..ooveooveeeeeeeeeeeseesesesessssessssessssesssesssssssssssssssssssesssnsssssssssssnssssnsssnssssssssssssnsons 260
B.7.4 SHOW ALL USE FILEooorveeoeveeeeeeeseeeesesesseessssesssesssnssssssssssssssssssssssssssssssssssnssssnsssnsssnssnsnsons 261
6.7.5 SHOW USE GROUP........cveoeeeeeeosseeoeseesseesseesseesssessesssssssessssessnees 263
6.7.6 SHOW [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK].....covveereeerreeriennes 264
B.7.7 SHOW TYPE oo eeeseees e ss e esssssss s ss s as s es s es s es s es e essssesssessessssesnees 271
6.7.8 SHOW DATA TYPE w.ooovooeeoeeeoeeeeeseeeseeeseees e essessssessessssss s essessssssssssss s s ssssesesssssssssessessnees 273
6.7.9 SHOW ENDIANNESSoovvoveereeeseeeseeeseeeseesesesssssssessssssssessssesssssssssssssssssssssssssssssssesssssssssssees 275
6.7.10 SHOW CHARSEToooooeeeeeeoseeeseeesseeseees e esssssssessssssssssssssssesss s ssssss s s ssssssssesssssssessssesenees 277
vi

Hierarchical Data Format query language (HDFql) Reference Manual

6.8

Version 2.0.1

6.7.11 SHOW STORAGE TYPE ..ottt 278
6.7.12 SHOW STORAGE ALLOCATIONcoiiiiiiiiiiiiiii ittt 280
6.7.13 SHOW STORAGE DIMENSIONcoiiiiiiiiiiiiiiiiiiiiiiiic i 282
6.7.14 SHOW DIMENSION.... .ottt bbb 283
6.7.15 SHOW MAX DIMENSIONcoiiiiiiiiiiiiiiiiiii it 285
6.7.16 SHOW ORDER.....coiitiiiiiiiiiiiicc bbb ba e s 287
6.7.17 SHOW TAG ..ottt ba e s bb e s s b e e s b e e s bae s 289
6.7.18 SHOW FILL TYPE ...ttt 291
6.7.19 SHOW FILL VALUE ...ttt b s s 293
6.7.20 SHOW FILE SIZE ..ottt 295
6.7.21 SHOW [DATASET | ATTRIBUTE] SIZE......ccoiiiiiieieienrenieeeeenie et 296
6.7.22 SHOW HDFQL VERSION......ciiiiiiiiiiiiiiiiiiticriic ittt s 298
6.7.23 SHOW HDF5 VERSIONcciiiiiiiiiiiiiiiiiiic ittt an e rae e 298
6.7.24 SHOW PCRE VERSIONciiiiiiiiiiiiiiiiiiic ittt aa e 299
6.7.25 SHOW ZLIB VERSIONoiiiiiiiiiiiiiiiiiitic ettt aa e rae e 300
6.7.26 SHOW MPIVERSIONooiiiiiiiiiiiiiii it 301
6.7.27 SHOW DIRECTORY ..ottt 302
6.7.28 SHOW FILE.....coiiiiiiiiiiiiitiictic s 304
6.7.29 SHOW EXECUTE STATUS ...oiiiiiiiiiiiitctc s 306
6.7.30 SHOW LIBRARY BOUNDS ..ottt 307
6.7.31 SHOW CACHEoiiiiiiii it s 309
6.7.32 SHOW FLUSH ...t s 311
6.7.33 SHOW DEBUG ..ottt ab e aaa e 312
MISCELLANEQOUS ... s a e s aa b e s ara s 314
6.8.1 USE DIRECTORY ...ttt aa e aaa e 314
6.8.2 USE FILE....iiiiiiiiiii e 315
6.8.3 USE GROUPoiiiitii e bbb a e 318

vii

Hierarchical Data Format query language (HDFql) Reference Manual

B.8.4 FLUSH ..ttt e e e e et e e e e et et e e e e r et e e e e e e nrrrneeeeaeaas 320

B.8.5 CLOSE FILE ettt ettt ettt e e e e e e et e e e e e e anb b et e e e e e e s nnnbreeeeeeeeaanraraeeeeaean 321

6.8.6 CLOSE ALL FILEeeeeeeeee ettt ettt ettt e et e e e e e e e e e e e e e s s mnnbeaeeeeeesssnnrnaeeeaaens 322

5.8.7 CLOSE GROUP ...ttt sttt sttt st r e e n e n e sr e et enr e sneeseerenne 323

6.8.8 SET LIBRARY BOUNDSooiiiiiiteiiiiiee ettt sttt s e st e s s ee e s s nee e e samnneeesannneessans 325

5.8.9 SET CACHE ...ttt r e s bt n e s r e e be et e r e sr e e e et e nr e s neeneenene 326
6.8.10 SET FLUSH ...ttt sttt s r e st n e sr e e n e r e s ne e ne e 330
6.8.11 SET DEBUGeeiiiiiiiieitee ettt ettt e st s e e s e e s bt e s s mrneesaneeeesamreeeesannneesnne 331
B.8.12 RUN ettt sttt st r e s bt e e e s Rt s bt et e R e e Rt e b e et e R e e Rt e ne e b e R e eneennenre e 331
L]0 Y Y 3 N 333
Application Programming INtErface (API)coieiiiiiiie ettt ettt et te e s te e s bae s saeeesateesnbeeenees 333
L Ay < IO = PP TP PP PP 333
LT T PP 333
D=1 = = PO PP 333
D | = I Y/ o TP PP U PPPP R OPPTTPPPP 334
GIOUD ettt s 334
Hierarchical Data FOrMat (HDF)covuii oottt ettt ee e e e et e e e e eaba e e e e eabeeeesbbeeeesabaesesentaeeeesrenens 334
17 T=T L - o S 334
Message PasSiNg INTEITACE (IMIPI) ...ccuviieiie ettt e tte e e e et e et e e ta e e sa b e e sateesntaesnteeesaeesnteesnteeenteeenses 334
(0] o1 -1 1 To] o OO PP P P TP PPP PP 335
Parallel HDFS (PHDFS)......ccuiiiiiiiiiiniieietetest ettt st et a e sr e s nesa e sn e s nenne 335
PO o P OSSN i 335
RESUIT SEE .ttt h e r e bt r e s r e s n e r e s r e renre 335
RESUIT SUBSEL ...ttt st r e st r e s bt nesresr e erenre 336
Y0 ool U o T TSP P PP P TP PR PP PPN 336

Version 2.0.1 viii

Hierarchical Data Format query language (HDFql) Reference Manual

LIST OF TABLES

BT o] (o Rl o [0 oo oo o 1y = o €3N [o I R 49
Table 5.2 — HDFql constants in C and their corresponding definitions in CH+.......ccccoiiiiiiiiiiiiiniecee e 50
Table 5.3 — HDFql constants in C and their corresponding definitions in Java........cccocieiviiiiiiinieiniic e 50
Table 5.4 — HDFql constants in C and their corresponding definitions in Pythonccccccooiiiniiiniiinieee 51
Table 5.5 — HDFql constants in C and their corresponding definitions in CH.........cccceeeviieieeiiiiee e e 51
Table 5.6 — HDFql constants in C and their corresponding definitions in Fortran.........cccccoeecieiirciiee i 52
Table 5.7 — HDFql constants in C and their corresponding definitions in Rcoocveevviiiiiiinieiniececcee e 52
Table 5.8 = HDFQI FUNCLIONS IN C..eeeieieeieeeiee ettt ettt ettt et e e s ate e st e e e baesabeessbeesabaeenbeesseaennseesnsaesnses 55
Table 5.9 — HDFql functions in C and their corresponding definitions in CH+........cccooiiiiiiiiiiiiniceeee e 56
Table 5.10 — HDFqgl functions in C and their corresponding definitions in Javaccccccvevieiieiicce e 56
Table 5.11 — HDFql functions in C and their corresponding definitions in Python.........ccccovviiiiiiiiiinneee 57
Table 5.12 — HDFqgl functions in C and their corresponding definitions in CH..........cceoveiveiiiiiiei e e 57
Table 5.13 — HDFqgl functions in C and their corresponding definitions in FOrtranccccecvveeeeiieeeecciee e 58
Table 5.14 — HDFqgl functions in C and their corresponding definitions iN R.........ccovviiiiiiiiiiei e 58
Table 6.1 — HDFql operations text formatting CONVENTIONScccuviiiieiiie e e e sree e eaes 159
Table 6.2 — HDFQl OPEIALIONS ...ueiiieiiieeeeieee ettt ettt e ettt e eeett e e esta e e e e tbaeeeeareeeesabaeseesasaeeeasseeaesssaeeeaassasesassesensnraneennns 162
Table 6.3 — HDFql data types and their corresponding definitions in HDF...........ccceeeoiiviiieiiee et 164
Table 6.4 — HDF(l pOSt-ProCesSiNg OPLIONSuviieeiiiieecciiee et este e e et e e s st te e e e str e e e s sataeeessteesesnseeeesnteseesssneessnsenananns 180
Table 6.5 — HDF(l redir@Cting OPLiONSvvii it s e et e e e e e e st e e e et a e e eseteesesntaeeeenntaeessnneeeessnsenananns 191

Version 2.0.1 ix

Hierarchical Data Format query language (HDFql) Reference Manual

LIST OF FIGURES

Figure 3.1 — lllustration of the command-line interface “HDFQICLI”coooveiieiiieee ettt eree e e eare e e 31
Figure 4.1 — Linearization of a two dimensional dataset into a (one dimensional) CUrsorc.cccoeceerviiinieencieenieeene 36
Figure 4.2 — Cursor populated with data from dataset “my_datasetl”ccceeriiiiiiinii e 39
Figure 4.3 — Cursor populated with data from dataset “my_datasetl”.........ccoceiriiiiiiiinii e 40
Figure 4.4 — Cursor populated with data from dataset “my_dataset2”c.cceeererieiiiee et 41
Figure 4.5 — Cursor and its subcursor populated with data from dataset “my_dataset3”ccccceevveievvveeevceee e, 42
Figure 4.6 — Cursor and its subcursors populated with data from dataset “my_datasetd”ccccovvvrvivincienieenneennne 43
Figure 4.7 — Cursor and its subcursors populated with data from dataset “my_dataset5”......c.ccccovvvrriiinieenieennieennn 44

Version 2.0.1 X

1. INTRODUCTION

HDFqgl stands for “Hierarchical Data Format query language” and is the first tool that enables users to manage HDF5?
files through a high-level language. This language was designed to be simple to use and similar to SQL thus
dramatically reducing the learning effort. HDFql can be seen as an alternative to the C API (which contains more than
400 low-level functions that are far from easy to use!) and to existing wrappers for C++, Java, Python, C#, Fortran
and R for manipulating HDF5 files. Whenever possible, it automatically uses parallelism to speed-up operations

hiding its inherent complexity from the user.

As an example, imagine that one needs to create an HDF5 file named “myFile.h5” and, inside it, a group named
“myGroup” containing a (ZLIB) compressed dataset named “myDataset” of data type float with an initial value of

12.4. In HDFq]l, this can easily be implemented as follows:

create file myFile.h5
use file myFile.hb

create dataset myGroup/myDataset as float enable zlib values ()

In contrast, using the C APl on the same example is quite cumbersome:

hid t file;

hid t group;
hid t dataspace;
hid t property;
hid t dataset;
hsize t dimension;
float value;

file = H5Fcreate('"m

File.h5", H5F ACC EXCL, H5P DEFAULT, H5P DEFAULT);

group = H5Gcreate(file, '"n

", H5P DEFAULT, H5P DEFAULT, H5P DEFAULT);

! Hierarchical Data Format is the name of a set of file formats and libraries designed to store and organize large amounts of numerical data. It is
supported by The HDF Group, whose mission is to ensure continued development of HDF technologies and the continued accessibility of data currently
stored in HDF. Please refer to the website http://www.hdfgroup.org for additional information.

Version 2.0.1 Page 1 of 336

http://www.hdfgroup.org/

Hierarchical Data Format query language (HDFql) Reference Manual

dimension = 1;

dataspace = H5Screate simple(l, &dimension, NULL);

property = H5Pcreate (H5P DATASET CREATE);

H5Pset chunk (property, 1, &dimension);

H5Pset deflate(property, 9);

dataset = HS5Dcreate(group, "myDataset'", H5T NATIVE FLOAT, dataspace, H5P DEFAULT,

property, HS5P DEFAULT);

value =

H5Dwrite (dataset, H5T NATIVE FLOAT, H5S ALL, H5S ALL, H5P DEFAULT, &value);

Version 2.0.1 Page 2 of 336

2. INSTALLATION

The official website of the Hierarchical Data Format query language (HDFql) is http://www.hdfgl.com. Here, the
most recent documentation and examples that illustrate how to solve disparate use-cases using HDFgl can be found.
In addition, in the download area (http://www.hdfgl.com/#download) all versions of HDFql ever publicly released
are available. These versions are packaged as ZIP files, with each one meant for a particular platform (i.e. Windows,
Linux or macQS), architecture (i.e. 32 bit or 64 bit), compiler (Microsoft Visual Studio or Gnu Compiler Collection
(GCC)) and — optionally — MPI library (i.e. MPICH or Open MPI). When decompressed, such ZIP files typically have the

following organization in terms of directories and files contained within:

HDFgl-x.y.z
|
+ example (directory that contains C, C++, Java, Python, C#, Fortran and R examples)
|
+ include (directory that contains HDFql C and C++ header files)

+ 1ib (directory that contains HDFql C release/debug static and shared libraries)
+ bin (directory that contains HDFqgl command-line interface and a proper launcher)
+ wrapper (directory that contains HDFql wrappers)

| \

| + cpp (directory that contains HDFgql C++ wrapper)

| \

| + java (directory that contains HDFql Java wrapper)

| + python (directory that contains HDFql Python wrapper)

| + csharp (directory that contains HDFgl C# wrapper)

| + fortran (directory that contains HDFql Fortran wrapper)

| + R (directory that contains HDFgl R wrapper)

+ doc (directory that contains HDFql reference manual)

Version 2.0.1 Page 3 of 336

http://www.hdfql.com/
http://www.hdfql.com/#download

Hierarchical Data Format query language (HDFql) Reference Manual

- LICENSE.txt (file that contains information about HDFgl license)
|

- RELEASE.txt (file that contains information about HDFql releases)
|

- README.txt (file that contains succinct information about HDFql)

The following sections provide concise instructions on how to install HDFgl in the different platforms that it currently

supports — namely Windows, Linux and macOS.

2.1 WINDOWS

e Download the appropriate ZIP file according to the HDFql version, architecture and compiler of interest from
http://www.hdfgl.com/#download. For instance, if the HDFgl version of interest is 1.0.0 and it is to be used in a
machine running Windows 32 bit and, eventually, be linked against C or C++ code using the Microsoft Visual

Studio 2010 compiler then the file to download is “HDFql-1.0.0_Windows32_VS-2010.zip”.

e Unzip the downloaded file using Windows Explorer in-build capabilities or a free tool such as 7-Zip

(http://www.7-zip.org).

2.2 LINUX

e Download the appropriate ZIP file according to the HDFql version, architecture, compiler and (optional) MPI
library of interest from http://www.hdfgl.com/#download. For instance, if the HDFql version of interest is 1.4.0
and it is to be used in a machine running Linux 64 bit and, eventually, be linked against C, C++, or Fortran code
using the GCC 4.9.x compiler with no need to work with HDFS5 files in parallel (using an MPI library) then the file
to download is “HDFql-1.4.0_Linux64_GCC-4.9.zip”".

e Unzip the downloaded file using the Archive Manager or the KArchive (if in GNOME or KDE respectively), or by
opening a terminal and executing “unzip <downloaded_zip_file>". If the unzip utility is not installed, it can be

done by executing from a terminal:

e |n a Red Hat-based distribution:

Version 2.0.1 Page 4 of 336

http://www.hdfql.com/#download
http://www.7-zip.org/
http://www.hdfql.com/#download

Hierarchical Data Format query language (HDFql) Reference Manual

sudo yum install unzip

e In a Debian-based distribution:

sudo apt-get install unzip

2.3 MACOS

e Download the appropriate ZIP file according to the HDFql version, architecture, compiler and (optional) MPI
library of interest from http://www.hdfgl.com/#download. For instance, if the HDFql version of interest is 2.0.0
and it is to be used in a machine running macOS 64 bit and, eventually, be linked against C, C++, or Fortran code
using the GCC 4.9.x compiler with the need of working with HDF5 files in parallel using MPICH 3.2.x MPI library
then the file to download is “HDFql-2.0.0_Darwin64_GCC-4.9_MPICH-3.2.zip".

e Unzip the downloaded file using the Archive Utility or by opening a terminal and executing “unzip

<downloaded zip_file>". If the unzip utility is not installed, it can be done by executing from a terminal:

sudo port install unzip

Version 2.0.1 Page 5 of 336

http://www.hdfql.com/#download

3. USAGE

After following the instructions provided in the chapter INSTALLATION, HDFql is ready for usage. It can be used
programmatically in C, C++ and Fortran through static and shared libraries; in Java, Python, C# and R through
wrappers; and finally, through a command-line interface named “HDFgICLI”. Moreover, in Linux and macOS,
programs written in these programming languages may manipulate HDF5 files both in serial and in parallel®, as
distributions of HDFql built with the serial HDF5 library and the parallel HDF5 (PHDF5) library are available for these
platforms. The subsequent sections provide guidance on usage and basic troubleshooting information to solve issues

that may arise.

31 C

HDFqgl can be used in the C programming language through static and shared libraries. These libraries are stored in

the directory “lib”. The following short program illustrates how HDFql can be used in such language.

// include HDFgl C header file (make sure it can be found by the C compiler)
#include "HDFgl.h"

int main(int argc, char *argv[])

{
// display HDFql version in use

printf ("HI version: %s\n", HDFQL VERSION)

// create an HDF5 file named "my file.h5"

hdfql execute("CREATE FILE my file.h5");

// use (i.e. open) HDF5 file "my file.h5"

! Through MPICH (or, alternativately, one of its ABI compatible derivative libraries such as Intel MPI, Cray MPT, MVAPICH2, Parastation MPI) or Open
MPI. Both MPICH and Open MPI are freely available, high performance and widely portable implementations of the Message Passing Interface (MPI), a
standard for message-passing for distributed memory applications used in parallel computing. Please refer to the website https://www.mpich.org and
https://www.open-mpi.org for additional information.

Version 2.0.1 Page 6 of 336

https://www.mpich.org/
https://www.open-mpi.org/

Hierarchical Data Format query language (HDFql) Reference Manual

hdfql execute("USE FILE my file.hb5");

// create an HDF5 dataset named "my dataset" of data type int

hdfql execute ("CREATE DATASET my dataset AS INT");

return EXIT SUCCESS;

Assuming that the program is stored in a file named “example.c”, it must first be compiled before it can be launched

from a terminal. To compile the program against the HDFgl C static library:

e In Windows? using Microsoft Visual Studio, by executing from a terminal:

cl.exe example.c /I<hdfgl include directory> <hdfql 1lib directory>\HDFql.lib /link
/LTCG /NODEFAULTLIB:libcmt.lib

e In Linux and macOS using Gnu Compiler Collection (GCC), by executing from a terminal:

e With an HDFgl non MPI-based distribution:

gcc example.c -fopenmp -I<hdfql include directory>

<hdfgl 1ib directory>/1ibHDFql.a -1m -1dl

e With an HDFqgl MPI-based distribution:

gcc example.c -fopenmp -I<hdfql include directory>

<hdfgl 1ib directory>/1ibHDFql.a -L<mpi 1lib directory> -Impi -Im -1d1

To compile the same program against the HDFql C shared library:

e In Windows using Microsoft Visual Studio, by executing from a terminal:

2 When compiling a program against the HDFql C static library in Windows, the functions “hdfql_initialize” and “hdfql_finalize” must be explicitly called
by the program when starting and finishing respectively (otherwise an error may occur such as a segmentation fault). Of note, these functions do not
need to be called when compiling the program against the HDFql C shared library as this is automatically done by the library itself.

Version 2.0.1 Page 7 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

cl.exe example.c /I<hdfgl include directory> <hdfql 1lib directory>\HDFgl dl1.1ib

e In Linux and macOS using GCC, by executing from a terminal:

e With an HDFgl non MPI-based distribution:

gcc example.c -I<hdfgl include directory> -L<hdfql 1ib directory> -1HDFgl -1Im -
1d1

e With an HDFqgl MPI-based distribution:

gcc example.c —-I<hdfgl include directory> -L<hdfgl 1lib directory> -
L<mpi 1lib directory> -1HDFgl -Impi -1m -1dl

Of note, debug versions of the HDFgl C static and shared libraries are also available. These are stored in the directory
“debug” found under the directory “lib”. To compile C programs using debug libraries, the instructions described in
the above bullet points should be followed with two modifications: (1) the directory storing the libraries should be
updated (“<hdfql_lib_directory>\debug” in Microsoft Visual Studio; “<hdfql_lib_directory>/debug” in GCC); (2) the
suffix “D” should be added to the name of the libraries (“HDFqID.lib” and “HDFqgl_dIID.lib” in Microsoft Visual Studio;
“libHDFqID.a” and “-IHDFqID” in GCC).

In case the program does not compile, most likely a C compiler is not installed. If a C compiler is missing, the solution

is:

e In Windows, download and install a free version of Microsoft Visual Studio from the website

https://www.visualstudio.com/downloads.

e In Linux, install the GCC C compiler by executing from a terminal:

e |n a Red Hat-based distribution:

sudo yum install gcc

Version 2.0.1 Page 8 of 336

https://www.visualstudio.com/downloads

Hierarchical Data Format query language (HDFql) Reference Manual

e In a Debian-based distribution:

sudo apt-get install gcc

e In macO§, install the GCC C compiler by executing from a terminal (if xcode-select does not support the
parameter “--install” (due to being outdated), download and install the Command-Line Tools package from the

website http://developer.apple.com/downloads which includes GCC instead):

xcode-select --install

In case the compiled program does not launch, most likely the HDFql C shared library and/or the MPI shared library

was not found (these are needed to launch the program). The solution is:

e In Windows, add the directory where the file “HDFql_dIl.dIlI” is located to the environment variable “PATH” by

executing from a terminal:

set PATH=<hdfqgl 1lib directory>;%PATH%

e In Linux, add the directories where the files “libHDFqgl.so” and (optionally) “libmpi.so” are located to the

environment variable “LD_LIBRARY_PATH” by executing from a terminal:

e With an HDFgl non MPI-based distribution:

export LD LIBRARY PATH=<hdfql 1ib directory>:$LD LIBRARY PATH

e With an HDFql MPI-based distribution:

export

LD LIBRARY PATH=<hdfgl 1ib directory>:<mpi_ 1lib directory>:$LD LIBRARY PATH

Version 2.0.1 Page 9 of 336

http://developer.apple.com/downloads

Hierarchical Data Format query language (HDFql) Reference Manual

e In macOS, add the directories where the files “libHDFql.dylib” and (optionally) “libmpi.dylib” are located to the

environment variable “DYLD_LIBRARY_PATH”3 by executing from a terminal:

e With an HDFgl non MPI-based distribution:

export DYLD LIBRARY PATH=<hdfql 1lib directory>:$DYLD LIBRARY PATH

e With an HDFgl MPI-based distribution:

export

DYLD LIBRARY PATH=<hdfgl lib directory>:<mpi_lib directory>:S$DYLD LIBRARY PATH

3.2 C++

HDFqgl can be used in the C++ programming language through static and shared libraries. These libraries are stored in
the directory “cpp” found under the directory “wrapper”. The following short program illustrates how HDFgl can be

used in such language.

// include HDFql C++ header file (make sure it can be found by the C++ compiler)
#include <iostream>

#include "HDFql.hpp"

int main(int argc, char *argv[])
{
// display HDFql version in use
std::cout << "HDFqgl version: " << HDFqgl::Version << std::endl;

// create an HDF5 file named "my file.h5"

HDFqgl::execute ("CREATE FILE my file.h5");

// use (i.e. open) HDF5 file "my file.h5"

HDFqgl::execute ("USE FILE my file.h5");

3 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the
environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProte
ction/ConfiguringSystemIntegrityProtection.html for additional information).

Version 2.0.1 Page 10 of 336

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql) Reference Manual

// create an HDF5 dataset named "my dataset" of data type int

HDFqgl::execute ("CREATE DATASET my dataset AS INT");

return EXIT SUCCESS;

Assuming that the program is stored in a file named “example.cpp”, it must first be compiled before it can be

launched from a terminal. To compile the program against the HDFql C++ static library:

e In Windows* using Microsoft Visual Studio, by executing from a terminal:

cl.exe example.cpp /EHsc /I<hdfqgl include directory>

<hdfqgl cpp wrapper directory>\HDFql.lib /link /LTCG /NODEFAULTLIB:libcmt.lib

e In Linux and macOS using Gnu Compiler Collection (GCC), by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

g++ example.cpp -fopenmp -I<hdfgl include directory>
<hdfgl cpp wrapper directory>/l1ibHDFql.a -1dl

o With an HDFqgl MPI-based distribution:

g++ example.cpp -fopenmp -I<hdfql include directory>
<hdfgl cpp wrapper directory>/l1ibHDFql.a -L<mpi 1lib directory> -Impi -1dl

To compile the same program against the HDFql C++ shared library:

e In Windows using Microsoft Visual Studio, by executing from a terminal:

4 When compiling a program against the HDFql C++ static library in Windows, the functions “HDFql::initialize” and “HDFq|::finalize” must be explicitly
called by the program when starting and finishing respectively (otherwise an error may occur such as a segmentation fault). Of note, these functions do
not need to be called when compiling the program against the HDFql C++ shared library as this is automatically done by the library itself.

Version 2.0.1 Page 11 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

cl.exe example.cpp /EHsc /I<hdfql include directory>
<hdfgl cpp wrapper directory>\HDFql dll.1lib

e In Linux and macOS using GCC, by executing from a terminal:

e With an HDFgl non MPI-based distribution:

g++ example.cpp -I<hdfqgl include directory> -L<hdfqgl cpp wrapper directory> -
1HDFgl -1d1

e With an HDFqgl MPI-based distribution:

g++ example.cpp -I<hdfqgl include directory> -L<hdfqgl cpp wrapper directory> -
L<mpi 1lib directory> -1HDFql -Impi -1dl

In case the program does not compile, most likely a C++ compiler is not installed. If a C++ compiler is missing, the

solution is:

e In Windows, download and install a free version of Microsoft Visual Studio from the website

https://www.visualstudio.com/downloads.
e In Linux, install the GCC C++ compiler by executing from a terminal:

e |n a Red Hat-based distribution:

sudo yum install gcc-c++

e In a Debian-based distribution:

sudo apt-get install g++

Version 2.0.1 Page 12 of 336

https://www.visualstudio.com/downloads

Hierarchical Data Format query language (HDFql) Reference Manual

e In macOS§, install the GCC C++ compiler by executing from a terminal (if xcode-select does not support the
parameter “--install” (due to being outdated), download and install the Command-Line Tools package from the

website http://developer.apple.com/downloads which includes GCC instead):

xcode-select --install

In case the compiled program does not launch, most likely the HDFgl C++ shared library and/or the MPI shared

library was not found (these are needed to launch the program). The solution is:

e In Windows, add the directory where the file “HDFql_dlIl.dIl” is located to the environment variable “PATH” by

executing from a terminal:

set PATH=<hdfqgl cpp wrapper directory>;3%PATH?%

e In Linux, add the directories where the files “libHDFqgl.so” and (optionally) “libmpi.so” are located to the

environment variable “LD_LIBRARY_PATH” by executing from a terminal:

e With an HDFgl non MPI-based distribution:

export LD LIBRARY PATH=<hdfql cpp wrapper directory>:$LD LIBRARY PATH

e With an HDFql MPI-based distribution:

export
LD LIBRARY PATH=<hdfgl cpp wrapper directory>:<mpi 1lib directory>:$LD LIBRARY P
ATH

Version 2.0.1 Page 13 of 336

http://developer.apple.com/downloads

Hierarchical Data Format query language (HDFql) Reference Manual

e In macOS, add the directories where the files “libHDFql.dylib” and (optionally) “libmpi.dylib” are located to the

environment variable “DYLD_LIBRARY_PATH”® by executing from a terminal:

e With an HDFgl non MPI-based distribution:

export DYLD LIBRARY PATH=<hdfql cpp wrapper directory>:$DYLD LIBRARY PATH

e With an HDFgl MPI-based distribution:

export
DYLD LIBRARY PATH=<hdfql cpp wrapper directory>:<mpi 1lib directory>:$DYLD LIBRA

RY PATH

3.3 JAVA

HDFgl can be used in the Java programming language through a wrapper named “HDFqgl.java”. This wrapper is
stored in the directory “java” found under the directory “wrapper”. The following short program illustrates how

HDFqgl can be used in such language.

// import HDFql package (make sure it can be found by the Java compiler/JVM)
import as.hdfqgl.*;

public class Example

{
public static void main(String args[])
{
// display HDFql version in use
System.out.println("HDFgl version: " 4+ HDFql.VERSION)

// create an HDF5 file named "my file.h5"

HDFql.execute ("CREATE FILE my file.hb5");

5 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the
environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProte
ction/ConfiguringSystemIntegrityProtection.html for additional information).

Version 2.0.1 Page 14 of 336

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql)

Reference Manual

// use (i.e.

open) HDF5 file "my file.h5"
HDFql.execute ("USE

// create an HDF5 dataset named "my dataset" of data type int
HDFqgl.execute ("CREATE

my dataset AS INT");

Assuming that the program is stored in a file named “Example.java”, it must first be compiled before it can be
launched from a terminal. The program can be compiled as follows:

javac -classpath <hdfql java wrapper directory> Example.java

In case the program does not compile, most likely the Java Development Kit (JDK) is not installed. If the JDK is
missing, the solution is to download

and install
http://www.oracle.com/technetwork/java/javase/downloads.

it from the website

The compiled program may be launched as follows:

java Example

In case the compiled program does not launch, most likely the HDFql Java wrapper and/or the MPI shared library
was not found (these are needed to launch the program). The solution is:

In Windows, add the directories where the files “HDFqgl.java” (i.e. the wrapper) and “HDFql.dIl" are located to
the environment variables “CLASSPATH” and “PATH” by executing from a terminal:

set CLASSPATH=<hdfgl java wrapper directory>;.;%CLASSPATH?%
set PATH=<hdfqgl java wrapper directory>\as\hdfql;$PATH$S

In Linux, add the directories where the files “HDFqgl.java”, “libHDFql.so” and (optionally) “libmpi.so” are located

to the environment variables “CLASSPATH” and “LD_LIBRARY_PATH” by executing from a terminal:
With an HDFgl non MPI-based distribution:

Version 2.0.1

Page 15 of 336

http://www.oracle.com/technetwork/java/javase/downloads

Hierarchical Data Format query language (HDFql) Reference Manual

export CLASSPATH=<hdfgl java wrapper directory>:.:$SCLASSPATH
export LD LIBRARY PATH=<hdfql java wrapper directory>/as/hdfql:$LD LIBRARY PATH

e With an HDFgl MPI-based distribution:

export CLASSPATH=<hdfgl java wrapper directory>:.:$SCLASSPATH
export
LD LIBRARY PATH=<hdfqgl java wrapper directory>/as/hdfql:<mpi 1lib directory>:$LD

_ LIBRARY PATH

e In macOS, add the directories where the files “HDFql.java”, “libHDFql.dylib” and (optionally) “libmpi.dylib” are
located to the environment variables “CLASSPATH” and “DYLD_LIBRARY_PATH”® by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

export CLASSPATH=<hdfgl java wrapper directory>:.:SCLASSPATH
export

DYLD LIBRARY PATH=<hdfql java wrapper directory>/as/hdfql:$DYLD LIBRARY PATH

e With an HDFql MPI-based distribution:

export CLASSPATH=<hdfqgl java wrapper directory>:.:SCLASSPATH

export

DYLD LIBRARY PATH=<hdfqgl java wrapper directory>/as/hdfqgl:<mpi lib directory>:$
DYLD LIBRARY PATH

6 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the
environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemintegrityProte
ction/ConfiguringSystemIntegrityProtection.html for additional information). Alternatively, the Java library path property “java.library.path” should be
set with the path where the HDFql shared library “libHDFql.dylib” is located when launching the program (e.g. java -
Djava.library.path=<hdfql_java_wrapper_directory>/as/hdfql my_program).

Version 2.0.1 Page 16 of 336

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql) Reference Manual

3.4 PYTHON

HDFgl can be used in the Python programming language through a wrapper named “HDFql.py”. This wrapper is
stored in the directory “python” found under the directory “wrapper”. The following short script illustrates how

HDFql can be used in such language.

import HDFgl module (make sure it can be found by the Python interpreter)

import HDFql

display HDFql version in use
print ("HDFql version: $s'" % HDFql.VERSION)

create an HDF5 file named "my file.h5"

HDFqgl.execute ("CREATE FILE my file.hb5")

use (i.e. open) HDF5 file "my file.h5"

HDFqgl.execute ("USE FILE my file.hb5")

create an HDF5 dataset named "my dataset" of data type int

HDFqgl.execute ("CREATE DATASET my dataset AS INT")

Assuming that the script is stored in a file named “example.py” it can be launched by executing the following from a

terminal:

python example.py

In case the script does not launch, most likely (1) the Python interpreter is not installed or (2) the HDFqgl Python
wrapper and/or the MPI shared library was not found (these are needed to launch the script). To fix the former
issue, download and install the Python interpreter from the website http://www.python.org/download. To fix the

latter issue:

e In Windows, add the directory where the file “HDFql.py” (i.e. the wrapper) is located to the environment

variable “PYTHONPATH” by executing from a terminal:

set PYTHONPATH=<hdfql python wrapper directory>;%PYTHONPATH%

Version 2.0.1 Page 17 of 336

http://www.python.org/download

Hierarchical Data Format query language (HDFql) Reference Manual

e In Linux, add the directories where the files “HDFgl.py” and (optionally) “libmpi.so” are located to the

environment variables “PYTHONPATH” and “LD_LIBRARY_PATH” by executing from a terminal:

e With an HDFgl non MPI-based distribution:

export PYTHONPATH=<hdfqgl python wrapper directory>:$PYTHONPATH

e With an HDFgl MPI-based distribution:

export PYTHONPATH=<hdfqgl python wrapper directory>:$PYTHONPATH
export LD LIBRARY PATH=<mpi lib directory>:$LD LIBRARY PATH

e In macOS, add the directories where the files “HDFgl.py” and (optionally) “libmpi.dylib” are located to the
environment variables “PYTHONPATH” and “DYLD_LIBRARY_PATH”” by executing from a terminal:

e With an HDFgl non MPI-based distribution:

export PYTHONPATH=<hdfgl python wrapper directory>:$SPYTHONPATH

e With an HDFql MPI-based distribution:

export PYTHONPATH=<hdfgl python wrapper directory>:$PYTHONPATH
export DYLD LIBRARY PATH=<mpi 1ib directory>:$DYLD LIBRARY PATH

Besides these steps, a scientific computing package named NumPy for Python must be installed when working with
user-defined variables (please refer to the function hdfql_variable_register for additional information). This package

can be found at http://www.scipy.org/scipylib/download.html along with instructions on how to install and use it.

7 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the
environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemintegrityProte
ction/ConfiguringSystemIntegrityProtection.html for additional information).

Version 2.0.1 Page 18 of 336

http://www.scipy.org/scipylib/download.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql) Reference Manual

3.5 C#

HDFgl can be used in the C# programming language through a wrapper named “HDFql.cs”. This wrapper is stored in
the directory “csharp” found under the directory “wrapper”. The following short program illustrates how HDFql can

be used in such language.

// use HDFgl namespace (make sure it can be found by the C# compiler)
using AS.HDFql;

public class Example
{
public static void Main(string []args)
{
// display HDFgl version in use

System.Console.WriteLine ("HDFqgl version: {0}", HDFql.Version);,;

// create an HDF5 file named "my file.h5"

HDFqgl.Execute ("CREATE FILE my file.hb5");

// use (i.e. open) HDF5 file "my file.h5"

HDFqgl.Execute ("USE FILE my file.h5");

// create an HDF5 dataset named "my dataset”" of data type int

HDFql .Execute ("CREATE DATASET my dataset AS INT");

Assuming that the program is stored in a file named “Example.cs”, it must first be compiled before it can be

launched from a terminal. In Windows, the program can be compiled as follows:

e Using Microsoft .NET Framework, by executing from a terminal:

csc.exe Example.cs <hdfgl csharp wrapper directory>*.cs

e Using Mono, by executing from a terminal:

Version 2.0.1 Page 19 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

mcs.bat Example.cs <hdfgl csharp wrapper directory>*.cs

In Linux and macQS, the program can be compiled using Mono by executing from a terminal (of note, Microsoft .NET

Framework does not support these platforms):

mcs Example.cs <hdfql csharp wrapper directory>/*.cs

In case the program does not compile, most likely a C# compiler is not installed. If a C# compiler is missing, the

solution is:

In Windows, download and install either Microsoft .NET Framework or Mono from the websites
https://www.microsoft.com/net/download/framework or http://www.mono-project.com/download,

respectively.

In Linux and macOS, download and install Mono from the website http://www.mono-project.com/download.

Depending on the platform, the compiled program may be launched as follows:

In Windows, by executing from a terminal:

Example.exe

In Linux and macOS, by executing from a terminal:

mono Example.exe

In case the compiled program does not launch, most likely the HDFgl C# wrapper and/or the MPI shared library was

not found (these are needed to launch the program). The solution is:

In Windows, add the directory where the file “HDFql.cs” (i.e. the wrapper) is located to the environment

variable “PATH” by executing from a terminal:

Version 2.0.1 Page 20 of 336

https://www.microsoft.com/net/download/framework
http://www.mono-project.com/download
http://www.mono-project.com/download

Hierarchical Data Format query language (HDFql) Reference Manual

set PATH=<hdfql csharp wrapper directory>;3%PATH%

e In Linux, add the directories where the files “HDFgl.cs” and (optionally) “libmpi.so” are located to the

environment variable “LD_LIBRARY_PATH” by executing from a terminal:

e With an HDFgl non MPI-based distribution:

export LD LIBRARY PATH=<hdfql csharp wrapper directory>:$LD LIBRARY PATH

e With an HDFqgl MPI-based distribution:

export
LD LIBRARY PATH=<hdfgl csharp wrapper directory>:<mpi lib directory>:$LD LIBRAR

Y PATH

e In macOS, add the directories where the files “HDFql.cs” and (optionally) “libmpi.dylib” are located to the

environment variable “DYLD_LIBRARY_PATH”® by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

export DYLD LIBRARY PATH=<hdfqgl csharp wrapper directory>:$DYLD LIBRARY PATH

e With an HDFqgl MPI-based distribution:

export
DYLD LIBRARY PATH=<hdfqgl csharp wrapper directory>:<mpi 1lib directory>:$DYLD LI

BRARY PATH

8 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the
environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemintegrityProte
ction/ConfiguringSystemIntegrityProtection.html for additional information).

Version 2.0.1 Page 21 of 336

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql) Reference Manual

3.6 FORTRAN

HDFqgl can be used in the Fortran programming language through static and shared libraries. These libraries are
stored in the directory “fortran” found under the directory “wrapper”. The following short program illustrates how

HDFql can be used in such language.

PROGRAM Example
! use HDFqgl module (make sure it can be found by the Fortran compiler)

USE HDFql

! declare variable

INTEGER :: state

! display HDFql version in use

WRITE(*, *) "HDFgl version: ", HDFQIL VERSION

! create an HDF5 file named "my file.h5"

state = hdfgl execute("CREATE FILE my file.h5")

! use (i.e. open) HDF5 file "my file.hb5"

o

state = hdfgl execute("USE FILE my file.h5")

! create an HDF5 dataset named '"my dataset" of data type int
state = hdfqgl execute("CREATE DATASET my dataset AS INT")

END PROGRAM

Assuming that the program is stored in a file named “example.f90”, it must first be compiled before it can be

launched from a terminal. To compile the program against the HDFql Fortran static library:

e In Windows?® using Intel Fortran Compiler (IFORT), by executing from a terminal:

ifort.exe example.f90 /module:<hdfqgl fortran wrapper directory>\static

<hdfgl fortran wrapper directory>\HDFql.lib /link /LTCG /NODEFAULTLIB:libcmt.lib

° When compiling a program against the HDFql Fortran static library in Windows, the subroutines “hdfql_initialize” and “hdfql_finalize” must be explicitly
called by the program when starting and finishing respectively (otherwise an error may occur such as a segmentation fault). Of note, these functions do
not need to be called when compiling the program against the HDFql Fortran shared library as this is automatically done by the library itself.

Version 2.0.1 Page 22 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

e In Linux using IFORT, by executing from a terminal:

e With an HDFgl non MPI-based distribution:

ifort example.f90 -fopenmp -module <hdfgl fortran wrapper directory>

<hdfgl fortran wrapper directory>/1ibHDFql.a

e With an HDFgl MPI-based distribution:

ifort example.f90 -fopenmp -module <hdfgl fortran wrapper directory>

<hdfgl fortran wrapper directory>/1ibHDFgl.a -L<mpi lib directory> -lmpi

e In Linux and macOS using Gnu Compiler Collection (GCC)*°, by executing from a terminal:

e With an HDFgl non MPI-based distribution:

gfortran example.f90 -fopenmp -I<hdfql fortran wrapper directory>

<hdfqgl fortran wrapper directory>/l1ibHDFql.a -1dl

e With an HDFql MPI-based distribution:

gfortran example.f90 -fopenmp -I<hdfql fortran wrapper directory>
<hdfqgl fortran wrapper directory>/1ibHDFql.a -L<mpi 1lib directory> -Impi -1dl

To compile the same program against the HDFql Fortran shared library:

e In Windows using IFORT, by executing from a terminal:

ifort.exe example.f90 /module:<hdfqgl fortran wrapper directory>

<hdfgl fortran wrapper directory>\HDFql dill.lib

10 An incorrect warning is raised by the GCC Fortran compiler when using the HDFgl module (“Warning: Only array FINAL procedures declared for derived
type 'hdfgl_cursor' defined at (1), suggest also scalar one”). This warning does not interfere with the final compilation result, though, and it has been
solved in the GCC Fortran compiler version 7.0.0 (please refer to https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58175 for additional information).

Version 2.0.1 Page 23 of 336

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58175

Hierarchical Data Format query language (HDFql) Reference Manual

e In Linux using IFORT, by executing from a terminal:

e With an HDFgl non MPI-based distribution:

ifort example.f90 -module <hdfgl fortran wrapper directory> -

L<hdfql fortran wrapper directory> -1HDFql

e With an HDFgl MPI-based distribution:

ifort example.f90 -module <hdfgl fortran wrapper directory> -

L<hdfql fortran wrapper directory> -L<mpi 1ib directory> -1HDFql -1mpi

e In Linux and macOS using GCC'Y, by executing from a terminal:

e With an HDFgl non MPI-based distribution:

gfortran example.f90 -I<hdfqgl fortran wrapper directory> -
L<hdfqgl fortran wrapper directory> -1HDFql -1dl

e With an HDFql MPI-based distribution:

gfortran example.f90 -I<hdfql fortran wrapper directory> -

L<hdfgl fortran wrapper directory> -L<mpi 1lib directory> -1HDFql -Impi -1dl

In case the program does not compile, most likely a Fortran compiler is not installed. If a Fortran compiler is missing,

the solution is:

e In Windows, download and install IFORT from the website https://software.intel.com/en-us/parallel-studio-

xe/choose-download/free-trial-cluster-windows-c-fortran.

1 An incorrect warning is raised by the GCC Fortran compiler when using the HDFgl module (“Warning: Only array FINAL procedures declared for derived
type 'hdfgl_cursor' defined at (1), suggest also scalar one”). This warning does not interfere with the final compilation result, though, and it has been
solved in the GCC Fortran compiler version 7.0.0 (please refer to https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58175 for additional information).

Version 2.0.1 Page 24 of 336

https://software.intel.com/en-us/parallel-studio-xe/choose-download/free-trial-cluster-windows-c-fortran
https://software.intel.com/en-us/parallel-studio-xe/choose-download/free-trial-cluster-windows-c-fortran
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58175

Hierarchical Data Format query language (HDFql) Reference Manual

e In Linux, download and install IFORT from the website https://software.intel.com/en-us/parallel-studio-

xe/choose-download/free-trial-cluster-linux-fortran.
e In Linux, install the GCC Fortran compiler by executing from a terminal:

e In a Red Hat-based distribution:

sudo yum install gcc-gfortran

e In a Debian-based distribution:

sudo apt-get install gfortran

e In macOs, install the GCC Fortran compiler by executing from a terminal (if xcode-select does not support the
parameter “--install” (due to being outdated), download and install the Command-Line Tools package from the

website http://developer.apple.com/downloads which includes GCC instead):

xcode-select —--install

In case the compiled program does not launch, most likely the HDFqgl Fortran shared library and/or the MPI shared

library was not found (these are needed to launch the program). The solution is:

e In Windows, add the directory where the file “HDFql_dIl.dIl” is located to the environment variable “PATH” by

executing from a terminal:

set PATH=<hdfql fortran wrapper directory>;%PATHS%

e In Linux, add the directories where the files “libHDFql.so” and (optionally) “libmpi.so” are located to the

environment variable “LD_LIBRARY_PATH” by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

export LD LIBRARY PATH=<hdfql fortran wrapper directory>:$LD LIBRARY PATH

Version 2.0.1 Page 25 of 336

https://software.intel.com/en-us/parallel-studio-xe/choose-download/free-trial-cluster-linux-fortran
https://software.intel.com/en-us/parallel-studio-xe/choose-download/free-trial-cluster-linux-fortran
http://developer.apple.com/downloads

Hierarchical Data Format query language (HDFql) Reference Manual

e With an HDFql MPI-based distribution:

export
LD LIBRARY PATH=<hdfgl fortran wrapper directory>:<mpi 1ib directory>:$LD LIBRA

RY PATH

e In macOS, add the directories where the files “libHDFql.dylib” and (optionally) “libmpi.dylib” are located to the

environment variable “DYLD_LIBRARY_PATH”'? by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

export DYLD LIBRARY PATH=<hdfql fortran wrapper directory>:$DYLD LIBRARY PATH

e With an HDFqgl MPI-based distribution:

export
DYLD LIBRARY PATH=<hdfql fortran wrapper directory>:<mpi 1ib directory>:$DYLD L

IBRARY PATH

3.7 R

HDFqgl can be used in the R programming language through a wrapper named “HDFql.R”. This wrapper is stored in
the directory “R” found under the directory “wrapper”. The following short script illustrates how HDFqgl can be used

in such language.

load HDFgl R wrapper (make sure it can be found by the R interpreter)

source ("HDFgl.R")

12 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the
environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProte

ction/ConfiguringSystemIntegrityProtection.html for additional information).

Version 2.0.1 Page 26 of 336

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql) Reference Manual

display HDFgl version in use
print (paste("HDFql version:'", HDFQL VERSION))

create an HDF5 file named "my file.h5"

hdfql execute("CREATE FILE my file.h5")

use (i.e. open) HDF5 file "my file.h5"

hdfql execute("USE FILE my file.h5")

create an HDF5 dataset named "my dataset" of data type int

hdfgl execute("CREATE DATASET my dataset AS INT")

Assuming that the script is stored in a file named “example.R” it can be launched by executing the following from a

terminal:

R -f example.R

In case the script does not launch, most likely (1) the R interpreter is not installed or (2) the HDFql R wrapper and/or
the HDFql C shared library and/or the MPI shared library was not found (these are needed to launch the script). To
fix the former issue, download and install the R interpreter from the website https://cloud.r-project.org. To fix the

latter issue:

e In Windows, add the directories where the files “HDFgl.R” (i.e. the wrapper) and “HDFql_dlIl.dIlI” are located to

the environment variable “PATH” by executing from a terminal:

set PATH=<hdfql r wrapper directory>;<hdfql 1ib directory>;%$PATH%

e In Linux, add the directories where the files “HDFql.R”, “libHDFgl.so” and (optionally) “libmpi.so” are located to

the environment variable “LD_LIBRARY_PATH"” by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

export
LD LIBRARY PATH=<hdfqgl r wrapper directory>:<hdfgl 1ib directory>:$LD LIBRARY P

ATH

Version 2.0.1 Page 27 of 336

https://cloud.r-project.org/

Hierarchical Data Format query language (HDFql) Reference Manual

e With an HDFql MPI-based distribution:

export

LD LIBRARY PATH=<hdfgl r wrapper directory>:<hdfgl 1ib directory>:<mpi 1lib dire

ctory>:$LD LIBRARY PATH

e In macOS, add the directories where the files “HDFql.R”, “libHDFql.dylib” and (optionally) “libompi.dylib” are

located to the environment variable “DYLD_LIBRARY_PATH”*3 by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

export

DYLD LIBRARY PATH=<hdfql r wrapper directory>:<hdfql 1ib directory>:$DYLD LIBRA

RY PATH

e With an HDFql MPI-based distribution:

export
DYLD LIBRARY PATH=<hdfgl r wrapper directory>:<hdfqgl 1ib directory>:<mpi 1lib di

rectory>:$DYLD LIBRARY PATH

Besides these steps, a package named bit64 for R must be installed when working with user-defined variables to
store 64 bit integers as these are not natively supported by R (please refer to the function hdfgl_variable_register
for additional information). This package can be found at https://cran.r-project.org/web/packages/bit64 along with

instructions on how to install and use it.

13 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the
environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProte

ction/ConfiguringSystemIntegrityProtection.html for additional information).

Version 2.0.1 Page 28 of 336

https://cran.r-project.org/web/packages/bit64
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql) Reference Manual

3.8 COMMAND-LINE INTERFACE

A command-line interface named “HDFgICLI” is available and can be used for manipulating HDF5 files from a
terminal. It is stored in the directory “bin”. To launch the command-line interface, open a terminal (“cmd” if in

Windows, “xterm” if in Linux, or “Terminal” if in macOS), go to the directory “bin”, and type:

e In Windows:

HDFglCLI.exe

e In Linux and macOS:

./HDFgICLI

The list of parameters accepted by the command-line interface can be viewed by launching it with the parameter “--

help”. At the time of writing, this list includes the following parameters:

o —-help (show the list of parameters accepted by HDFqICLI and exit)

e --version (show the version of HDFgICLI and exit)

e --debug (show debug information when executing HDFql operations)

e --no-path (do not show group path currently in use in HDFqICLI prompt)

e --execute=X (execute HDFql operation(s) “X" and exit)

o --execute-file=X (execute HDFgl operation(s) stored in file “X” and exit)

e --save-file=X (save executed HDFgl operation(s) to file “X”)

In case the command-line interface does not launch, most likely the HDFgl shared library (which is needed to launch

the interface) was not found. Depending on the platform, the solution is:

e In Windows, to either:

Version 2.0.1 Page 29 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

e Add the directory where the file “HDFgl_dll.dll” is located to the environment variable “PATH” by

executing from a terminal:

set PATH=<hdfql 1ib directory>;%PATH%

e Execute the batch file named “launch.bat” which properly sets up the environment variable “PATH” and

launches the command-line interface from a terminal.

e In Linux, to either:

e Add the directory where the file “libHDFgl.so” is located to the environment variable

“LD_LIBRARY_PATH” by executing from a terminal:

export LD LIBRARY PATH=<hdfql 1ib directory>:$LD LIBRARY PATH

e Execute the bash script file named “launch.sh” which properly sets up the environment variable

“LD_LIBRARY_PATH” and launches the command-line interface from a terminal.

e In macOs, to either:

o Add the directory where the file “libHDFqgl.dylib” is located to the environment variable
“DYLD_LIBRARY_PATH”* by executing from a terminal:

export DYLD LIBRARY PATH=<hdfql 1lib directory>:$DYLD LIBRARY PATH

Execute the bash script file named “launch.sh” which properly sets up the environment variable

“DYLD_LIBRARY_PATH” and launches the command-line interface from a terminal.

14 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the
environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProte
ction/ConfiguringSystemIntegrityProtection.html for additional information).

Version 2.0.1 Page 30 of 336

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql)

Reference Manual

BN C\Windows\system32\cmd.exe - HDFqlICLLexe

=create file my_file.hs

elements returned in 0.0 seconds)

=use file my_file.hs _
0 elements returned 0.0 seconds)

how

0 elements returned in 0.0 seconds)

create dataset my_dataset as
elements returned in 0.0

et

elements returned in 0.0 seconds)

sert into my_dat ues((2
elements returned in 0.0 seconds)

seconds)

version 2.0.1 (using ¥5-2015 &4 bit Tibra

to get more information or "exit" to return to the terminal.

Figure 3.1 — lllustration of the command-line interface “HDFqICLI”

Version 2.0.1

Page 31 of 336

4. CURSOR

Generally speaking, a cursor is a control structure that is used to iterate through the results returned by a query
(that was previously executed). It can be seen as an effective means to abstract the programmer from low-level
implementation details of accessing data stored in specific structures. This chapter provides a description of cursors

and subcursors in HDFql, as well as examples and illustrations to demonstrate these two concepts in practice.

4.1 DESCRIPTION

HDFql provides cursors which offer several ways to traverse result sets according to specific needs. The following list

enumerates these functionalities (please refer to their links for further information):

e First (moves cursor to the first position within the result set — hdfgl_cursor_first)

e Last (moves cursor to the last position within the result set — hdfql_cursor_last)

e Next (moves cursor to the next position within the result set — hdfql_cursor_next)

e Previous (moves cursor to the previous position within the result set — hdfgl_cursor_previous)
e Absolute (moves cursor to an absolute position within the result set — hdfqgl_cursor_absolute)

e Relative (moves cursor to a relative position within the result set — hdfgl_cursor_relative)

Besides their traversal functionalities, a particular feature of cursors in HDFql is that they store result sets returned
by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION LANGUAGE (DIL) operations. To retrieve values from
result sets, the functions starting with “hdfql_cursor_get” can be used. These and remaining functions offered by

cursors can be found in Table 5.8 (each of these begins with the prefix “hdfql_cursor”).

Version 2.0.1 Page 32 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

When a certain operation is executed, HDFql stores the result set returned by this operation in its default cursor.
This cursor is available to the programmer and is automatically created and initialized upon loading the HDFql library

by a program. If additional cursors are needed, they can be created like this (in C):

// create a cursor named "my cursor"

HDFQL CURSOR my cursor;

As a side note, additional cursors are created in C++, Java, Python, C#, Fortran and R as follows:

// create a cursor named "myCursor" in C++

HDFql: :Cursor myCursor;

// create a cursor named "myCursor" in Java

HDFglCursor myCursor = new HDFglCursor();

create a cursor named "my cursor'" in Python

my cursor = HDFqgl.Cursor()

// create a cursor named "myCursor" in C#

HDFglCursor myCursor = new HDFglCursor();

! create a cursor named "my cursor" in Fortran

TYPE (HDFQL CURSOR) :: my cursor

create a cursor named "my cursor" in R

my cursor <- hdfgl cursor()

Before an additional (i.e. user-defined) cursor is used to store and eventually traverse a result set, it must be

properly initialized (refer to the function hdfgl_cursor_initialize for further information). The initialization of a cursor

Version 2.0.1 Page 33 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

is only required in C and performed once, while in C++, Java, Python, C#, Fortran and R such initialization is

redundant as it is done automatically when declaring a cursor. Initializing a cursor can be done like this (in C):

// initialize a cursor named "my cursor"

hdfql cursor initialize(&my cursor);

To switch between different cursors (to be used for separate needs), the function hdfgl_cursor_use may be

employed (in C):

// use a cursor named "my cursor"

hdfgl cursor use(&my cursor);

The following C snippet illustrates usage of the HDFql default cursor and a user-defined cursor, as well as some

typical operations performed on/by these.

// create a cursor named "my cursor"

HDFQL CURSOR my cursor;

// create an HDF5 dataset named "my datasetO" of data type int with an initial value of 8
hdfql execute ("CREATE DATASET my dataset(0 AS INT VALUES (8)");

// create an HDF5 dataset named "my datasetl" of data type float with initial values of
3.2, 5.3, 7.4 and 9.5
hdfql execute ("CREATE DATASET my datasetl AS FLOAT(4) VALUES (3.2, 5.3, 7.4, 9.5)");

// select (i.e. read) data from dataset "my datasetO" and populate HDFql default cursor
with it
hdfql execute ("SELECT FROM my dataset0");

// initialize cursor "my cursor"

hdfql cursor initialize(&my cursor);

// use cursor "my cursor"

hdfql cursor use(&my cursor);

// select (i.e. read) data from dataset "my datasetl" and populate cursor "my cursor"
with it
hdfql execute("SELECT FROM my datasetl");

Version 2.0.1 Page 34 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// use HDFql default cursor
hdfql cursor use (NULL);

// display number of elements in HDFql default cursor
printf ("Number of elements in HDFgl default cursor is %d\n",

hdfql cursor get count (NULL));

// move HDFgl default cursor to the next position within the result set

hdfql cursor next (NULL);

// display element of HDFgl default cursor
printf("Current element of HDFql default cursor is %d\n", *hdfqgl cursor get int (NULL));

// display number of elements in cursor "my cursor"
printf ("Number of elements in cursor \"my cursor\" is %d\n",

hdfql cursor get count(&my cursor));

// use cursor "my cursor"

hdfqgl cursor use(&my cursor);

// display elements of cursor "my cursor"
while (hdfql cursor next (NULL) == HDFQL SUCCESS)
{
printf("Current element of cursor \"my cursor\" is %f\n",
*hdfql cursor get float (NULL));
}

The output of executing the snippet would be similar to this:

Number of elements in HDFqgl default cursor is 1
Current element of HDFgl default cursor is 8
Number of elements in cursor "my cursor" is 4
Current element of cursor "my cursor" is 3.2
Current element of cursor "my cursor" is 5.3
Current element of cursor "my cursor" is 7.4

Current element of cursor "my cursor" is 9.5

Version 2.0.1 Page 35 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

When populating a cursor with data from a dataset or attribute with two or more dimensions, the data is always
linearized into a single dimension. The linearization process is depicted in Figure 4.1. Subsequently, if need be, it is
up to the programmer to access the data (stored in the cursor) according to its original dimensions. In this case, the
SHOW DIMENSION operation — which returns the original dimensions of a dataset or attribute — may be useful to

help in the task of going from one dimension to the original dimensions.

Dataset [3, 2]

Cursor [6]

Figure 4.1 — Linearization of a two dimensional dataset into a (one dimensional) cursor

4.2 SUBCURSOR

HDFql also provides subcursors — they are meant to complement (i.e. help) cursors in the task of storing data of type
HDFQL_CHAR, HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT,
HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT,
HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE and HDFQL_OPAQUE. In practice, when a
result set is of one of these data types, only the first element of the result set is stored in the cursor (as expected),
while all elements of the result set are stored in the subcursor. In other words, each position of the cursor stores the
first element of the result set and also points to a subcursor that in turn stores all the elements of the result set. The
values stored in a subcursor (which are also known as a result subset) can be accessed with the functions starting
with “hdfqgl_subcursor_get” (enumerated in Table 5.8). Similar to cursors, HDFql subcursors offer several ways to

traverse result subsets, namely:
e First (moves subcursor to the first position within the result subset — hdfgl_subcursor_first)

e Last (moves subcursor to the last position within the result subset — hdfgl_subcursor_last)

Version 2.0.1 Page 36 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Next (moves subcursor to the next position within the result subset — hdfql_subcursor_next)

Previous (moves subcursor to the previous position within the result subset — hdfgl_subcursor_previous)

Absolute (moves subcursor to an absolute position within the result subset — hdfgl_subcursor_absolute)

Relative (moves subcursor to a relative position within the result subset — hdfql_subcursor_relative)

The following C snippet illustrates usage of the HDFql subcursors, as well as some typical operations performed

on/by these.

// create an HDF5 dataset named "my dataset" of data type variable-length int of one
dimension (size 4)

hdfql execute("CREATE DATASET my dataset AS VARINT (4)");

// insert (i.e. write) values into dataset "my dataset"

hdfqgl execute("INSERT INTO my dataset VALUES((7, 8, 5, 3), (9), (6, 1, 2), (4, 0))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to the next position within the result set
while (hdfql cursor next (NULL) == HDFQL SUCCESS)
{

// display element of the cursor in use

printf("Current element of cursor is 2d\n", *hdfqgl cursor get int (NULL));

// move the subcursor in use to the next position within the result subset
while (hdfgl subcursor next (NULL) == HDFQL SUCCESS)
{

// display element of the subcursor in use

printf (" Current element of subcursor is %d\n", *hdfgl subcursor get int (NULL));

The output of executing the snippet would be similar to this:

Current element of cursor 1is 7

Version 2.0.1 Page 37 of 336

Hierarchical Data Format query language (HDFql)

Reference Manual

Current
Current
Current

Current

Current element of

Current

Current element of

Current
Current

Current

Current element of

Current

Current

element
element
element

element

element

element

element

element

element

element

of subcursor
of subcursor
of subcursor
of subcursor
cursor is 9

of subcursor
cursor 1is 6

of subcursor
of subcursor
of subcursor
cursor 1is 4

of subcursor

of subcursor

is
is
is

is

is

is

is

is

is

is

W 1 o 3

Version 2.0.1

Page 38 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

4.3 EXAMPLES

The following C snippets demonstrate how HDFql cursors and subcursors are populated with (variable) data stored
in HDF5 datasets or attributes, along with illustrations to facilitate understanding of the populating process and its

final result.

// create an HDF5 dataset named "my datasetO" of data type short
hdfql execute("CREATE DATASET my dataset(O AS SMALLINT");

// insert (i.e. write) a value into dataset "my dataset0"

hdfqgl execute("INSERT INTO my dataset(O VALUES(7)");

// select (i.e. read) data from dataset "my dataset0" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset(0");

Dataset “my_datasetd” Cursor

Subcursorl

Figure 4.2 — Cursor populated with data from dataset “my_dataset0”

Version 2.0.1 Page 39 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// create an HDF5 dataset named "my datasetl" of data type float of one dimension (size
3)
hdfql execute("CREATE DATASET my datasetl AS FLOAT(3)");

// insert (i.e. write) values into dataset "my datasetl"

hdfqgl execute("INSERT INTO my datasetl VALUES (5.5, 8.1, 4.9)");

// select (i.e. read) data from dataset "my datasetl" and populate cursor in use with it

hdfql execute("SELECT FROM my datasetl");

Dataset “my_datasetl” Cursor

Subcursor3

Subcursorl Subcursor2

Figure 4.3 — Cursor populated with data from dataset “my_dataset1”

Version 2.0.1 Page 40 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// create an HDF5 dataset named "my dataset2" of data type double of two dimensions (size

3x2)
hdfqgl execute("CREATE DATASET my dataset2 AS DOUBLE (3, 2)");

// insert (i.e. write) values into dataset "my dataset2"

hdfqgl execute("INSERT INTO my dataset2 VALUES((3.2, 1.3), (0, 0.2), (9.1, 6.5))");

// select (i.e. read) data from dataset "my dataset2" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset2");

Dataset “my_cdataset2”

Cursor

3.2 1.3 (1] 0.2 9.1 6.5

Subcursorl | Subcursor2 | Subcursor3 Subcursord4 | Subcursor5 | Subcursoré

Figure 4.4 — Cursor populated with data from dataset “my_dataset2”

Version 2.0.1 Page 41 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// create an HDF5 dataset named "my dataset3" of data type variable-length short
hdfql_execute(”CREATE DATASET my dataset3 AS VARSMALLINT") ;

// insert (i.e. write) values into dataset "my dataset3"

hdfql execute("INSERT INTO my dataset3 VALUES(7, 9, 3)");

// select (i.e. read) data from dataset "my dataset3" and populate cursor in use with it

hdfqgl execute("SELECT FROM my dataset3");

Dataset “my_dataset3” Cursor

Subcurserl

Figure 4.5 — Cursor and its subcursor populated with data from dataset “my_dataset3”

Version 2.0.1 Page 42 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// create an HDF5 dataset named "my dataset4" of data type variable-length float of one

dimension (size 3)

hdfql execute("CREATE DATASET my dataset4 AS VARFLOAT (3)");

// insert (i.e. write) values into dataset "my dataset4"

hdfqgl execute("INSERT INTO my dataset4 VALUES((5.5), (8.1, 2.2), (4.9, 3.4, 5.6))");

// select (i.e. read) data from dataset "my dataset4" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset4");

Dataset “my_datasetd” Cursor

81,22 49,34,56

Subcursorl Subcursor2 Subcursor3
5.5 = 8.1 2.2 49 3.4 5.6
(1] i} 1 i} 1 2

Figure 4.6 — Cursor and its subcursors populated with data from dataset “my_dataset4”

Version 2.0.1 Page 43 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// create an HDF5 dataset named "my datasetb" of data type variable-length double of two
dimensions (size 3x2)

hdfqgl execute("CREATE DATASET my datasetb AS VARDOUBLE (3, 2)");

// insert (i.e. write) values into dataset "my dataset5"
hdfqgl execute("INSERT INTO my datasetb5 VALUES(((3.2, 8, 6.7), (1.3, 0.2)), ((0), (0.2,
1.5)), ((9.1, 2, 4, 7), (6.5)))");

// select (i.e. read) data from dataset "my datasetb5" and populate cursor in use with it

hdfql execute("SELECT FROM my datasetb5");

Dataset “my_dataset5”

o EFE-XN 1.3,0.2 Cursor

1 0.2,1.5

Subcursorl Subcursor2 Subcursor3

Subcursord Subcursor5 Subcursoré

Figure 4.7 — Cursor and its subcursors populated with data from dataset “my_dataset5”

Version 2.0.1 Page 44 of 336

5. APPLICATION PROGRAMMING INTERFACE

An application programming interface (API) specifies how software components should interact with each other. In
practice, an API comes in the form of a library that includes specifications for functions, data structures, object
classes, constants and variables. A good APl makes it easier to develop a program by providing all the building
blocks. This chapter is devoted to describing HDFgl API and how to use it through practical examples in C, C++, Java,

Python, C#, Fortran and R.

5.1 CONSTANTS

A constant is an identifier whose associated value cannot typically be altered by the program during its execution.
Using a constant instead of specifying a value multiple times in the program not only simplifies code maintenance,
but can also supply a meaningful name for it. Constants in the C programming languages follow a naming convention

of writing all words in uppercase and separating each word with an underscore (_). The following table summarizes

all existing HDFgl constants in C.

HDFql Constant in C Description
HDFQL_VERSION Represents the HDFgl version in use char * 2.0.1
HDFQL_YES Represents the concept “Yes” int 0
HDFQL_NO Represents the concept “No” int -1
HDFQL_ENABLED Represents the concept “Enabled” int 0
HDFQL_DISABLED Represents the concept “Disabled” int -1
HDFQL_UNLIMITED Represents the concept “Unlimited” int -1
HDFQL_UNDEFINED Represents the concept “Undefined” int -1
HDFQL_GLOBAL Represents the concept “Global” int 1
HDFQL_LOCAL Represents the concept “Local” int 2

Version 2.0.1 Page 45 of 336

Hierarchical Data Format query language (HDFql)

Reference Manual

Represents the HDF5 tracked creation order
HDFQL_TRACKED int 1
strategy
Represents the HDF5 indexed creation order
HDFQL_INDEXED int 2
strategy
Represents the HDF5 contiguous storage type
HDFQL_CONTIGUOUS int 1
(layout)
Represents the HDF5 compact storage type
HDFQL_COMPACT int 2
(layout)
Represents the HDF5 chunked storage type
HDFQL_CHUNKED int 4
(layout)
HDFQL_EARLY Represents the HDF5 early storage allocation int 1
Represents the HDF5 incremental storage
HDFQL_INCREMENTAL int 2
allocation
HDFQL_LATE Represents the HDF5 late storage allocation int 4
HDFQL_DIRECTORY Represents a directory int 1
HDFQL_FILE Represents a file int 2
HDFQL_GROUP Represents the HDF5 object type group int 4
HDFQL_DATASET Represents the HDF5 object type dataset int 8
HDFQL_ATTRIBUTE Represents the HDF5 object type attribute int 16
HDFQL_SOFT_LINK Represents the HDFS5 soft link type int 32
HDFQL_HARD_LINK Represents the HDF5 hard link type int 64
HDFQL_EXTERNAL_LINK Represents the HDF5 external link type int 128
HDFQL_TINYINT Represents the tiny integer data type (TINYINT) int 1
Represents the unsigned tiny integer data type
HDFQL_UNSIGNED_TINYINT int 2
(UNSIGNED TINYINT)
Represents the small integer data type
HDFQL_SMALLINT int 4
(SMALLINT)
Represents the unsigned small integer data type
HDFQL_UNSIGNED_SMALLINT int 8
(UNSIGNED SMALLINT)
HDFQL_INT Represents the integer data type (INT) int 16

Version 2.0.1

Page 46 of 336

Hierarchical Data Format query language (HDFql)

Reference Manual

Represents the unsigned integer data type
HDFQL_UNSIGNED_INT int 32
(UNSIGNED INT)
HDFQL_BIGINT Represents the big integer data type (BIGINT) int 64
Represents the unsigned big integer data type
HDFQL_UNSIGNED_BIGINT int 128
(UNSIGNED BIGINT)
HDFQL_FLOAT Represents the float data type (FLOAT) int 256
HDFQL_DOUBLE Represents the double data type (DOUBLE) int 512
HDFQL_CHAR Represents the char data type (CHAR) int 1024
Represents the variable-length tiny integer data
HDFQL_VARTINYINT int 2048
type (VARTINYINT)
Represents the unsigned variable-length tiny
HDFQL_UNSIGNED_VARTINYINT int 4096
integer data type (UNSIGNED VARTINYINT)
Represents the variable-length small integer data
HDFQL_VARSMALLINT int 8192
type (VARSMALLINT)
Represents the unsigned variable-length small
HDFQL_UNSIGNED_VARSMALLINT int 16384
integer data type (UNSIGNED VARSMALLINT)
Represents the variable-length integer data type
HDFQL_VARINT int 32768
(VARINT)
Represents the unsigned variable-length integer
HDFQL_UNSIGNED_VARINT int 65536
data type (UNSIGNED VARINT)
Represents the variable-length big integer data
HDFQL_VARBIGINT int 131072
type (VARBIGINT)
Represents the unsigned variable-length big
HDFQL_UNSIGNED_VARBIGINT int 262144
integer data type (UNSIGNED VARBIGINT)
Represents the variable-length float data type
HDFQL_VARFLOAT int 524288
(VARFLOAT)
Represents the variable-length double data type
HDFQL_VARDOUBLE int 1048576
(VARDOUBLE)
Represents the variable-length char data type
HDFQL_VARCHAR int 2097152
(VARCHAR)
HDFQL_OPAQUE Represents the opaque data type (OPAQUE) int 4194304
HDFQL_BITFIELD Represents the bitfield data type int 8388608
Version 2.0.1 Page 47 of 336

Hierarchical Data Format query language (HDFql)

Reference Manual

HDFQL_ENUMERATION Represents the enumeration data type int 16777216
HDFQL_COMPOUND Represents the compound data type int 33554432
HDFQL_LITTLE_ENDIAN Represents the little endian byte ordering int 1
HDFQL_BIG_ENDIAN Represents the big endian byte ordering int 2
HDFQL_ASCII Represents the ASCII character encoding int 1
HDFQL_UTF8 Represents the UTF8 character encoding int 2
HDFQL_FILL_DEFAULT Represents the default fill type int 1
HDFQL_FILL_USER_DEFINED Represents the user defined fill type int 2
HDFQL_FILL_UNDEFINED Represents the undefined fill type int 4
HDFQL_EARLIEST Represents the HDFS5 library bound earliest int 1
HDFQL_LATEST Represents the HDF5 library bound latest int 2
HDFQL_VERSION_18 Represents the HDF5 library bound version 18 int 4
HDFQL_SUCCESS Represents an operation that succeeded int 0
Represents an operation that failed due to a
HDFQL_ERROR_PARSE int -1
parsing error
Represents an operation that failed due to an
HDFQL_ERROR_NOT_FOUND object (e.g. directory, file, group, dataset) not int -2
being found
Represents an operation that failed due to an
HDFQL_ERROR_NO_ACCESS object (e.g. directory, file, group, dataset) not int -3
being accessible
Represents an operation that failed due to an
HDFQL_ERROR_NOT_OPEN int -4
object (e.g. file) not being opened
Represents an operation that failed due to a file
HDFQL_ERROR_INVALID_FILE int -5
being invalid
Represents an operation that failed due to not
HDFQL_ERROR_NOT_SUPPORTED int -6
being supported
Represents an operation that failed due to the
HDFQL_ERROR_NOT_ENOUGH_SPACE int -7
machine not having enough (storage) space
HDFQL_ERROR_NOT_ENOUGH_MEMORY Represents an operation that failed due to the int -8

Version 2.0.1

Page 48 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

machine not having enough (RAM) memory

Represents an operation that failed due to an
HDFQL_ERROR_ALREADY_EXISTS object (e.g. directory, file, group, dataset) already int -9

existing

Represents an operation that failed due to its
HDFQL_ERROR_EMPTY int -10
internal structure being empty

Represents an operation that failed due to its
HDFQL_ERROR_FULL int -11
internal structure being full

Represents an operation that failed due to trying
HDFQL_ERROR_BEFORE_FIRST to position/access an element before the first int -12

one

Represents an operation that failed due to trying
HDFQL_ERROR_AFTER_LAST int -13
to position/access an element after the last one

Represents an operation that failed due to being
HDFQL_ERROR_OUTSIDE_LIMIT int -14
outside the limit

Represents an operation that failed due to a user-
HDFQL_ERROR_NO_ADDRESS int -15
defined variable having no address (i.e. is NULL)

Represents an operation that failed due to an
HDFQL_ERROR_UNEXPECTED_TYPE object (e.g. group, dataset) being of an int -16

unexpected type

Represents an operation that failed due to a user-

HDFQL_ERROR_UNEXPECTED_DATA_TYPE defined variable being of an unexpected data int -17

type

Represents an operation that failed due to a user-
HDFQL_ERROR_NOT_REGISTERED int -18
defined variable not being registered

Represents an operation that failed due to a
HDFQL_ERROR_INVALID_REGULAR_EXPRESSION int -19
regular expression being invalid

Represents an operation that failed due to an
HDFQL_ERROR_UNKNOWN int -99
unknown/unexpected error

Table 5.1 — HDFql constants in C

HDFql also supports other programming languages namely C++, Java, Python, C#, Fortran and R through wrappers.

The below tables provide examples on how HDFql constants are defined in these programming languages.

Version 2.0.1 Page 49 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

In C++, the prefix “HDFQL_" of the name of constants (defined in C) is replaced by the namespace “HDFgl” and its
underscores (_) are discarded. The remainder of the name of constants follows the upper camel-case convention.

The following table lists a subset of HDFql constants as defined in C and details how these are defined/can be used in

C++.

HDFqgl Constant in C Corresponding Definition in C++
HDFQL_VERSION HDFql::Version
HDFQL_SUCCESS HDFql::Success

HDFQL_ERROR_PARSE HDFql::ErrorParse
HDFQL_TINYINT HDFql::Tinylnt

HDFQL_UNSIGNED_BIGINT HDFql::UnsignedBiglnt
HDFQL_UTF8 HDFql::Utf8

Table 5.2 — HDFgl constants in C and their corresponding definitions in C++

In Java, the prefix “HDFQL_" of the name of constants (defined in C) is replaced by the class “HDFql”. The remainder
of the name of constants remains exactly the same. The following table lists a subset of HDFql constants as defined

in C and details how these are defined/can be used in Java.

HDFql Constant in C Corresponding Definition in Java
HDFQL_VERSION HDFql.VERSION
HDFQL_SUCCESS HDFql.SUCCESS

HDFQL_ERROR_PARSE HDFql.ERROR_PARSE
HDFQL_TINYINT HDFqL.TINYINT

HDFQL_UNSIGNED_BIGINT HDFqgl.UNSIGNED_BIGINT
HDFQL_UTF8 HDFql.UTF8

Table 5.3 — HDFqgl constants in C and their corresponding definitions in Java

Version 2.0.1 Page 50 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

In Python, the prefix “HDFQL_" of the name of constants (defined in C) is replaced by the class “HDFqgl”. The
remainder of the name of constants remains exactly the same. The following table lists a subset of HDFql constants

as defined in C and details how these are defined/can be used in Python.

HDFqgl Constant in C Corresponding Definition in Python

HDFQL_VERSION

HDFql.VERSION

HDFQL_SUCCESS

HDFql.SUCCESS

HDFQL_ERROR_PARSE

HDFql.ERROR_PARSE

HDFQL_TINYINT

HDFqL.TINYINT

HDFQL_UNSIGNED_BIGINT

HDFql.UNSIGNED_BIGINT

HDFQL_UTF8

HDFql.UTF8

Table 5.4 — HDFql constants in C and their corresponding definitions in Python

In C#, the prefix “HDFQL_” of the name of constants (defined in C) is replaced by the class “HDFgl” and its
underscores (_) are discarded. The remainder of the name of constants follows the upper camel-case convention.

The following table lists a subset of HDFql constants as defined in C and details how these are defined/can be used in

CH.

HDFqgl Constant in C

HDFQL_VERSION

Corresponding Definition in C#

HDFql.Version

HDFQL_SUCCESS

HDFql.Success

HDFQL_ERROR_PARSE

HDFql.ErrorParse

HDFQL_TINYINT

HDFql.TinyInt

HDFQL_UNSIGNED_BIGINT

HDFql.UnsignedBigint

HDFQL_UTF8

HDFql.Utf8

Table 5.5 — HDFgl constants in C and their corresponding definitions in C#

Version 2.0.1

Hierarchical Data Format query language (HDFql) Reference Manual

In Fortran, the name of constants is the same as in C and can be written in any case. The following table lists a subset

of HDFgl constants as defined in C and details how these are defined/can be used in Fortran.

HDFqgl Constant in C Corresponding Definition in Fortran
HDFQL_VERSION HDFQL_VERSION
HDFQL_SUCCESS HDFQL_SUCCESS

HDFQL_ERROR_PARSE HDFQL_ERROR_PARSE
HDFQL_TINYINT HDFQL_TINYINT

HDFQL_UNSIGNED_BIGINT HDFQL_UNSIGNED_BIGINT
HDFQL_UTF8 HDFQL_UTF8

Table 5.6 — HDFql constants in C and their corresponding definitions in Fortran

In R, the name of constants is the same as in C. The following table lists a subset of HDFgl constants as defined in C

and details how these are defined/can be used in R.

HDFqgl Constant in C Corresponding Definition in R
HDFQL_VERSION HDFQL_VERSION
HDFQL_SUCCESS HDFQL_SUCCESS

HDFQL_ERROR_PARSE HDFQL_ERROR_PARSE
HDFQL_TINYINT HDFQL_TINYINT

HDFQL_UNSIGNED_BIGINT HDFQL_UNSIGNED_BIGINT
HDFQL_UTF8 HDFQL_UTF8

Table 5.7 — HDFqgl constants in C and their corresponding definitions in R

Version 2.0.1 Page 52 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

5.2 FUNCTIONS

A function is a group of instructions that together perform a specific task, requiring direction back to the caller on
completion of the task. Any given function might be called at any point during a program's execution, including by

other functions or itself. It provides better modularity of a program and a high degree of code reusing. The following

table summarizes all existing HDFql functions in C.

HDFgl Function in C

Description

hdfgl_execute

Execute a script (composed of one or more operations)

hdfgl_execute_get_status

Get status of the last executed operation

hdfgl_error_get_line

Get error line of the last executed operation

hdfqgl_error_get_position

Get error position of the last executed operation

hdfgl_error_get_message

Get error message of the last executed operation

hdfgl_cursor_initialize

Initialize a cursor for subsequent use

hdfgl_cursor_use

Set the cursor to be used for storing the result of operations

hdfqgl_cursor_use_default

Set HDFql default cursor as the one to be used for storing the result of operations

hdfql_cursor_clear

Clear (i.e. empty) the cursor in use

hdfgl_cursor_clone

Clone (i.e. duplicate) a cursor into another one

hdfgl_cursor_get_data_type

Get data type of the cursor in use

hdfgl_cursor_get_count

Get number of elements (i.e. result set size) stored in the cursor in use

hdfgl_subcursor_get_count

Get number of elements (i.e. result subset size) stored in the subcursor in use

hdfgl_cursor_get_position

Get current position of cursor in use within result set

hdfgl_subcursor_get_position

Get current position of subcursor in use within result subset

hdfql_cursor_first

Move the cursor in use to the first position within result set

hdfgl_subcursor_first

Move the subcursor in use to the first position within result subset

hdfgl_cursor_last

Move the cursor in use to the last position within result set

hdfgl_subcursor_last

Move the subcursor in use to the last position within result subset

Version 2.0.1

Page 53 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

hdfgl_cursor_next Move the cursor in use one position forward from its current position
hdfgl_subcursor_next Move the subcursor in use one position forward from its current position
hdfgl_cursor_previous Move the cursor in use one position backward from its current position
hdfgl_subcursor_previous Move the subcursor in use one position backward from its current position
hdfgl_cursor_absolute Move the cursor in use to an absolute position within the result set
hdfgl_subcursor_absolute Move the subcursor in use to an absolute position within the result subset
hdfgl_cursor_relative Move the cursor in use to a relative position within result set
hdfgl_subcursor_relative Move the subcursor in use to a relative position within result subset
hdfql_cursor_get_size Get current element size (in bytes) of the cursor in use
hdfql_subcursor_get_size Get current element size (in bytes) of the subcursor in use
hdfgl_cursor_get Get current element of the cursor in use as a generic (typeless) pointer
hdfgl_subcursor_get Get current element of the subcursor in use as a generic (typeless) pointer
hdfgl_cursor_get_tinyint Get current element of the cursor in use as a TINYINT
hdfgl_subcursor_get_tinyint Get current element of the subcursor in use as a TINYINT
hdfgl_cursor_get_unsigned_tinyint Get current element of the cursor in use as an UNSIGNED TINYINT
hdfgl_subcursor_get_unsigned_tinyint Get current element of the subcursor in use as an UNSIGNED TINYINT
hdfgl_cursor_get_smallint Get current element of the cursor in use as a SMALLINT
hdfgl_subcursor_get_smallint Get current element of the subcursor in use as a SMALLINT
hdfgl_cursor_get_unsigned_smallint Get current element of the cursor in use as an UNSIGNED SMALLINT
hdfgl_subcursor_get_unsigned_smallint Get current element of the subcursor in use as an UNSIGNED SMALLINT
hdfgl_cursor_get_int Get current element of the cursor in use as an INT
hdfgl_subcursor_get_int Get current element of the subcursor in use as an INT
hdfgl_cursor_get_unsigned_int Get current element of the cursor in use as an UNSIGNED INT
hdfgl_subcursor_get_unsigned_int Get current element of the subcursor in use as an UNSIGNED INT
hdfql_cursor_get_bigint Get current element of the cursor in use as a BIGINT

Version 2.0.1 Page 54 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

hdfgl_subcursor_get_bigint Get current element of the subcursor in use as a BIGINT
hdfgl_cursor_get_unsigned_bigint Get current element of the cursor in use as an UNSIGNED BIGINT
hdfgl_subcursor_get_unsigned_bigint Get current element of the subcursor in use as an UNSIGNED BIGINT
hdfgl_cursor_get_float Get current element of the cursor in use as a FLOAT
hdfql_subcursor_get_float Get current element of the subcursor in use as a FLOAT
hdfgl_cursor_get_double Get current element of the cursor in use as a DOUBLE
hdfgl_subcursor_get_double Get current element of the subcursor in use as a DOUBLE
hdfgl_cursor_get_char Get current element of the cursor in use as a CHAR
hdfgl_subcursor_get_char Get current element of the subcursor in use as a CHAR
hdfql_variable_register Register a variable for subsequent use
hdfqgl_variable_unregister Unregister a variable
hdfqgl_variable_get_number Get number of a variable
hdfgl_variable_get_data_type Get data type of a variable
hdfql_variable_get_count Get number of elements (i.e. result set size) stored in a variable
hdfql_variable_get_size Get size (in bytes) of a variable
hdfql_variable_get_dimension_count Get number of dimensions of a variable
hdfql_variable_get_dimension Get size of a certain dimension of a variable
hdfqgl_mpi_get_size Get number (i.e. size) of processes associated to the MPI communicator
hdfgl_mpi_get_rank Get number (i.e. rank) of the calling process associated to the MPI communicator

Table 5.8 — HDFql functions in C

In C++, the prefix “hdfqgl_"” of the name of functions (defined in C) is replaced by the namespace “HDFql” and its
underscores (_) are discarded. The remainder of the name of functions follows the lower camel-case convention.
The following table lists a subset of HDFqgl functions as defined in C and details how these are defined/can be used in

C++.

Version 2.0.1 Page 55 of 336

Hierarchical Data Format query language (HDFql)

HDFgl Function in C

Corresponding Definition in C++

Reference Manual

hdfgl_execute

HDFql::execute

hdfgl_cursor_next

HDFql::cursorNext

hdfqgl_cursor_get_tinyint

HDFql::cursorGetTinyInt

hdfgl_cursor_get_unsigned_int

HDFql::cursorGetUnsignedint

hdfgl_subcursor_get_big_int

HDFql::subcursorGetBigInt

hdfql_variable_get_number

HDFql::variableGetNumber

Table 5.9 — HDFqgl functions in C and their corresponding definitions in C++

In Java, the prefix “hdfgl_” of the name of functions (defined in C) is replaced by the class “HDFql” and its

underscores (_) are discarded. The remainder of the name of functions follows the lower camel-case convention.

The following table lists a subset of HDFql functions as defined in C and details how these are defined/can be used in

Java.

HDFql Function in C

Corresponding Definition in Java

hdfgl_execute

HDFql.execute

hdfgl_cursor_next

HDFql.cursorNext

hdfql_cursor_get_tinyint

HDFql.cursorGetTinyInt

hdfgl_cursor_get_unsigned_int

HDFql.cursorGetUnsignedint

hdfgl_subcursor_get_big_int

HDFql.subcursorGetBigint

hdfgl_variable_get_number

HDFql.variableGetNumber

Table 5.10 — HDFql functions in C and their corresponding definitions in Java

In Python, the prefix “hdfgl_"” of the name of functions (defined in C) is replaced by the class “HDFql”. The remainder

of the name of functions remains exactly the same. The following table lists a subset of HDFgl functions as defined in

C and details how these are defined/can be used in Python.

Version 2.0.1

Page 56 of 336

Reference Manual

Hierarchical Data Format query language (HDFql)

HDFgl Function in C Corresponding Definition in Python

hdfgl_execute HDFgl.execute

hdfgl_cursor_next HDFql.cursor_next

hdfqgl_cursor_get_tinyint HDFql.cursor_get_tinyint

hdfgl_cursor_get_unsigned_int HDFql.cursor_get_unsigned_int

hdfgl_subcursor_get_big_int HDFql.subcursor_get_big_int

HDFql.variable_get_number

hdfql_variable_get_number

Table 5.11 — HDFqgl functions in C and their corresponding definitions in Python

In C#, the prefix “hdfgl_" of the name of functions (defined in C) is replaced by the class “HDFql” and its underscores
(L) are discarded. The remainder of the name of functions follows the upper camel-case convention. The following

table lists a subset of HDFgl functions as defined in C and details how these are defined/can be used in C#.

Corresponding Definition in C#

HDFql Function in C

hdfgl_execute HDFql.Execute

hdfgl_cursor_next HDFql.CursorNext

hdfql_cursor_get_tinyint HDFql.CursorGetTinyInt

hdfgl_cursor_get_unsigned_int HDFql.CursorGetUnsignedint

hdfgl_subcursor_get_big_int HDFql.SubcursorGetBigint

HDFql.VariableGetNumber

hdfgl_variable_get_number

Table 5.12 — HDFql functions in C and their corresponding definitions in C#

In Fortran, the name of functions is the same as in C and can be written using any case. The following table lists a

subset of HDFql functions as defined in C and details how these are defined/can be used in Fortran.

Page 57 of 336

Version 2.0.1

Hierarchical Data Format query language (HDFql) Reference Manual

HDFgl Function in C Corresponding Definition in Fortran
hdfgl_execute hdfgl_execute
hdfgl_cursor_next hdfgl_cursor_next
hdfqgl_cursor_get_tinyint hdfgl_cursor_get_tinyint
hdfgl_cursor_get_unsigned_int hdfgl_cursor_get_unsigned_int
hdfgl_subcursor_get_big_int hdfgl_subcursor_get_big_int
hdfql_variable_get_number hdfgl_variable_get_number

Table 5.13 — HDFqgl functions in C and their corresponding definitions in Fortran

In R, the name of functions is the same as in C. The following table lists a subset of HDFgl functions as defined in C

and details how these are defined/can be used in R.

HDFgl Function in C Corresponding Definition in R
hdfgl_execute hdfgl_execute
hdfgl_cursor_next hdfgl_cursor_next
hdfgl_cursor_get_tinyint hdfgl_cursor_get_tinyint
hdfgl_cursor_get_unsigned_int hdfgl_cursor_get_unsigned_int
hdfgl_subcursor_get_big_int hdfgl_subcursor_get_big_int
hdfgl_variable_get_number hdfgl_variable_get_number

Table 5.14 — HDFql functions in C and their corresponding definitions in R

5.2.1 HDFQL_EXECUTE

Syntax

int hdfgl_execute(const char *script)

Version 2.0.1 Page 58 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Execute a script named script. A script can be composed of one or more operations — in case of multiple operations
these can either be separated with a semicolon (;) or an end of line (EOL) terminator. In HDFql, operations are case
insensitive meaning that, for example, operation “SHOW DATASET” is equivalent to “show dataset” or any other
case variation. If a certain operation raises an error, any subsequent operations within script are not executed.

Please refer to Table 6.2 for a complete enumeration of HDFql operations.

Parameter(s)

script — string containing one or more operations to execute. Multiple operations are either separated with a

semicolon (;) or an end of line (EOL) terminator.
Return

int — depending on the success in executing script, it can either be HDFQL_SUCCESS, HDFQL_ERROR_PARSE,

HDFQL_ERROR_NOT_FOUND, HDFQL_ERROR_NO_ACCESS, HDFQL_ERROR_NOT_OPEN,
HDFQL_ERROR_INVALID_FILE, HDFQL_ERROR_NOT_SUPPORTED, HDFQL_ERROR_NOT_ENOUGH_SPACE,
HDFQL_ERROR_NOT_ENOUGH_MEMORY, HDFQL_ERROR_ALREADY_EXISTS, HDFQL_ERROR_EMPTY,

HDFQL_ERROR_FULL, HDFQL_ERROR_BEFORE_FIRST, HDFQL_ERROR_AFTER_LAST, HDFQL_ERROR_OUTSIDE_LIMIT,
HDFQL_ERROR_NO_ADDRESS, @ HDFQL_ERROR_UNEXPECTED_TYPE, @ HDFQL_ERROR_UNEXPECTED_DATA_TYPE,
HDFQL_ERROR_NOT_REGISTERED, HDFQL_ERROR_INVALID_REGULAR_EXPRESSION or HDFQL_ERROR_UNKNOWN.

Example(s)

// declare variable

int status;

// execute script (composed of only one operation - i.e. SHOW USE FILE)

status = hdfql execute("SHOW USE FILE");

// display message about the status of executed script (i.e. successful or not)
if (status == HDFQL SUCCESS)

printf("Execution was successful\n");,
else

printf("Execution was not successful and returned status is %d\n", status);,

Version 2.0.1 Page 59 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// execute script (composed of two operations — i.e. USE FILE my file.h5 and SHOW)

hdfql_execute("USE FILE my file.h5 ; SHOW");

5.2.2 HDFQL_EXECUTE_GET_STATUS

Syntax

int hdfgl_execute_get_status(void)

Description

Get status of the last executed operation. In other words, this function returns the status of the last call of

hdfqgl_execute.

Parameter(s)

None
Return

int — depending on the success of the last executed operation, it can either be HDFQL_SUCCESS,
HDFQL_ERROR_PARSE, HDFQL_ERROR_NOT_FOUND, HDFQL_ERROR_NO_ACCESS, HDFQL ERROR_NOT_OPEN,
HDFQL_ERROR_INVALID_FILE, HDFQL_ERROR_NOT_SUPPORTED, HDFQL_ERROR_NOT_ENOUGH_SPACE,
HDFQL_ERROR_NOT_ENOUGH_MEMORY, HDFQL_ERROR_ALREADY_EXISTS, HDFQL_ERROR_EMPTY,
HDFQL_ERROR_FULL, HDFQL_ERROR_BEFORE_FIRST, HDFQL_ERROR_AFTER_LAST, HDFQL_ERROR_OUTSIDE_LIMIT,
HDFQL_ERROR_NO_ADDRESS, HDFQL_ERROR_UNEXPECTED TYPE, HDFQL_ERROR_UNEXPECTED_DATA_TYPE,
HDFQL_ERROR_NOT_REGISTERED, HDFQL_ERROR_INVALID_REGULAR_EXPRESSION or HDFQL_ERROR_UNKNOWN.

Example(s)

// declare variable

int status;

// execute script (composed of only one operation - i.e. SHOW USE DIRECTORY)
hdfql_execute(”SHOW USE DIRECTORY");

// get status of last executed script (i.e. SHOW USE DIRECTORY)
status = hdfql execute get status();

Version 2.0.1 Page 60 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// display message about the status of last executed script (i.e. successful or not)
if (status == HDFQL SUCCESS)

printf("Execution was successfull\n");,
else

printf("Execution was not successful and returned status is %d\n", status);,

5.2.3 HDFQL_ERROR_GET_LINE

Syntax

int hdfql_error_get_line(void)

Description

Get error line of the last executed operation. In other words, this function returns the number of the line (in the
script) where an error was raised during the last call of hdfgl_execute. The first line in the script is designated as

number one (1).
Parameter(s)
None

Return

int — number of the line (in the script) where an error has occurred during the last executed operation. If the last

executed operation was sucessful, the number of the line will be HDFQL_UNDEFINED.

Example(s)

// execute script (composed of only one operation - i.e. CREATE FILE my file.h5 - which
is syntactically correct)

hdfql execute("CREATE FILE my file.h5");
// display number of the line where an error occurred during the last executed operation
(should be -1 — i.e. HDFQL UNDEFINED)

printf("Error line number is $%d\n", hdfql error get line());

// execute script (composed of only one operation - i.e. CREATE FILEX my file.h5 - which

Version 2.0.1 Page 61 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

is syntactically incorrect due to a typo in "FILEX")
hdfgl execute("CREATE FILEX my file.h5");

// display number of the line where an error occurred during the last executed operation
(should be 1)

printf("Error line number is $d\n", hdfql error get line());

5.2.4 HDFQL_ERROR_GET_POSITION

Syntax

int hdfql_error_get_position(void)

Description

Get error position of the last executed operation. In other words, this function returns the position in the line where

an error was raised during the last call of hdfgl_execute. The first position in the line is designated as number one

(1).
Parameter(s)
None

Return

int — position in the line where an error has occurred during the last executed operation. If the last executed

operation was sucessful, the position in the line will be HDFQL_UNDEFINED.

Example(s)

// execute script (composed of only one operation - i.e. CREATE FILE my file.h5 - which
is syntactically correct)

hdfql execute("CREATE FILE my file.h5");
// display position in the line where an error occurred during the last executed
operation (should be -1 - i.e. HDFQL UNDEFINED)

printf("Error position is %d\n", hdfql error get position());

// execute script (composed of only one operation - i.e. CREATE FILEX my file.h5 - which

Version 2.0.1 Page 62 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

is syntactically incorrect due to a typo in "FILEX")
hdfgl execute("CREATE FILEX my file.h5");

// display position in the line where an error occurred during the last executed
operation (should be 8)

printf("Error position is %d\n", hdfql error get position());

5.2.5 HDFQL_ERROR_GET_MESSAGE

Syntax

char *hdfqgl_error_get_message(void)

Description

Get error message of the last executed operation. In other words, this function returns the message of the error that

was raised during the last call of hdfgl_execute.
Parameter(s)

None

Return

char * — pointer to the message of an error that has occurred during the last executed operation. If the last executed

operation was sucessful, the pointer will be NULL.

Example(s)

// execute script (composed of only one operation - i.e. CREATE FILE my file.h5 - which
is syntactically correct)

hdfql execute ("CREATE FILE my file.h5");

// display message of an error that occurred during the last executed operation (should
be "NULL")

printf("¢s\n", hdfqgl error get message());

// execute script (composed of only one operation - i.e. CREATE FILEX my file.h5 - which

is syntactically incorrect due to a typo in "FILEX")

Version 2.0.1 Page 63 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

hdfql execute("CREATE FILEX my file.hb5");

// display message of an error that occurred during the last executed operation (should
be "Unknown token “FILEX”'")

printf("%s\n", hdfql error get message());

5.2.6 HDFQL_CURSOR_INITIALIZE

Syntax

int hdfgl_cursor_initialize(HDFQL_CURSOR *cursor)

Description

Initialize a cursor named cursor for subsequent use. Before a new cursor is used for the first time, it should always
be initialized (otherwise unexpected errors may arise such as a segmentation fault). The initialization of a cursor sets
its data type attribute to undefined (HDFQL_UNDEFINED), its current element to NULL, and resets its count and
position attributes to zero and minus one respectively, making it ready for usage. Of note, the process of initializing
a cursor is only required in C and performed once, while in other programming languages supported by HDFgl —
namely C++, Java, Python, C#, Fortran and R — such initialization is redundant (in other words, it is not needed) as it

is done automatically when declaring a cursor.

Parameter!s)

cursor — pointer to a cursor (previously declared) to initialize with default values. If the pointer is NULL (in C), the
cursor in use is initialized instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql
wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#,

Fortran and R it is optional (when not provided, the cursor in use is initialized instead).
Return

int — depending on the success in initializing cursor, it can either be HDFQL_SUCCESS or HDFQL_ERROR_UNKNOWN.

Example(s)

// create a cursor named "my cursor"

HDFQL CURSOR my cursor;

Version 2.0.1 Page 64 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// initialize cursor "my cursor"

hdfql cursor initialize(&my cursor);

// use cursor "my cursor"

hdfgl cursor use(&my cursor);

// display number of elements in cursor "my cursor" (should be 0)

printf ("Number of elements in cursor is ed\n", hdfgl cursor get count (NULL));

5.2.7 HDFQL_CURSOR_USE

Syntax

int hdfql_cursor_use(const HDFQL_CURSOR *cursor)

Description

Set the cursor named cursor as the one to be used for storing results of operations.

Parameter(s)

cursor — pointer to a cursor to use for storing the result of operations. If the pointer is NULL (in C), the HDFql default
cursor is used instead (i.e. equivalent of calling the function hdfql_cursor_use_default). The equivalent of a NULL

pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively.
Return

int — depending on the success in using cursor, it can either be HDFQL_SUCCESS or

HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// create a cursor named "my cursor"

HDFQL CURSOR my cursor;

// use cursor "my cursor"

hdfgl cursor use(&my cursor);

Version 2.0.1 Page 65 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// initialize cursor "my cursor"

hdfgl cursor initialize (NULL);

// display data type of cursor "my cursor" (should be -1 — i.e. HDFQL UNDEFINED)
printf("Data type of cursor is %d\n", hdfgl cursor get data type(NULL));

// show (i.e. get) current working directory

hdfql execute("SHOW USE DIRECTORY");

// display (again) data type of cursor "my cursor" (should be 2097152 - i.e.
HDFQL VARCHAR)

printf("Data type of cursor is %d\n", hdfgl cursor get data type(NULL));

// use HDFgl default cursor
hdfgl cursor use (NULL);

// display data type of HDFql default cursor (should be -1 - i.e. HDFQL UNDEFINED)
printf("Data type of cursor is %d\n", hdfgl cursor get data type(NULL));

5.2.8 HDFQL_CURSOR_USE_DEFAULT

Syntax

int hdfqgl_cursor_use_default(void)

Description

Set HDFgl default cursor as the one to be used for storing results of operations.

Parameter(sl

None
Return

int — depending on the success in using HDFql default cursor, it can either be HDFQL SUCCESS or
HDFQL_ERROR_UNKNOWN.

Version 2.0.1 Page 66 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create a cursor named "my cursor"

HDFQL CURSOR my cursor;

// initialize cursor "my cursor"

hdfql cursor initialize(&my cursor);

// use cursor "my cursor"

hdfgl cursor use(&my cursor);

// display data type of cursor "my cursor" (should be -1 - i.e. HDFQL UNDEFINED)
printf("Data type of cursor is $d\n'", hdfgl cursor get data type (NULL));

// show (i.e. get) current working directory

hdfql execute ("SHOW USE DIRECTORY");

// display (again) data type of cursor "my cursor" (should be 2097152 - i.e.
HDFQL VARCHAR)

printf("Data type of cursor is $d\n", hdfgl cursor get data type (NULL));

// use HDFql default cursor

hdfql cursor use default();

// display data type of HDFql default cursor (should be -1 - i.e. HDFQL UNDEFINED)

printf("Data type of cursor is $d\n'", hdfgl cursor get data type (NULL));

5.2.9 HDFQL_CURSOR_CLEAR

Syntax

int hdfql_cursor_clear(HDFQL_CURSOR *cursor)

Description

Clear (i.e. empty) a cursor named cursor. Specifically, this function removes all elements (i.e. result set) stored in the
cursor, specifies its data type attribute to undefined (HDFQL_UNDEFINED), changes its current element to NULL, and

resets its count and position attributes to zero and minus one respectively.

Version 2.0.1 Page 67 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor — pointer to a cursor to clear (i.e. empty). If the pointer is NULL (in C), the cursor in use is cleared instead. The
equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and
NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not

provided, the cursor in use is cleared instead).
Return

int — depending on the success in clearing cursor, it can either be HDFQL SUCCESS or

HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// show (i.e. get) current working directory

hdfqgl execute ("SHOW USE DIRECTORY");

// display number of elements in the cursor in use (should be 1)

printf ("Number of elements in cursor is %d\n", hdfql cursor get count (NULL));

// clear the cursor in use

hdfql cursor clear (NULL);

// display (again) number of elements in the cursor in use (should be 0)

printf("Number of elements in cursor is 3d\n", hdfgl cursor get count (NULL))

5.2.10 HDFQL_CURSOR_CLONE

Syntax

int hdfqgl_cursor_clone(const HDFQL_CURSOR *cursor_original, HDFQL_CURSOR *cursor_clone)

Description

Clone (i.e. duplicate) a cursor named cursor_original into another one named cursor_clone. In other words,
cursor_clone will be an exact copy of cursor_original, meaning that it will have the same data type, count and

position values, store the same result set, and have the same current element as the original cursor.

Version 2.0.1 Page 68 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor_original — pointer to a cursor to clone. If the pointer is NULL (in C), the cursor in use is the one to be cloned
instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null,
None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is

optional (when not provided, the cursor in use is the one to be cloned instead).
cursor_clone — pointer to the cursor that will be a clone (i.e. duplicate) of the original cursor.
Return

int — depending on the success in cloning cursor_original into cursor_clone, it can either be HDFQL_SUCCESS,

HDFQL_ERROR_NOT_ENOUGH_MEMORY or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// create a cursor named "my cursor"

HDFQL CURSOR my cursor;

// initialize cursor "my cursor"

hdfql cursor initialize(&my cursor);

// show (i.e. get) current working directory and populate cursor in use (i.e. HDFql
default cursor) with it

hdfgl execute ("SHOW USE DIRECTORY");

// clone the cursor in use (i.e. HDFql default cursor) into the cursor "my cursor"

hdfql cursor clone(NULL, &my cursor);

// use cursor "my cursor"

hdfql cursor use(&my cursor);

// display number of elements in the cursor in use (should be 1)

printf ("Number of elements in cursor is $d\n", hdfgl cursor get count (NULL))

Version 2.0.1 Page 69 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.11 HDFQL_CURSOR_GET_DATA_TYPE

Syntax

int hdfql_cursor_get_data_type(const HDFQL_CURSOR *cursor)

Description

Get the data type of a cursor named cursor. If the cursor has never been populated or has been initialized or cleared,
the returned data type is undefined (HDFQL_UNDEFINED). Please refer to Table 6.3 for a complete enumeration of
HDFql data types.

Parameter(s)

cursor — pointer to a cursor to get its data type. If the pointer is NULL (in C), the data type of the cursor in use is
returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL,
null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is

optional (when not provided, the data type of the cursor in use is returned instead).
Return

int — depending on the data type of the cursor or its state (i.e. whether it has never been populated or has been
initialized or cleared), it can either be HDFQL_TINYINT, HDFQL_UNSIGNED_TINYINT, HDFQL_SMALLINT,
HDFQL_UNSIGNED_SMALLINT, HDFQL_INT, HDFQL_UNSIGNED_INT, HDFQL_BIGINT, HDFQL_UNSIGNED_BIGINT,
HDFQL_FLOAT, HDFQL_DOUBLE, HDFQL_CHAR, HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT,
HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT, HDFQL_UNSIGNED_VARINT,
HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE, HDFQL_VARCHAR,
HDFQL_OPAQUE or HDFQL_UNDEFINED.

Example(s)

// show (i.e. get) current working directory

hdfql execute ("SHOW USE DIRECTORY");

// display data type of the cursor in use (should be 2097152 - i.e. HDFQL VARCHAR)

printf("Data type of cursor is %d\n", hdfgl cursor get data type (NULL));

// clear the cursor in use

Version 2.0.1 Page 70 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

hdfqgl cursor clear (NULL);

// display (again) data type of the cursor in use (should be -1 - i.e. HDFQL UNDEFINED)

printf("Data

type of cursor is %d\n", hdfgl cursor get data type (NULL));

5.2.12 HDFQL_CURSOR_GET_COUNT

Syntax

int hdfql_cursor_get_count(const HDFQL_CURSOR *cursor)

Description

Get the number of elements (i.e. result set size) stored in a cursor named cursor. If the result set stores data from a
dataset or attribute that does not have a dimension (i.e. if it is scalar), the returned number of elements is one.
Otherwise, if the result set stores data from a dataset or attribute that has dimensions, the returned number of
elements equals the multiplication of all its dimensions’ sizes (e.g. if a cursor stores a result set of two dimensions of
size 10x3, the number of elements is 30). If the cursor has never been populated or has been initialized or cleared,

the returned number of elements is zero.

Parameter(s)

cursor — pointer to a cursor to get its number of elements (i.e. result set size). If the pointer is NULL (in C), the
number of elements of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python,
C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory,
in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the number of elements of the cursor in

use is returned instead).
Return

int — number of elements (i.e. result set size) stored in the cursor.

Example(s)

// show (i.e. get) current working directory

hdfql_execute ("SHOW USE DIRECTORY");

Version 2.0.1 Page 71 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// display number of elements in the cursor in use (should be 1)

printf ("Number of elements in cursor is ed\n", hdfgl cursor get count (NULL));

0))

// clear the cursor in use

hdfqgl cursor clear (NULL);

// display (again) number of elements in the cursor in use (should be 0)

0))

printf ("Number of elements in cursor is ed\n", hdfgl cursor get count (NULL));

5.2.13 HDFQL_SUBCURSOR_GET_COUNT

Syntax

int hdfgl_subcursor_get_count(const HDFQL_CURSOR *cursor)

Description

Get the number of elements (i.e. result subset size) stored in the subcursor in use. If the cursor that the subcursor

belongs to has never been populated or has been initialized or cleared, the returned number of elements is zero.

Parameter(s)

cursor — pointer to a cursor to get the number of elements (i.e. result subset size) stored in the subcursor in use. If
the pointer is NULL (in C), the number of elements of the subcursor of the cursor in use is returned instead. The
equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and
NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not

provided, the number of elements of the subcursor of the cursor in use is returned instead).
Return

int — number of elements (i.e. result subset size) stored in the subcursor.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length int of two
dimensions (size 2x2)

~D

hdfgl execute ("CREATE DATASET my dataset AS VARINT (2, 2)");

Version 2.0.1 Page 72 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// insert (i.e. write) values into dataset "my dataset"

(oY

hdfgl execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, , 2, 3), (4, 0)))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// display number of elements in the cursor in use (should be 4 - i.e. 2x2)

printf ("Number of elements in cursor is $%d\n", hdfql cursor get count (NULL));

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display number of elements in the subcursor in use (should be 3)

printf("Number of elements in subcursor is %d\n", hdfql subcursor get count (NULL));

// move the cursor in use to next position within the result set (i.e. second position)

hdfql cursor next (NULL);

// display number of elements in the subcursor in use (should be 1)

printf ("Number of elements in subcursor is %d\n", hdfqgl subcursor get count (NULL));

5.2.14 HDFQL_CURSOR_GET_POSITION

Syntax

int hdfgl_cursor_get_position(const HDFQL_CURSOR *cursor)

Description

Get current position of a cursor named cursor within the result set. The first element of the result set is at position
zero, while the last element is located at the position returned by hdfgl_cursor_get_count - 1. If the cursor has never
been populated or has been initialized or cleared, or in case the result set is empty, the returned current position is
minus one. If the cursor was moved before the first element or after the last element, the returned current position

is minus one or the number of elements in the result set, respectively.

Parameter(s)

cursor — pointer to a cursor to get its current position within the result set. If the pointer is NULL (in C), the current

position of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran

Version 2.0.1 Page 73 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

and R HDFqgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++,
Java, Python, C#, Fortran and R it is optional (when not provided, the current position of the cursor in use is returned

instead).
Return

int — current position of the cursor within the result set.

Example(s)

// show (i.e. get) current working directory

hdfgl execute ("SHOW USE DIRECTORY");

// move the cursor in use to the first position within the result set

hdfgl cursor first (NULL);

// display position of the cursor in use within the result set (should be 0)

printf("Position of cursor is %d\n", hdfql cursor get position(NULL));

// clear the cursor in use

hdfql cursor clear (NULL);

// display (again) position of the cursor in use within the result set (should be -1)

printf("Position of cursor is 2d\n", hdfql cursor get position(NULL))

5.2.15 HDFQL_SUBCURSOR_GET_POSITION

Syntax

int hdfql_subcursor_get_position(const HDFQL_CURSOR *cursor)

Description

Get current position of the subcursor in use within the result subset. The first element of the result subset is at
position zero, while the last element is located at the position returned by hdfql_subcursor_get_count - 1. If the
cursor that the subcursor belongs to has never been populated or has been initialized or cleared, or in case the

result subset is empty, the returned current position is minus one. If the subcursor was moved before the first

Version 2.0.1 Page 74 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

element or after the last element, the returned current position is minus one or the number of elements in the

result subset, respectively.

Parameter(s)

cursor — pointer to a cursor to get the current position of the subcursor in use within the result subset. If the pointer
is NULL (in C), the current position of the subcursor of the cursor in use is returned instead. The equivalent of a NULL
pointer in C++, Java, Python, C#, Fortran and R HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively.
While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current

position of the subcursor of the cursor in use is returned instead).
Return

int — current position of the subcursor within the result subset.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length int of two

dimensions (size 2xZ2)

// insert (i.e. write) values into dataset "my dataset"
hdfqgl execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");
// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfql cursor first(NULL);

// display position of the subcursor in use within the result subset (should be -1)

printf("Position of subcursor is %d\n", hdfql subcursor get position(NULL));

// move the subcursor in use to the next position within the result subset (two times)
hdfgl subcursor next (NULL) ;
hdfql subcursor next (NULL) ;

// display (again) position of the subcursor in use within the result subset (should be
1)

printf("Position of subcursor is $d\n", hdfgl subcursor get position(NULL));

Version 2.0.1 Page 75 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.16 HDFQL_CURSOR_FIRST

Syntax

int hdfqgl_cursor_first(HDFQL_CURSOR *cursor)

Description

Move a cursor named cursor to the first position within the result set. In other words, the cursor will point to the
first element of the result set and its position is set to zero. If the result set is empty, an error is returned and its

position remains unchanged (i.e. remains minus one).

Parameter(s)

cursor — pointer to a cursor to move to the first position within the result set. If the pointer is NULL (in C), the cursor
in use is moved to the first position instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R
HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java,

Python, C#, Fortran and R it is optional (when not provided, the cursor in use is moved to the first position instead).
Return

int — depending on the success in moving the cursor to the first position within the result set, it can either be

HDFQL_SUCCESS or HDFQL_ERROR_EMPTY.

Example(s)

// show (i.e. get) current working directory

hdfgl execute ("SHOW USE DIRECTORY");

// display position of the cursor in use within the result set (should be -1)

printf("Position of cursor is 2d\n", hdfql cursor get position(NULL));

// move the cursor in use to the first position within the result set

hdfgl cursor first (NULL);

// display (again) position of the cursor in use within the result set (should be 0)

printf("Position of cursor 1s %d\n'", hdfql cursor get position(NULL));

Version 2.0.1 Page 76 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.17 HDFQL_SUBCURSOR_FIRST

Syntax

int hdfqgl_subcursor_first(HDFQL_CURSOR *cursor)

Description

Move the subcursor in use to the first position within the result subset. In other words, the subcursor will point to
the first element of the result subset and its position is set to zero. If the result subset is empty, an error is returned

and its position remains unchanged (i.e. remains minus one).

Parameter(s)

cursor — pointer to a cursor to move the subcursor in use to the first position within the result subset. If the pointer
is NULL (in C), the subcursor of the cursor in use is moved to the first position instead. The equivalent of a NULL
pointer in C++, Java, Python, C#, Fortran and R HDFqgl wrappers is NULL, null, None, null, 0 and NULL, respectively.
While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the

subcursor of the cursor in use is moved to the first position instead).
Return

int — depending on the success in moving the subcursor to the first position within the result subset, it can either be

HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length int of two
dimensions (size 2x2)

hdfql execute ("CREATE DATASET my dataset AS VARINT (2, 2)");

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

Version 2.0.1 Page 77 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// move the cursor in use to the first position within the result set

hdfgl cursor first (NULL);

// display position of the subcursor in use within the result subset (should be -1)

printf("Position of subcursor is $d\n", hdfql subcursor get position(NULL));

// move the subcursor in use to the first position within the result subset

hdfqgl subcursor first (NULL);

// display (again) position of the subcursor in use within the result subset (should be
0)

printf("Position of subcursor is $d\n", hdfgl subcursor get position(NULL));

5.2.18 HDFQL_CURSOR_LAST

Syntax

int hdfgl_cursor_last(HDFQL_CURSOR *cursor)

Description

Move a cursor named cursor to the last position within the result set. In other words, the cursor will point to the last
element of the result set and its position is set to the value returned by hdfql_cursor_get _count - 1. If the result set

is empty, an error is returned and its position remains unchanged (i.e. remains minus one).

Parameter(s)

cursor — pointer to a cursor to move to the last position within the result set. If the pointer is NULL (in C), the cursor
in use is moved to the last position instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R
HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java,

Python, C#, Fortran and R it is optional (when not provided, the cursor in use is moved to the last position instead).
Return

int — depending on the success in moving the cursor to the last position within the result set, it can either be

HDFQL_SUCCESS or HDFQL_ERROR_EMPTY.

Version 2.0.1 Page 78 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// show (i.e. get) current working directory

hdfql execute("SHOW USE DIRECTORY");

// display position of the cursor in use within the result set (should be -1)

7=

printf("Position of cursor is 3%d\n'", hdfql cursor get position(NULL));

// move the cursor in use to the last position within the result set

hdfql cursor last (NULL) ;

// display position of the cursor in use within the result set (should be 0)

printf("Position of cursor is %d\n'", hdfqgl cursor get position(NULL));

5.2.19 HDFQL_SUBCURSOR_LAST

Syntax

int hdfql_subcursor_last(HDFQL_CURSOR *cursor)

Description

Move the subcursor in use to the last position within the result subset. In other words, the subcursor will point to
the last element of the result subset and its position is set to the value returned by hdfgl_subcursor_get_count - 1. If

the result subset is empty, an error is returned and its position remains unchanged (i.e. remains minus one).

Parameter(s)

cursor — pointer to a cursor to move the subcursor in use to the last position within the result subset. If the pointer is
NULL (in C), the subcursor of the cursor in use is moved to the last position instead. The equivalent of a NULL pointer
in C++, Java, Python, C#, Fortran and R HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C
cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the subcursor of the

cursor in use is moved to the last position instead).
Return

int — depending on the success in moving the subcursor to the last position within the result subset, it can either be

HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Version 2.0.1 Page 79 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length int of two
dimensions (size 2x2)

hdfgl execute ("CREATE DATASET my dataset AS VARINT (2, 2)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfgl cursor first (NULL);

// display position of subcursor in use within the result subset (should be -1)

printf("Position of subcursor is %d\n", hdfql subcursor get position(NULL));

// move the subcursor in use to the last position within the result subset

hdfql subcursor last (NULL);

// display (again) position of subcursor in use within the result subset (should be 2)

printf("Position of subcursor is $d\n", hdfql subcursor get position(NULL));

5.2.20 HDFQL_CURSOR_NEXT

Syntax

int hdfql_cursor_next(HDFQL_CURSOR *cursor)

Description

Move a cursor named cursor one position forward from its current position. In other words, the cursor will point to
the next element of the result set and its position is incremented by one. If the result set is empty or the cursor is in
the last position, an error is returned and its position remains unchanged (i.e. remains minus one) or is set to the

value returned by hdfgl_cursor_get_count, respectively.

Version 2.0.1 Page 80 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor — pointer to a cursor to move one position forward from its current position. If the pointer is NULL (in C), the
cursor in use is moved one position forward from its current position instead. The equivalent of a NULL pointer in
C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C
cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the cursor in use is

moved one position forward from its current position instead).
Return

int — depending on the success in moving the cursor one position forward from its current position, it can either be

HDFQL_SUCCESS, HDFQL_ERROR_EMPTY or HDFQL_ERROR_AFTER_LAST.

Example(s)

// show (i.e. get) current working directory

hdfgl execute ("SHOW USE DIRECTORY");

// move the cursor in use to the next position within the result set

hdfgl cursor next (NULL) ;

// display position of cursor within the result set (should be 0)
printf("Position of cursor is %d\n", hdfql cursor get position(NULL))

5.2.21 HDFQL_SUBCURSOR_NEXT

Syntax

int hdfql_subcursor_next(HDFQL_CURSOR *cursor)

Description

Move the subcursor in use one position forward from its current position. In other words, the subcursor will point to
the next element of the result subset and its position is incremented by one. If the result subset is empty or the
subcursor is in the last position, an error is returned and its position remains unchanged (i.e. remains minus one) or

is set to the value returned by hdfqgl_subcursor_get_count, respectively

Version 2.0.1 Page 81 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor — pointer to a cursor to move the subcursor in use one position forward from its current position. If the
pointer is NULL (in C), the subcursor of the cursor in use is moved one position forward from its current position
instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFgl wrappers is NULL, null,
None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is
optional (when not provided, the subcursor of the cursor in use is moved one position forward from its current

position instead).
Return

int — depending on the success in moving the subcursor one position forward from its current position, it can either

be HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length int of two
dimensions (size 2x2)

hdfql execute ("CREATE DATASET my dataset AS VARINT (2, 2)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfgl cursor first (NULL);

// display position of subcursor in use within the result subset (should be -1)

printf("Position of subcursor is $d\n", hdfqgl subcursor get position(NULL));

// move the subcursor in use to the next position within the result subset (two times)
hdfgl subcursor next (NULL) ;
hdfgl subcursor next (NULL) ;

// display (again) position of subcursor in use within the result subset (should be 1)

printf("Position of subcursor is %d\n", hdfql subcursor get position(NULL));

Version 2.0.1 Page 82 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.22 HDFQL_CURSOR_PREVIOUS

Syntax

int hdfqgl_cursor_previous(HDFQL_CURSOR *cursor)

Description

Move a cursor named cursor one position backward from its current position. In other words, the cursor will point to
the previous element of the result set and its position is decremented by one. If the result set is empty or the cursor
is in the first position, an error is returned and its position remains unchanged (i.e. remains minus one) or is set to

minus one, respectively.

Parameter(s)

cursor — pointer to a cursor to move one position backward from its current position. If the pointer is NULL (in C), the
cursor in use is moved one position backward from its current position instead. The equivalent of a NULL pointer in
C++, Java, Python, C#, Fortran and R HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C
cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the cursor in use is

moved one position backward from its current position instead).
Return

int — depending on the success in moving the cursor one position backward from its current position, it can either be

HDFQL_SUCCESS, HDFQL_ERROR_EMPTY or HDFQL_ERROR_BEFORE_FIRST.

Example(s)

// create an HDF5 dataset named "my dataset" of data type float of two dimensions (size
2x10)

hdfgl execute ("CREATE DATASET my dataset AS FLOAT (2, 10)");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to the last position within the result set

hdfgl cursor last (NULL);

// move the cursor in use to the previous position within the result set

Version 2.0.1 Page 83 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

hdfgl cursor previous (NULL) ;

// display position of cursor in use within the result set (should be 18 - i.e. 2x10-1-1)

printf("Position of cursor is %d\n'", hdfqgl cursor get position(NULL));

5.2.23 HDFQL_SUBCURSOR_PREVIOUS

Syntax

int hdfql_subcursor_previous(HDFQL_CURSOR *cursor)

Description

Move the subcursor in use one position backward from its current position. In other words, the subcursor will point
to the previous element of the result subset and its position is decremented by one. If the result subset is empty or
the subcursor is in the first position, an error is returned and its position remains unchanged (i.e. remains minus

one) or is set to minus one, respectively.

Parameter(s)

cursor — pointer to a cursor to move the subcursor in use one position backward from its current position. If the
pointer is NULL (in C), the subcursor of the cursor in use is moved one position backward from its current position
instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null,
None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is
optional (when not provided, the subcursor of the cursor in use is moved one position backward from its current

position instead).
Return

int — depending on the success in moving the subcursor one position backward from its current position, it can either

be HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length int of two
dimensions (size 2x2)

hdfql execute ("CREATE DATASET my dataset AS VARINT (2, 2)");

Version 2.0.1 Page 84 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfqgl cursor first (NULL);

// move the subcursor in use to the last position within the result subset

hdfql subcursor last (NULL) ;

// move the subcursor in use to the previous position within the result subset (two
times)

hdfgl subcursor previous (NULL);

hdfql subcursor previous (NULL);

// display position of the subcursor within the result subset (should be 0 - i.e. 3-1-1-
1)

printf("Position of subcursor is $d\n", hdfql subcursor get position(NULL));

5.2.24 HDFQL_CURSOR_ABSOLUTE

Syntax

int hdfql_cursor_absolute(HDFQL_CURSOR *cursor, int position)

Description

Move a cursor named cursor to an absolute position position within the result set. The first element of the result set
is at position zero, while the last element is located at the position returned by hdfgl_cursor_get _count - 1. An
attempt to move the cursor before the first element will return an error and set the position of the cursor to minus
one, while an attempt to move the cursor after the last element will return an error and set the position of the

cursor to number of elements in the result set.

Version 2.0.1 Page 85 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor — pointer to a cursor to move to an absolute position within the result set. If the pointer is NULL (in C), the
cursor in use is moved to an absolute position instead. The equivalent of a NULL pointer in C++, Java, Python, C#,
Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in
C++, Java, Python, C#, Fortran and R it is optional (when not provided, the cursor in use is moved to an absolute

position instead).

position — absolute position to which to move the cursor. If position is positive, the cursor will position itself with
reference to the beginning of the result set. If position is negative, the cursor will position itself with reference to the

end of the result set.
Return

int — depending on the success in moving the cursor to an absolute position within the result set, it can either be

HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create five HDF5 groups named "gl", "g2", "g3", "g4" and "g5"
hdfql execute ("CREATE GROUP gl, g2, g3, g4, g5");

// show (i.e. get) all existing groups and populate cursor in use with these (should be
”gl ”, ”g2 ”, ”g3 ”, ”g4 ”, ”g5 ")

hdfql execute ("SHOW GROUP") ;

// move the cursor in use to absolute position 2 within the result set

hdfql cursor absolute(NULL, ”);

// display current element of the cursor in use within the result set (should be "g3")

printf("Current element of cursor is %s", hdfgl cursor get char(NULL));

// move the cursor in use to absolute position -2 within the result set

hdfgl cursor absolute (NULL, -”);

// display current element of the cursor in use within the result set (should be "g4")

printf("Current element of cursor is %s", hdfgl cursor get char(NULL));

Version 2.0.1 Page 86 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.25 HDFQL_SUBCURSOR_ABSOLUTE

Syntax

int hdfql_subcursor_absolute(HDFQL_CURSOR *cursor, int position)

Description

Move the subcursor in use to an absolute position position within the result subset. The first element of the result
subset is at position zero, while the last element is located at the position returned by hdfgl_subcursor_get count -
1. An attempt to move the subcursor before the first element will return an error and set the position of the
subcursor to minus one, while an attempt to move the subcursor after the last element will return an error and set

the position of the subcursor to number of elements in the result subset.

Parameter(s)

cursor — pointer to a cursor to move the subcursor in use to an absolute position within the result subset. If the
pointer is NULL (in C), the subcursor of the cursor in use is moved to an absolute position instead. The equivalent of
a NULL pointer in C++, Java, Python, C#, Fortran and R HDFgl wrappers is NULL, null, None, null, 0 and NULL,
respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not

provided, the subcursor of the cursor in use is moved to an absolute position instead).

position — absolute position to which to move the subcursor. If position is positive, the subcursor will position itself
with reference to the beginning of the result subset. If position is negative, the subcursor will position itself with

reference to the end of the result subset.
Return

int — depending on the success in moving the subcursor to an absolute position within the result subset, it can either

be HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length int of two
dimensions (size 2x2)

T my dataset AS VARINT (2, 2)");

hdfql execute ("CREATI

inser l1.e. write values 1nto atase m atase
// 1 t (1 ite) 1 into dataset "my dataset"

Version 2.0.1 Page 87 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

hdfgl execute ("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfgl cursor first (NULL);

// move the subcursor in use to absolute position 2 within the result subset

hdfql subcursor absolute (NULL, 2);

// display current element of the subcursor in use within the result subset (should be 5)

printf("Current element of subcursor is %d", hdfgl subcursor get int (NULL))

// move the subcursor in use to absolute position -2 within the result subset

hdfgl subcursor absolute (NULL, -7);

// display current element of the subcursor in use within the result subset (should be 8)

printf("Current element of subcursor is %d", hdfgl subcursor get int (NULL))

5.2.26 HDFQL_CURSOR_RELATIVE

Syntax

int hdfqgl_cursor_relative(HDFQL_CURSOR *cursor, int position)

Description

Move a cursor named cursor to a relative position position with respect to its current position. The first element of
the result set is at position zero, while the last element is located at the position returned by
hdfgl_cursor_get_count - 1. An attempt to move the cursor before the first element will return an error and set the
position of the cursor to minus one, while an attempt to move the cursor after the last element will return an error

and set the position of the cursor to number of elements in the result set.

Parameter(s)

cursor — pointer to a cursor to move to a relative position with respect to its current position. If the pointer is NULL
(in C), the cursor in use is moved to a relative position instead. The equivalent of a NULL pointer in C++, Java, Python,

C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory,

Version 2.0.1 Page 88 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the cursor in use is moved to a relative

position instead).

position — relative position to which to move the cursor. If position is positive, the cursor will go forward in the result
set relative to its current position. If position is negative, the cursor will go backward in the result set relative to its

current position.
Return

int — depending on the success in moving the cursor to a relative position with respect to its current position, it can

either be HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create five HDF5 groups named "gl", '"g2", "g3", "g4" and "g5"
hdfgl execute ("CREATE GROUP gl, g2, g3, g4, gb");

// show (i.e. get) all existing groups and populate cursor in use with these (should be
”gl ”, "9'2”/ "9'3”/ "g4”, "g5")
hdfgl execute ("SHOW GROUP") ;

// move the cursor in use to the first position within the result set

hdfgl cursor first (NULL);

// move the cursor in use to relative position 2 within the result set

hdfgl cursor relative (NULL, 2);

// display current element of the cursor within the result set (should be "g3")

printf("Current element of cursor is %s", hdfgl cursor get char(NULL));

// move the cursor in use to relative position -2 within the result set

hdfql cursor relative(NULL, -2);

// display current element of the cursor within the result set (should be "gl")

printf("Current element of cursor is %s'", hdfgl cursor get char (NULL));

Version 2.0.1 Page 89 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.27 HDFQL_SUBCURSOR_RELATIVE

Syntax

int hdfgl_subcursor_relative(HDFQL_CURSOR *cursor, int position)

Description

Move the subcursor in use to a relative position position with respect to its current position. The first element of the
result subset is at position zero, while the last element is located at the position returned by
hdfgl_subcursor_get_count - 1. An attempt to move the subcursor before the first element will return an error and
set the position of the subcursor to minus one, while an attempt to move the subcursor after the last element will

return an error and set the position of the subcursor to number of elements in the result set.

Parameter(s)

cursor — pointer to a cursor to move the subcursor in use to a relative position with respect to its current position. If
the pointer is NULL (in C), the subcursor of the cursor in use is moved to a relative position instead. The equivalent
of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFqgl wrappers is NULL, null, None, null, 0 and NULL,
respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not

provided, the subcursor of the cursor in use is moved to a relative position instead).

position — relative position to which to move the subcursor. If position is positive, the subcursor will go forward in
the result set relative to its current position. If position is negative, the subcursor will go backward in the result set

relative to its current position.
Return

int — depending on the success in moving the subcursor to a relative position with respect to its current position, it
can either be HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or
HDFQL_ERROR_AFTER_LAST.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length int of two

dimensions (size 2x2)

hdfgl execute ("CREATE DAIT

T my dataset AS VARINT (2, 2)");

Version 2.0.1 Page 90 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfql cursor first (NULL);

// move the subcursor in use to the first position within the result subset

hdfqgl subcursor first (NULL);

// move the subcursor in use to relative position 2 within the result subset

hdfql subcursor relative (NULL, ”);

// display current element of the subcursor in use within the result subset (should be 5)

printf("Current element of subcursor is %d", hdfgl subcursor get int (NULL))

// move the subcursor in use to relative position -1 within the result subset

hdfql subcursor relative(NULL, -1);

// display current element of the subcursor in use within the result subset (should be 8)

printf("Current element of subcursor is %d", hdfgl subcursor get int (NULL))

5.2.28 HDFQL_CURSOR_GET_SIZE

Syntax

int hdfgl_cursor_get_size(const HDFQL_CURSOR *cursor)

Description

Get the current element size (in bytes) of a cursor named cursor. If the result set it empty or the cursor is located

before or after the first or last element of the result set, an error is returned instead.

Parameter(s)

cursor — pointer to a cursor to get the current element size (in bytes). If the pointer is NULL (in C), the current

element size of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#,

Version 2.0.1 Page 91 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in
C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element size of the cursor in use is

returned instead).
Return

int — depending on the success in getting the current element size (in bytes) of the cursor, it can either be > 0 (i.e.

the size itself), HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create an HDF5 group named "my group"

hdfgl execute ("CREATE GROUP my group");

// show (i.e. get) all existing groups and populate cursor in use with these (should be

”myigroup 1)

hdfgl execute ("SHOW GROUP") ;

// move the cursor in use to the first position within the result set

hdfgl cursor first (NULL);

// display current element size (in bytes) of the cursor in use within the result set
(should be 8 - i.e. 8x1)

printf("Current element size (in bytes) of cursor is %d\n", hdfgl cursor get size(NULL));

5.2.29 HDFQL_SUBCURSOR_GET_SIZE
Syntax
int hdfgl_subcursor_get_size(const HDFQL_CURSOR *cursor)

Description

Get the current element size (in bytes) of the subcursor in use. If the result subset it empty or the subcursor is

located before or after the first or last element of the result subset, an error is returned instead.

Version 2.0.1 Page 92 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor — pointer to a cursor to get the current element size (in bytes) of the subcursor in use. If the pointer is NULL
(in C), the current element size of the subcursor of the cursor in use is returned instead. The equivalent of a NULL
pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively.
While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current

element size of the subcursor of the cursor in use is returned instead).
Return

int — depending on the success in getting the current element size (in bytes) of the subcursor, it can either be >0 (i.e.

the size itself), HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length float of one
dimension (size 3)

hdfqgl execute ("CREATE DATASET my dataset AS VARFLOAT(3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES((5.5, 2.2), (8.1), (4.9, 3.4, 5.6))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfql cursor first(NULL);

// move the subcursor in use to the first position within the result subset

hdfgl subcursor first (NULL);

// display current element size (in bytes) of the subcursor within the result subset
(should be 4 - i.e. 4x1)
printf("Current element size (in bytes) of subcursor is %d\n",

hdfgl subcursor get size(NULL))

Version 2.0.1 Page 93 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.30 HDFQL_CURSOR_GET

Syntax

void *hdfgl_cursor_get(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as a generic (typeless) pointer. It is up to the programmer to
interpret the returned pointer according to their needs. If the result set it empty or the cursor is located before or
after the first or last element of the result set, the returned element is NULL. Of note, this function is only available

in C and C++ (the remaining HDFql wrappers — namely Java, Python, C#, Fortran and R — do not support it).

Parameter(s)

cursor — pointer to a cursor to get the current element as a generic (typeless) pointer. If the pointer is NULL (in C),
the current element of the cursor in use is returned instead. The equivalent of a NULL pointer in the C++ HDFq|
wrapper is NULL. While in C cursor is mandatory, in C++ it is optional (when not provided, the current element of the

cursor in use is returned instead).
Return

void * — generic (typeless) pointer to the current element of the cursor. If there is no current element, the pointer is

NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type float of one dimension (size 3)

hdfgl execute ("CREATE DATASET my dataset AS FLOAT(3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute ("INSERT IN:

|

O my dataset VALUES (5.5, 8.1, 4.9)");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

Version 2.0.1 Page 94 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// display current element of the cursor in use as a float (should be 5.5)

printf("Current element of cursor is 3f\n", (float *) hdfql cursor get (NULL));

5.2.31 HDFQL_SUBCURSOR_GET

Syntax

void *hdfgl_subcursor_get(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as a generic (typeless) pointer. It is up to the programmer to
interpret the returned pointer according to their needs. If the result subset it empty or the subcursor is located
before or after the first or last element of the result subset, the returned element is NULL. Of note, this function is
only available in C and C++ (the remaining HDFgl wrappers — namely Java, Python, C#, Fortran and R — do not

support it).

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as a generic (typeless) pointer. If the
pointer is NULL (in C), the current element of the subcursor of the cursor in use is returned instead. The equivalent
of a NULL pointer in the C++ HDFgl wrapper is NULL. While in C cursor is mandatory, in C++ it is optional (when not

provided, the current element of the subcursor of the cursor in use is returned instead).
Return

void * — generic (typeless) pointer to the current element of the subcursor. If there is no current element, the

pointer is NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length float of one
dimension (size 3)

hdfgl execute("CREATE DATASET my dataset AS VARFLOAT(3)");

inser l1.e. write values 1nto atase m atase
// 1 t (1 ite) 1 into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES((5.5, 2.2), (8.1), (4.9, 3.4, 5.6))");

Version 2.0.1 Page 95 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a float (should be 5.5)

printf("Current element of subcursor is %f\n", (float *) hdfql subcursor get (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfql subcursor next (NULL);

// display current element of the subcursor in use as a float (should be 2.2)

printf("Current element of subcursor is $f\n", (float *) hdfql subcursor get (NULL))

5.2.32 HDFQL_CURSOR_GET_TINYINT

Syntax

char *hdfqgl_cursor_get_tinyint(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as a TINYINT. In other words, the current element is interpreted as
a “char” C data type and returned as a pointer of such type. If the result set is empty or the cursor is located before

or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a TINYINT. If the pointer is NULL (in C), the current element
of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R

HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java,

Version 2.0.1 Page 96 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Python, C#, Fortran and R it is optional (when not provided, the current element of the cursor in use is returned

instead).
Return

char * — pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type char of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS TINYINT (3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql_execute("lﬂSERT INTO my dataset VALUES (12, 34, 23) ");

// select (i.e. read) data from dataset "my dataset” and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a char (should be 12)

printf("Current element of cursor is 2%d\n", *hdfql cursor get tinyint (NULL))

5.2.33 HDFQL_SUBCURSOR_GET_TINYINT

Syntax

char *hdfgl_subcursor_get_tinyint(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as a TINYINT. In other words, the current element is interpreted as a
“char” C data type and returned as a pointer of such type. If the result subset is empty or the subcursor is located

before or after the first or last element of the result subset, the returned element is NULL.

Version 2.0.1 Page 97 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as a TINYINT. If the pointer is NULL (in
C), the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer in
C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C
cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of

the subcursor of the cursor in use is returned instead).
Return

char * — pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length char of one
dimension (size 3)

hdfgl execute ("CREATE DATASET my dataset AS VARTINYINT (3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql_execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9)) ") ;

// select (i.e. read) data from dataset "my dataset” and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a char (should be 5)

printf("Current element of cursor is %d\n", *hdfqgl cursor get tinyint (NULL))

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as a char (should be 5)

printf("Current element of subcursor is $d\n", *hdfql subcursor get tinyint (NULL));

// move the subcursor in use to next position within the result subset (i.e. second

position)

hdfql subcursor next (NULL);

Version 2.0.1 Page 98 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// display current element of the subcursor in use as a char (should be 2)

printf("Current element of subcursor is $%d\n", *hdfql subcursor get tinyint (NULL));

5.2.34 HDFQL_CURSOR_GET_UNSIGNED_TINYINT

Syntax

unsigned char *hdfgl_cursor_get_unsigned_tinyint(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as an UNSIGNED TINYINT. In other words, the current element is
interpreted as an “unsigned char” C data type and returned as a pointer of such type. If the result set is empty or the

cursor is located before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a UNSIGNED TINYINT. If the pointer is NULL (in C), the
current element of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, CH,
Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in
C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the cursor in use is

returned instead).
Return

unsigned char * — pointer to the current element of the cursor. If there is no current element, the pointer will be

NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type unsigned char of one dimension
(size 3)

r L

hdfql execute ("CREATE DATASET my dataset AS UNSIGNED TINYINT(3)");

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES (12, 34, 23)");

Version 2.0.1 Page 99 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned char (should be 12)

printf("Current element of cursor is %u\n", *hdfgl cursor get unsigned tinyint (NULL));

5.2.35 HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINT

Syntax

unsigned char *hdfgl_subcursor_get_unsigned_tinyint(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as an UNSIGNED TINYINT. In other words, the current element is
interpreted as an “unsigned char” C data type and returned as a pointer of such type. If the result subset is empty or

the subcursor is located before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as an UNSIGNED TINYINT. If the
pointer is NULL (in C), the current element of the subcursor of the cursor in use is returned instead. The equivalent
of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFqgl wrappers is NULL, null, None, null, 0 and NULL,
respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not

provided, the current element of the subcursor of the cursor in use is returned instead).
Return

unsigned char * — pointer to the current element of the subcursor. If there is no current element, the pointer will be

NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length unsigned char

of one dimension (size 3)

Version 2.0.1 Page 100 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

hdfql execute ("CREATE DATASET my dataset AS UNSIGNED VARTINYINT (3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfqgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned char (should be 5)

printf("Current element of cursor is %ul\n", *hdfql cursor get unsigned tinyint (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfql subcursor next (NULL);

// display current element of the subcursor in use as an unsigned char (should be 5)
printf("Current element of subcursor is %u\n",

*hdfql subcursor get unsigned tinyint (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfql subcursor next (NULL);

// display current element of the subcursor in use as an unsigned char (should be 2)
printf("Current element of subcursor is $u\n",

*hdfql subcursor get unsigned tinyint (NULL))

5.2.36 HDFQL_CURSOR_GET_SMALLINT

Syntax

short *hdfqgl_cursor_get_smallint(const HDFQL_CURSOR *cursor)

Version 2.0.1 Page 101 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get the current element of a cursor named cursor as a SMALLINT. In other words, the current element is interpreted
as a “short” C data type and returned as a pointer of such type. If the result set is empty or the cursor is located

before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a SMALLINT. If the pointer is NULL (in C), the current
element of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran
and R HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++,
Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the cursor in use is

returned instead).
Return

short * — pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type short of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS SMALLINT(3)");

// insert (i.e. write) values into dataset '"my dataset"

hdfql execute ("INSERT INTO my dataset VALUES (12, 34, 23)");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it
hdfgl execute ("SELECT FROM my dataset");
// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as a short (should be 12)

printf("Current element of cursor is %d\n", *hdfgl cursor get smallint (NULL));

Version 2.0.1 Page 102 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.37 HDFQL_SUBCURSOR_GET_SMALLINT

Syntax

short *hdfgl_subcursor_get_smallint(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as a SMALLINT. In other words, the current element is interpreted as
a “short” C data type and returned as a pointer of such type. If the result subset is empty or the subcursor is located

before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as a SMALLINT. If the pointer is NULL
(in C), the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer
in C++, Java, Python, C#, Fortran and R HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C
cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of

the subcursor of the cursor in use is returned instead).
Return

short * — pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length short of one

dimension (size 3)

hdfgl execute ("CREATE AS VARSMALLINT (3)");

// insert (i.e. write) values into dataset "my dataset"”

hdfgl execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a short (should be 5)

Version 2.0.1 Page 103 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

printf("Current element of cursor is 2d\n", *hdfqgl cursor get smallint (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as a short (should be 5)

printf("Current element of subcursor is %d\n", *hdfql subcursor get smallint (NULL))

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfqgl subcursor next (NULL) ;

// display current element of the subcursor in use as a short (should be 2)

printf("Current element of subcursor is %d\n", *hdfql subcursor get smallint (NULL))

5.2.38 HDFQL_CURSOR_GET_UNSIGNED_SMALLINT

Syntax

unsigned short *hdfgl_cursor_get_unsigned_smallint(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as an UNSIGNED SMALLINT. In other words, the current element is
interpreted as an “unsigned short” C data type and returned as a pointer of such type. If the result set is empty or

the cursor is located before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as an UNSIGNED SMALLINT. If the pointer is NULL (in C), the
current element of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, CH,
Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in
C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the cursor in use is

returned instead).

Version 2.0.1 Page 104 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Return

unsigned short * — pointer to the current element of the cursor. If there is no current element, the pointer will be

NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type unsigned short of one dimension
(size 3)

hdfql execute ("CREATE DATASET my dataset AS UNSIGNED SMALLINT (3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql_execute("INSERT INTO my dataset VALUES (12, 34, 23) ") ;

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as an unsigned short (should be 12)

printf("Current element of cursor is ?%u\n", *hdfgl cursor get unsigned smallint (NULL))

5.2.39 HDFQL_SUBCURSOR_GET_UNSIGNED_SMALLINT

Syntax

unsigned short *hdfql_subcursor_get_unsigned_smallint(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as an UNSIGNED SMALLINT. In other words, the current element is
interpreted as an “unsigned short” C data type and returned as a pointer of such type. If the result subset is empty
or the subcursor is located before or after the first or last element of the result subset, the returned element is

NULL.

Version 2.0.1 Page 105 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as an UNSIGNED SMALLINT. If the
pointer is NULL (in C), the current element of the subcursor of the cursor in use is returned instead. The equivalent
of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFqgl wrappers is NULL, null, None, null, 0 and NULL,
respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not

provided, the current element of the subcursor of the cursor in use is returned instead).
Return

unsigned short * — pointer to the current element of the subcursor. If there is no current element, the pointer will be

NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length unsigned short
of one dimension (size 3)

hdfgl execute ("CREATE DATASET my dataset AS UNSIGNED VARSMALLINT (3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute ("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned short (should be 5)

printf("Current element of cursor is ?%u\n'", *hdfgl cursor get unsigned smallint (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfql subcursor next (NULL) ;
// display current element of the subcursor in use as an unsigned short (should be 5)
printf("Current element of subcursor is %u\n",

*hdfql subcursor get unsigned smallint (NULL));

// move the subcursor in use to next position within the result subset (i.e. second

Version 2.0.1 Page 106 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as an unsigned short (should be 2)
printf("Current element of subcursor is %ul\n”,

*hdfgl subcursor get unsigned smallint (NULL));

5.2.40 HDFQL_CURSOR_GET_INT

Syntax

int *hdfgl_cursor_get_int(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as an INT. In other words, the current element is interpreted as an
“int” C data type and returned as a pointer of such type. If the result set is empty or the cursor is located before or

after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as an INT. If the pointer is NULL (in C), the current element of
the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFq|
wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#,

Fortran and R it is optional (when not provided, the current element of the cursor in use is returned instead).
Return

int * — pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset”" of data type int of one dimension (size 3)

hdfgl execute("CREATE DATASET my dataset AS INT(3)");

// insert (i.e. write) values into dataset "my dataset"

1, 23)");

N
W
TN

hdfgl execute("INSERT INTO my dataset VALUES (1

Version 2.0.1 Page 107 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned short (should be 12)

printf("Current element of cursor is %d\n", *hdfgl cursor get int (NULL));

5.2.41 HDFQL_SUBCURSOR_GET_INT

Syntax

int *hdfqgl_subcursor_get_int(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as an INT. In other words, the current element is interpreted as an
“int” C data type and returned as a pointer of such type. If the result subset is empty or the subcursor is located

before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as an INT. If the pointer is NULL (in C),
the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer in
C++, Java, Python, C#, Fortran and R HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C
cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of

the subcursor of the cursor in use is returned instead).
Return

int * — pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length int of one
dimension (size 3)

INT (3)");

Py}

AS VA

hdfql execute ("CREATE

Version 2.0.1 Page 108 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an int (should be 5)

printf("Current element of cursor is 2d\n", *hdfql cursor get int (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as an int (should be 5)

printf("Current element of subcursor is %d\n", *hdfql subcursor get int (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as an int (should be 2)

printf("Current element of subcursor is %d\n", *hdfql subcursor get int (NULL));

5.2.42 HDFQL_CURSOR_GET_UNSIGNED_INT

Syntax

unsigned int *hdfqgl_cursor_get_unsigned_int(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as an UNSIGNED INT. In other words, the current element is
interpreted as an “unsigned int” C data type and returned as a pointer of such type. If the result set is empty or the

cursor is located before or after the first or last element of the result set, the returned element is NULL.

Version 2.0.1 Page 109 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor — pointer to a cursor to get the current element as an UNSIGNED INT. If the pointer is NULL (in C), the current
element of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran
and R HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++,
Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the cursor in use is

returned instead).
Return

unsigned int * — pointer to the current element of the cursor. If there is no current element, the pointer will be

NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type unsigned int of one dimension
(size 3)

hdfql_execute("CR:ATE DATASET my dataset AS UNSIGNED INT(3) ") ;

// insert (i.e. write) values into dataset "my dataset"

hdfql execute ("INSERT INTO my dataset VALUES (12, 34, 23)");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned int (should be 12)

printf("Current element of cursor is %ul\n", *hdfgl cursor get unsigned int (NULL));

5.2.43 HDFQL_SUBCURSOR_GET_UNSIGNED_INT

Syntax

unsigned int *hdfgl_subcursor_get_unsigned_int(const HDFQL_CURSOR *cursor)

Version 2.0.1 Page 110 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get the current element of the subcursor in use as an UNSIGNED INT. In other words, the current element is
interpreted as an “unsigned int” C data type and returned as a pointer of such type. If the result subset is empty or

the subcursor is located before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as an UNSIGNED INT. If the pointer is
NULL (in C), the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL
pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively.
While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current

element of the subcursor of the cursor in use is returned instead).
Return

unsigned int * — pointer to the current element of the subcursor. If there is no current element, the pointer will be

NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length unsigned int of
one dimension (size 3)

hdfql_execute(”CR’EATE DATASET my dataset AS UNSIGNED VARINT (3)");

// insert (i.e. write) values into dataset "my dataset"”

hdfql execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as an unsigned int (should be 5)

printf("Current element of cursor is ?%u\n", *hdfgl cursor get unsigned int (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfgl subcursor next (NULL) ;

Version 2.0.1 Page 111 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// display current element of the subcursor in use as an unsigned int (should be 5)

printf("Current element of subcursor is %u\n", *hdfql subcursor get unsigned int (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as an unsigned int (should be 2)

printf("Current element of subcursor is %u\n", *hdfql subcursor get unsigned int (NULL))

5.2.44 HDFQL_CURSOR_GET_BIGINT

Syntax

long long *hdfgl_cursor_get_bigint(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as a BIGINT. In other words, the current element is interpreted as
a “long long” C data type and returned as a pointer of such type. If the result set is empty or the cursor is located

before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a BIGINT. If the pointer is NULL (in C), the current element
of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R
HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java,
Python, C#, Fortran and R it is optional (when not provided, the current element of the cursor in use is returned

instead).
Return

long long * — pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Version 2.0.1 Page 112 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create an HDF5 dataset named "my dataset" of data type long long of one dimension
(size 3)

hdfqlﬁexecute(”CREATE DATASET myfdalasel AS BIGINT(3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES (12, 34, 23)");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it
hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as a long long (should be 12)

printf("Current element of cursor is %11d\n", *hdfql cursor get bigint (NULL));

5.2.45 HDFQL_SUBCURSOR_GET_BIGINT

Syntax

long long *hdfqgl_subcursor_get_bigint(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as a BIGINT. In other words, the current element is interpreted as a
“long long” C data type and returned as a pointer of such type. If the result subset is empty or the subcursor is

located before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as a BIGINT. If the pointer is NULL (in
C), the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer in
C++, Java, Python, C#, Fortran and R HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C
cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of

the subcursor of the cursor in use is returned instead).

Version 2.0.1 Page 113 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Return

long long * — pointer to the current element of the subcursor. If there is no current element, the pointer will be

NULL.

Example(s)

// create an HDF5 dataset named "my dataset”" of data type variable-length long long of
one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS VARBIGINT(3)");

// insert (i.e. write) values into dataset "my dataset"”

hdfgl execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as a long long (should be 5)

printf("Current element of cursor is %11d\n", *hdfql cursor get bigint (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfql subcursor next (NULL);

// display current element of the subcursor in use as a long long (should be 5)

printf("Current element of subcursor is %11d\n", *hdfql subcursor get bigint (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfql subcursor next (NULL);

// display current element of the subcursor in use as a long long (should be 2)

printf("Current element of subcursor is $11d\n", *hdfqgl subcursor get bigint (NULL))

Version 2.0.1 Page 114 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.46 HDFQL_CURSOR_GET_UNSIGNED_BIGINT

Syntax

unsigned long long *hdfql_cursor_get_unsigned_bigint(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as an UNSIGNED BIGINT. In other words, the current element is
interpreted as an “unsigned long long” C data type and returned as a pointer of such type. If the result set is empty

or the cursor is located before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as an UNSIGNED BIGINT. If the pointer is NULL (in C), the
current element of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#,
Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in
C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the cursor in use is

returned instead).
Return

unsigned long long * — pointer to the current element of the cursor. If there is no current element, the pointer will

be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type unsigned long long of one
dimension (size 3)

hdfgl execute ("CREATE DATASET my dataset AS UNSIGNED BIGINT(3)");

// insert (i.e. write) values into dataset "my dataset"

o+
N

VALUES (1

hdfgl execute("INSERT INTO my datase , 34, 23)");
// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

Version 2.0.1 Page 115 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// display current element of the cursor in use as an unsigned long long (should be 12)

printf("Current element of cursor is %llu\n", *hdfql cursor get unsigned bigint (NULL))

5.2.47 HDFQL_SUBCURSOR_GET_UNSIGNED_BIGINT

Syntax

unsigned long long *hdfql_subcursor_get_unsigned_bigint(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as an UNSIGNED BIGINT. In other words, the current element is
interpreted as an “unsigned long long” C data type and returned as a pointer of such type. If the result subset is
empty or the subcursor is located before or after the first or last element of the result subset, the returned element

is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as an UNSIGNED BIGINT. If the pointer
is NULL (in C), the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL
pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively.
While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current

element of the subcursor of the cursor in use is returned instead).
Return

unsigned long long * — pointer to the current element of the subcursor. If there is no current element, the pointer

will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length unsigned long
long of one dimension (size 3)

FIADR T AT

hdfgl execute ("CREATE DATASET my dataset AS UNSIGNED VARBIGINT (3)");

// insert (i.e. write) values into dataset "my dataset"”

Version 2.0.1 Page 116 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

hdfql execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as an unsigned long long (should be 5)

printf("Current element of cursor is $llu\n", *hdfqgl cursor get unsigned bigint (NULL))

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfql subcursor next (NULL);

// display current element of the subcursor in use as an unsigned long long (should be 5)
printf("Current element of subcursor is %llu\n",

*hdfql subcursor get unsigned bigint (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as an unsigned long long (should be 2)
printf("Current element of subcursor is %llu\n",

*hdfql subcursor get unsigned bigint (NULL));

5.2.48 HDFQL_CURSOR_GET_FLOAT

Syntax

float *hdfql_cursor_get_float(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as a FLOAT. In other words, the current element is interpreted as
a “float” C data type and returned as a pointer of such type. If the result set is empty or the cursor is located before

or after the first or last element of the result set, the returned element is NULL.

Version 2.0.1 Page 117 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor — pointer to a cursor to get the current element as a FLOAT. If the pointer is NULL (in C), the current element
of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R
HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java,
Python, C#, Fortran and R it is optional (when not provided, the current element of the cursor in use is returned

instead).
Return

float * — pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type float of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS FLOAT(3)");

// insert (i.e. write) values into dataset "my dataset"”

hdfql execute("INSERT INTO my dataset VALUES (5.5, 8.1, 4.9)");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as a float (should be 5.5)

printf("Current element of cursor is %f\n", *hdfgl cursor get float (NULL))

5.2.49 HDFQL_SUBCURSOR_GET_FLOAT

Syntax

float *hdfql_subcursor_get_float(const HDFQL_CURSOR *cursor)

Version 2.0.1 Page 118 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get the current element of the subcursor in use as a FLOAT. In other words, the current element is interpreted as a
“float” C data type and returned as a pointer of such type. If the result subset is empty or the subcursor is located

before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as a FLOAT. If the pointer is NULL (in
C), the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer in
C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C
cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of

the subcursor of the cursor in use is returned instead).
Return

float * — pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length float of one
dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS VARFLOAT(3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES((7.5, 3.1), (4.5), (4.9, 3.2, 9.7, 8.8))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset");
// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as a float (should be 7.5)

printf("Current element of cursor is %f\n", *hdfgl cursor get float (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfgl subcursor next (NULL) ;

Version 2.0.1 Page 119 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// display current element of the subcursor in use as a float (should be 7.5)

printf("Current element of subcursor is $f\n", *hdfql subcursor get float (NULL))

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a float (should be 3.1)

printf("Current element of subcursor is %f\n", *hdfql subcursor get float (NULL))

5.2.50 HDFQL_CURSOR_GET_DOUBLE

Syntax

double *hdfql_cursor_get_double(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as a DOUBLE. In other words, the current element is interpreted
as a “double” C data type and returned as a pointer of such type. If the result set is empty or the cursor is located

before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a DOUBLE. If the pointer is NULL (in C), the current
element of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran
and R HDFqgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++,
Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the cursor in use is

returned instead).
Return

double * — pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type double of one dimension (size

3)

Version 2.0.1 Page 120 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

ART AT n

hdfql execute ("CREATE DATASET my dataset AS DOUBLE (3)");
// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES (5.5, 8.1, 4.9)");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it
hdfgl execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as a double (should be 5.5)

printf("Current element of cursor is 2f\n", *hdfql cursor get double (NULL));

5.2.51 HDFQL_SUBCURSOR_GET_DOUBLE

Syntax

double *hdfqgl_subcursor_get_double(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as a DOUBLE. In other words, the current element is interpreted as a
“double” C data type and returned as a pointer of such type. If the result subset is empty or the subcursor is located

before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as a DOUBLE. If the pointer is NULL (in
C), the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer in
C++, Java, Python, C#, Fortran and R HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C
cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of

the subcursor of the cursor in use is returned instead).
Return

double * — pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Version 2.0.1 Page 121 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length double of one
dimension (size 3)

hdfqgl execute("CREATE DATASET my dataset AS VARDOUBLE (3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES((7.5, 3.1), (4.5), (4.9, 3.2, 9.7, 8.8))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as a double (should be 7.5)

printf("Current element of cursor is %f\n", *hdfgl cursor get double(NULL))

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a double (should be 7.5)

printf("Current element of subcursor is 3f\n", *hdfgl subcursor get double(NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as a double (should be 3.1)

printf("Current element of subcursor is $f\n", *hdfql subcursor get double (NULL));

5.2.52 HDFQL_CURSOR_GET_CHAR

Syntax

char *hdfqgl_cursor_get_char(const HDFQL_CURSOR *cursor)

Version 2.0.1 Page 122 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get the current element of a cursor named cursor as a CHAR. In other words, the current element is interpreted as a
“char” C data type and returned as a pointer of such type. If the result set is empty or the cursor is located before or

after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a CHAR. If the pointer is NULL (in C), the current element
of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R
HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java,
Python, C#, Fortran and R it is optional (when not provided, the current element of the cursor in use is returned

instead).
Return

char * — pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type char of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS CHAR(3)");

// insert (i.e. write) values into dataset "my dataset"”

hdfql execute("INSERT INTO my dataset VALUES (Red)");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it
hdfgl execute ("SELECT FROM my dataset");
// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as a char (should be "Red")

printf("Current element of cursor is %s\n", hdfgl cursor get char(NULL));

Version 2.0.1 Page 123 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.53 HDFQL_SUBCURSOR_GET_CHAR

Syntax

char *hdfgl_subcursor_get_char(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as a CHAR. In other words, the current element is interpreted as a
“char” C data type and returned as a pointer of such type. If the result subset is empty or the subcursor is located

before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as a CHAR. If the pointer is NULL (in
C), the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer in
C++, Java, Python, C#, Fortran and R HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C
cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of

the subcursor of the cursor in use is returned instead).
Return

char * — pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length char of one
dimension (size 3)

hdfgl execute ("CREATE

// insert (i.e. write) values into dataset "my dataset"”

NN

hdfgl execute ("INSERT INTO my dataset VALUES (Red, Green, Blue)");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a char (should be "Red")

Version 2.0.1 Page 124 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

printf("Current element of cursor is %s\n", hdfql cursor get char (NULL));

// move the subcursor in use to next position within the result subset (i.e. first
position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as a char (should be "Red")

printf("Current element of subcursor is %s\n", hdfql subcursor get char (NULL));

// move the subcursor in use to next position within the result subset (i.e. second
position)

hdfqgl subcursor next (NULL) ;

// display current element of the subcursor in use as a char (should be "Green')

printf("Current element of subc

-~ is %s\n", hdfql subcursor get char (NULL))

5.2.54 HDFQL_VARIABLE_REGISTER

Syntax

int hdfgl_variable_register(const void *variable)

Description

Register a variable named variable for subsequent use. In other words, for HDFgl to be able to read or write from/to
a user-defined variable it must first be registered. If the operation was successful, variable is registered and a
number is assigned to it. This number — calculated by HDFql — starts with zero and is incremented by one every time
a new variable is registered. If variable is registered more than once, only one number is assigned to it (namely the
number assigned upon the first registering). Of note, currently up to eight variables can be registered at any given
time (trying to register more than this number will raise an HDFQL_ERROR_FULL). In C, C++ and Fortran any variable
may be registered as long HDFqgl can properly read and write values from/to it by having direct access to the
memory associated with these — otherwise unexpected errors may arise such as a segmentation fault. The following

restrictions apply to other programming languages (supported by HDFql):

»n oo

e InJava, only a variable that is an array of “byte”, “short”, “int”, “long”, “float”, “double" or “String” data type or

its corresponding wrapper class “Byte”, “Short”, “Integer”, “Long”, “Float” or “Double” may be registered. Any

Version 2.0.1 Page 125 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

attempt to register a variable that is not an array or of the data type/wrapper class previously enumerated will

return an error (HDFQL_ERROR_UNEXPECTED_DATA_TYPE).

e In Python, only a variable that is a NumPy array of “int8”, “uint8”, “int16”, “uint16”, “int32”, “uint32”, “int64”,
“uinte64”, “float32”, “float64”, “Ssize” or “ubyte” data type may be registered. Any attempt to register a variable
that is not a NumPy array or of the data type previously enumerated will return an error

(HDFQL_ERROR_UNEXPECTED_DATA_TYPE). Please refer to http://www.numpy.org for additional information.

e In C#, only a variable that is an array of “SByte”, “Byte”, “Int16”, “UInt16”, “Int32”, “UInt32”, “Int64”, “Ulnt64”,
“Single”, “Double” or “String” data type or its alias “sbyte”, “byte”, “short”, “ushort”, “int”, “uint”, “long”,
“ulong”, “float”, “double” or “string” may be registered. Any attempt to register a variable that is not an array or

of the data type/alias previously enumerated will return an error (HDFQL_ERROR_UNEXPECTED DATA_TYPE).

e In R, only a variable that is a vector, matrix or array of “integer”, “integer64” (through package bit64),
“numeric”, “double”, “character” or “raw” data type may be registered. Any attempt to register a variable that
is not a vector, matrix or array or of the data type previously enumerated will return an error

(HDFQL_ERROR_UNEXPECTED_DATA_TYPE).

An important aspect to remember when working with a variable is that it should not change address from the
moment it has been registered until used in the intented operation (e.g. SELECT) or function (e.g.
HDFQL_VARIABLE_GET_NUMBER), as HDFgl will not be able to identify the variable. In this case, the operation or
function will raise an error (HDFQL_ERROR_NOT_REGISTERED). In case a variable needs to change its address (for
whatever the reason), first unregister it via the function hdfgl_variable_unregister, change its address, and register it
again. In general, it is advisable to register a variable just before executing the HDFgl operation or function which
employs it, and to unregister it as soon as it is no longer used (this is especially relevant in C# where variables are

pinned when registered and thus cannot be moved by the Garbage Collector).
Parameter(s)

variable — variable to register for subsequent use.

Return

int — depending on the success in registering the variable for subsequent use, it can either be > 0 (i.e. the number
assigned to the variable when successfully registered), HDFQL_ERROR_NO_ADDRESS, HDFQL_ERROR_FULL or
HDFQL_ERROR_UNEXPECTED_DATA_TYPE.

Version 2.0.1 Page 126 of 336

http://www.numpy.org/

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// declare variables
char script/[1-
short datal[3];

// create an HDF5 dataset named "my dataset" of data type short of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS SMALLINT(3)");

// populate variable "data" with certain values

data[0] = 2
data[l] = ;
data[’] = ;

// register variable "data'" for subsequent use (by HDFql)

hdfql variable register(data);

// prepare script to insert (i.e. write) values from variable "data" into dataset
"my dataset"
sprintf(script, "INSERT INTO my dataset VALUES FROM MEMORY 3d",

hdfgl variable get number (data));

// execute script

hdfgl execute(script);

5.2.55 HDFQL_VARIABLE_UNREGISTER

Syntax

int hdfql_variable_unregister(const void *variable)

Description

Unregister a variable named variable. In other words, HDFgl will free up any memory that may have been allocated
to manage the variable as well as the number assigned to it (the number may then be assigned to a new variable
registered subsequently). In general, it is advisable to unregister a variable as soon as it is no longer used by HDFq|
(this is especially relevant in C# as variables are unpinned when unregistered and thus may again be moved by the

Garbage Collector). If variable has never been registered or has already been unregistered, an error is returned.

Version 2.0.1 Page 127 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

variable — variable to unregister.
Return

int — depending on the success in unregistering the variable, it can either be HDFQL_SUCCESS,
HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables
char script[1024];

short datal[3];

// create an HDF5 dataset named "my dataset" of data type short of one dimension (size 3)

hdfgl execute ("CREATE DATASET my dataset AS SMALLINT(3)");

// populate variable "data" with certain values

data[0] =
data[l] = 18;
data[”] = 75;

// register variable "data'" for subsequent use (by HDFql)

hdfql variable register(data);

// prepare script to insert (i.e. write) values from variable "data" into dataset
"my dataset"
sprintf(script, "INSERT INTO my dataset VALUES FROM MEMORY 3d",

hdfql variable get number (data));

// execute script

hdfql execute(script);

// unregister variable '"data" as it is no longer used/needed (by HDFql)

hdfgl variable unregister(data);

Version 2.0.1 Page 128 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.56 HDFQL_VARIABLE_GET_NUMBER

Syntax

int hdfqgl_variable_get_number(const void *variable)

Description

Get the number of a variable named variable. This refers to the number that was calculated by HDFgl and assigned
to the variable upon registering it with the function hdfgl_variable_register. If variable has never been registered or

has been unregistered, an error is returned.

Parameter(s)

variable — variable to get the number (calculated by HDFql) assigned to it.
Return

int — depending on the success in getting the number assigned to the variable, it can either be 2 0 (i.e. the number

assigned to the variable), HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables
short dataO[3];
float datall[5];

// register variable "data0O" for subsequent use (by HDFql)
hdfql variable register (data0l);

// register variable "datal" for subsequent use (by HDFql)
hdfgl variable register(datal);

// display number of variable "dataO" (should be 0)

printf ("Number of variable is %d\n", hdfql variable get number (data0));

// display number of variable '"datal" (should be 1)

printf ("Number of variable is %d\n", hdfql variable get number(datal));

Version 2.0.1 Page 129 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.57 HDFQL_VARIABLE_GET_DATA_TYPE

Syntax

int hdfql_variable_get_data_type(const void *variable)

Description

Get the data type of a variable named variable. This function should help the programmer to better handle the
content stored in variable. The data type refers to the result of a DATA QUERY LANGUAGE (DQL) or DATA
INTROSPECTION LANGUAGE (DIL) operation redirected into memory — and not the data type of variable declared in
the program. If variable has never been registered, populated (through the redirection of the result of a DATA
QUERY LANGUAGE (DQL) or DATA INTROSPECTION LANGUAGE (DIL) operation into memory), or in case it has been
unregistered, the returned data type is undefined (HDFQL_UNDEFINED). Please refer to Table 6.3 for a complete

enumeration of HDFql data types.

Parameter(s[

variable — variable to get its data type.
Return

int — depending on the success in getting the data type of the variable, it can either be HDFQL_TINYINT,
HDFQL_UNSIGNED_TINYINT, HDFQL_SMALLINT, HDFQL_UNSIGNED_SMALLINT, HDFQL_INT,
HDFQL_UNSIGNED_INT, HDFQL_BIGINT, HDFQL_UNSIGNED_BIGINT, HDFQL_FLOAT, HDFQL_DOUBLE, HDFQL_CHAR,
HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT,
HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT,
HDFQL_VARFLOAT, HDFQL_VARDOUBLE, HDFQL_VARCHAR, HDFQL_OPAQUE, HDFQL_BITFIELD,
HDFQL_ENUMERATION, HDFQL_COMPOUND, HDFQL_UNDEFINED, HDFQL_ERROR_NO_ADDRESS or
HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables
char script[1024];

char data[1024];

// register variable "data'" for subsequent use (by HDFql)

Version 2.0.1 Page 130 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

hdfql variable register(data);

// prepare script to show (i.e. get) current working directory and populate variable
"data" with it

TTIQL NDTRENT,

sprintf(script, "SHOW USE DIRECTORY

7 ¢d", hdfqgl variable get number (data));

// execute script

hdfqgl execute(script);

// display data type of variable "data" (should be 2097152 - i.e. HDFQL VARCHAR)
printf("Data type of variable is $d\n", hdfgl variable get data type(data));

5.2.58 HDFQL_VARIABLE_GET_COUNT

Syntax

int hdfgl_variable_get_count(const void *variable)

Description

Get the number of elements (i.e. result set size) stored in a variable named variable. This function should help the
programmer to better handle the content stored in variable. If the result set stores data from a dataset or attribute
that does not have a dimension (i.e. if it is scalar), the returned number of elements is one. Otherwise, if the result
set stores data from a dataset or attribute that has dimensions, the returned number of elements equals the
multiplication of all its dimensions’ sizes (e.g. if a variable stores a result set of two dimensions of size 10x3, the
number of elements is 30). Of note, in case a hyperslab or point selection is specified (in a DATA QUERY LANGUAGE
(DQL) operation) the number of elements of the selection will be returned instead. If variable has never been
populated (through the redirection of the result of a DATA QUERY LANGUAGE (DQL) or DATA INTROSPECTION

LANGUAGE (DIL) operation into memory), the returned number of elements is zero.
Parameter(s)

variable — variable to get its number of elements (i.e. resut set size).

Return

int — depending on the success in getting the number of elements of the variable, it can either be > 0 (i.e. the

number of elements), HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Version 2.0.1 Page 131 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// declare variables
char script/[1-

int dataf[5][3];

// create an HDF5 dataset named "my dataset" of data type int of two dimensions (size
5x3)
hdfgl execute ("CREATE DATASET my dataset AS INT(5, 3)");

// register variable "data'" for subsequent use (by HDFql)
hdfgl variable register(data);

// prepare script to select (i.e. read) data from dataset "my dataset" and populate
variable "data" with it
sprintf(script, "SELECT FROM my dataset INTO MEMORY 3%d",

hdfql variable get number (data));

// execute script

hdfql execute(script);

// display number of elements in variable '"data" (should be 15 - i.e. 5x3)

printf ("Number of elements in variable is %d\n", hdfgl variable get count(data));

5.2.59 HDFQL_VARIABLE_GET_SIZE

Syntax

int hdfql_variable_get_size(const void *variable)

Description

Get the size (in bytes) of a variable named variable. This function should help the programmer to better handle the
content stored in variable. The size (in bytes) refers to the result of a DATA QUERY LANGUAGE (DQL) or DATA
INTROSPECTION LANGUAGE (DIL) operation redirected into memory — and not the size (in bytes) that variable has in
the program. If variable has never been registered or has been unregistered, an error is returned. If variable has

never been populated (through the redirection of the result of a DATA QUERY LANGUAGE (DQL) or DATA

Version 2.0.1 Page 132 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

INTROSPECTION LANGUAGE (DIL) operation into memory), the returned size is zero. Please refer to Table 6.3 for a

complete enumeration of HDFgl data types and their corresponding sizes (in bytes).
Parameter(s)

variable — variable to get its size (in bytes).

Return

int — depending on the success in getting the size (in bytes) of the variable, it can either be > 0 (i.e. the size itself),

HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables
char script[1024];

int data[5][3];

// create an HDF5 dataset named "my dataset" of data type int of two dimensions (size
5x3)
hdfql execute ("CREATE DATASET my dataset AS INT (5, 3)");

// register variable "data'" for subsequent use (by HDFql)
hdfql variable register(data);,

// prepare script to select (i.e. read) data from dataset "my dataset"” and populate
variable "data" with it
sprintf(script, "SELECT FROM my dataset INTO MEMORY 3%d",

hdfql variable get number (data));

// execute script

hdfql execute(script);

// display size (in bytes) of variable "data" (should be 60 - i.e. 5x3x4)
printf("Size (in bytes) of variable is $%d\n", hdfgl variable get size(data));

Version 2.0.1 Page 133 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.60 HDFQL_VARIABLE_GET_DIMENSION_COUNT

Syntax

int hdfqgl_variable_get_dimension_count(const void *variable)

Description

Get the number of dimensions of a variable named variable. This function should help the programmer to better
handle the content stored in variable. The number of dimensions refers to the result of a DATA QUERY LANGUAGE
(DQL) or DATA INTROSPECTION LANGUAGE (DIL) operation redirected into memory — and not the number of
dimensions that variable has in the program. If variable has never been registered or has been unregistered, an error
is returned. If variable has never been populated (through the redirection of the result of a DATA QUERY LANGUAGE
(DQL) or DATA INTROSPECTION LANGUAGE (DIL) operation into memory), the returned number of dimensions is

zero.
Parameter(s)

variable — variable to get its number of dimensions.
Return

int — depending on the success in getting the number of dimensions of the variable, it can either be > 0 (i.e. the

number of dimensions), HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables
char script/[1,

int data[5][3];
// create an HDF5 dataset named "my dataset" of data type int of two dimensions (size
5x3)

hdfgl execute ("CREATE DATASET my dataset AS INT (5, 3)");

// register variable "data'" for subsequent use (by HDFql)
hdfgl variable register(data);

// prepare script to select (i.e. read) data from dataset "my dataset" and populate

Version 2.0.1 Page 134 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

variable "data'" with it

sprintf(script, "SELECT FROM my dataset INTO MEMORY 3d",

hdfgl variable get number(data));

// execute script

hdfgl execute(script);

// display number of dimensions of variable "data" (should be 2)
printf("Number of dimensions in variable is 3%d\n",

hdfql variable get dimension count (data));

5.2.61 HDFQL_VARIABLE_GET_DIMENSION

Syntax

int hdfql_variable_get_dimension(const void *variable, int index)

Description

Get the size of a certain dimension specified in index of a variable named variable. This function should help the
programmer to better handle the content stored in variable. The size of a certain dimension refers to the result of a
DATA QUERY LANGUAGE (DQL) or DATA INTROSPECTION LANGUAGE (DIL) operation redirected into memory — and
not the size of a certain dimension that variable has in the program. The index of the first dimension is zero (index
must be between 0 and the value returned by hdfqgl_variable_get_dimension_count - 1). If variable has never been
registered, populated (through the redirection of the result of a DATA QUERY LANGUAGE (DQL) or DATA

INTROSPECTION LANGUAGE (DIL) operation into memory), or in case it has been unregistered, an error is returned.
Parameter(s)

variable — variable to get the size of one of its dimensions.

index — index of the dimension to get its size.

Return

int — depending on the success in getting the size of a certain dimension of the variable, it can either be > 0 (i.e. the
size of a certain dimension itself), HDFQL ERROR_NO_ADDRESS, HDFQL _ERROR_NOT_REGISTERED or
HDFQL_ERROR_OUTSIDE_LIMIT.

Version 2.0.1 Page 135 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// declare variables
char script[1024];

int data[5][3];

// create an HDF5 dataset named "my dataset" of data type int of two dimensions (size
5x3)
hdfgl execute ("CREATE DATASET my dataset AS INT(5, 3)");

// register variable "data'" for subsequent use (by HDFql)

hdfgl variable register(data);

// prepare script to select (i.e. read) data from dataset "my dataset" and populate
variable "data" with it
sprintf(script, "SELECT FROM my dataset INTO MEMORY 3%d",

hdfql variable get number (data));

// execute script

hdfql execute(script);

// display size of the first dimension of variable '"data" (should be 5)

printf("Size of first dimension of variable is %d\n", hdfqgl variable get dimension(0));

// display size of the second dimension of variable "data" (should be 3)

printf("Size of second dimension of variable is %d\n", hdfql variable get dimension(1));

5.2.62 HDFQL_MPI_GET_SIZE

Syntax
int hdfql_mpi_get_size(void)
Description

Get the number (i.e. size) of processes associated to the default MPI communicator (MPI_COMM_WORLD). In other
words, this function returns the number of MPI processes that are specified upon launching a program in parallel
using “mpiexec” (or a similar launcher). Of note, this function is basically a wrapper of the MPI function

“MPI_Comm_size” (please refer to https://www.mpich.org/static/docs/v3.2/www3/MPI_Comm_size.html or

Version 2.0.1 Page 136 of 336

https://www.mpich.org/static/docs/v3.2/www3/MPI_Comm_size.html

Hierarchical Data Format query language (HDFql) Reference Manual

https://www.open-mpi.org/doc/v2.1/man3/MPI_Comm_size.3.php for additional information in case the MPI

library used is MPICH (or, alternatively, one of its ABl compatible derivative libraries) or Open MPI).

Parameter(s)

None
Return

int — depending on the success in getting the number of processes associated to the default MPI communicator
(MPI_COMM_WORLD), it can either be > 1 (i.e. the number of processes) or HDFQL_UNDEFINED (in case MPI itself
was not initialized properly, in case of an HDFgl non MPI-based distribution, or if it was executed in Windows as

HDFqgl does not support the parallel HDF5 (PHDF5) library in this platform currently).

Example(s)

// display number (i.e. size) of MPI processes (if the program is launched as, e.g.,
"mpiexec —-n 5 my program", the message "Number (i.e. size) of MPI processes 1is 5" will be
displayed five times)

printf("Number (i.e. size) of MPI processes is $d\n", hdfql mpi get size());

5.2.63 HDFQL_MPI_GET_RANK

Syntax

int hdfgl_mpi_get_rank(void)

Description

Get the number (i.e. rank) of the calling process associated to the default MPlI communicator (MPI_COMM_WORLD).
In other words, this function returns the number of the MPI process assigned to a particular instance of a program
that was launched in parallel using “mpiexec” (or a similar launcher). Of note, this function is basically a wrapper of
the MPI function “MPI_Comm_rank” (please refer to
https://www.mpich.org/static/docs/v3.2/www3/MPI_Comm_rank.html or https://www.open-
mpi.org/doc/v2.1/man3/MPI_Comm_rank.3.php for additional information in case the MPI library used is MPICH

(or, alternatively, one of its ABI compatible derivative libraries) or Open MPI).

Version 2.0.1 Page 137 of 336

https://www.open-mpi.org/doc/v2.1/man3/MPI_Comm_size.3.php
https://www.mpich.org/static/docs/v3.2/www3/MPI_Comm_rank.html
https://www.open-mpi.org/doc/v2.1/man3/MPI_Comm_rank.3.php
https://www.open-mpi.org/doc/v2.1/man3/MPI_Comm_rank.3.php

Hierarchical Data Format query language (HDFql) Reference Manual

Parameters(s)

None
Return

int — depending on the success in getting the number (i.e. rank) of the calling process associated to the default MPI
communicator (MPI_COMM_WORLD), it can either be > 0 (i.e. the number of the calling process) or
HDFQL_UNDEFINED (in case MPI itself was not initialized properly, in case of an HDFgl non MPI-based distribution,
or if in Windows as HDFql does not support the parallel HDF5 (PHDF5) library in this platform currently).

Example(s)

// display number (i.e. rank) of the MPI process (if the program is launched as, e.g.,
"mpiexec —n 3 my program'", the message "Number (i.e. rank) of the MPI process is X" will
be displayed three times where X is 0, 1 or 2 (not necessarily in this order))

printf("Number (i.e. rank) of the MPI process is %d\n", hdfgl mpi get rank());

5.3 EXAMPLES

The following subsections present practical examples on how to use (some of) the HDFgl functions previously
described in the C, C++, Java, Python, C#, Fortran and R programming languages. The output! of executing these

examples can be seen in subsection OUTPUT.

53.1 C

// include HDFgl C header file (make sure it can be found by the C compiler)
#include "HDFql.h"

int main(int argc, char *argv[])

{

// declare variables

! The output may vary slightly depending on the programming language — e.g. when displaying float numbers.

Version 2.0.1 Page 138 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

HDFQL CURSOR my cursor;
char script[1024];

int values[3][2];

int x;

int y;

// display HDFql version in use
printf("HDFgl version: %s\n", HDFQIL VERSION)

// create an HDF5 file named "example.h5" and use (i.e. open) it
hdfql execute("CREATE FILE example.h5");
hdfql execute("USE FILE example.h5");

// show (i.e. get) HDF5 file currently in use and populate HDFql default cursor with
it
hdfgl execute ("SHOW USE FILE");

// display HDF5 file currently in use
hdfgl cursor first (NULL);
printf("File in use: %s\n", hdfql cursor get char (NULL))

// create an attribute named "example attribute" of data type float with an initial
value of 12.4
hdfql execute ("CREATE ATTRIBUTE example attribute AS FLOAT VALUES (12.4)");

// select (i.e. read) data from attribute "example attribute" and populate HDFql
default cursor with it

hdfql execute("SELECT FROM example attribute");

// // display value of attribute "example attribute"
hdfql cursor first(NULL);
printf("Attribute value: 2f\n", *hdfql cursor get float (NULL))

// create a dataset named "example dataset" of data type int of two dimensions (size
3x2)
hdfgl execute ("CREATE DATASET example dataset AS INT (3, 2)");

// populate variable "values" with certain values
for(x = 0; x < 3; x++)
{

for(y = 0; y < 2; y++)

Version 2.0.1 Page 139 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

values[x][y] = x * 2 + y + 1;

// register variable "values" for subsequent use (by HDFql)

hdfql variable register(values);

// insert (i.e. write) values from variable "values" into dataset "example dataset"
sprintf(script, "INSERT INTO example dataset VALUES FROM MEMORY 3d",

hdfql variable get number (values));
hdfqgl execute(script);

// populate variable "values" with zeros (i.e. reset variable)

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
values[x][y] = 0;
}
}

// select (i.e. read) data from dataset "example dataset" and populate variable
"values" with it

sprintf(script, "SELECT FROM example dataset INTO MEMORY 3d",
hdfgl variable get number (values));

hdfql execute(script);

// unregister variable "values" as it 1is no longer used/needed (by HDFql)

hdfql variable unregister (values);

// display content of variable "values"
printf("Dataset value (through variable):\n");,

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
printf("sd\n", values[x][y]);
}
}
Version 2.0.1

Page 140 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// another way to select (i.e. read) data from dataset "example dataset" using HDFql
default cursor

hdfql execute("SELECT FROM example dataset");

// display content of HDFgl default cursor
printf("Dataset value (through cursor) :\n");
while (hdfgl cursor next (NULL) == HDFQL SUCCESS)
{

printf("%d\n", *hdfql cursor get int (NULL));

// initialize cursor "my cursor" and use it
hdfql cursor initialize(&my cursor);

hdfql cursor use(&my cursor);

// show (i.e. get) size (in bytes) of dataset "example dataset" and populate cursor
"my cursor" with it

hdfql execute("SHOW SIZE example dataset");
// display content of cursor "my cursor"
hdfql cursor first(NULL);

printf("Dataset size (in bytes): $11d\n", *hdfqgl cursor get bigint (NULL))

return EXIT SUCCESS;

5.3.2 C++

// include HDFql C++ header file (make sure it can be found by the C++ compiler)
#include <iostream>

#include "HDFql.hpp"

int main(int argc, char *argv[])

{

// declare variables
HDFqgl::Cursor myCursor;

char script[1024];

Version 2.0.1 Page 141 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

int values[3][7];
int x;

int y;

// display HDFql version in use
std::cout << "HDFgl version: " << HDFqgl::Version << std::endl;

// create an HDF5 file named "example.h5" and use (i.e. open) it
HDFql::execute ("CREATE FILE example.h5");
HDFqgl::execute ("USE FILE example.h5");

// show (i.e. get) HDF5 file currently in use and populate HDFql default cursor with
it
HDFql: :execute ("SHOW USE FILE");

// display HDF5 file currently in use
HDFqgl: :cursorFirst()

std::cout << "File in use: " << HDFqgl::cursorGetChar() << std::endl;,

// create an attribute named "example attribute" of data type float with an initial
value of 12.4
HDFqgl::execute ("CREATE ATTRIBUTE example attribute AS FLOAT VALUES (12.4)");

// select (i.e. read) data from attribute "example attribute" and populate HDFqgl
default cursor with it

HDFqgl::execute ("SELECT FROM example attribute');

// display value of attribute "example attribute'
HDFqgl::cursorFirst()
std::cout << "Attribute value: " << *HDFql::cursorGetFloat () << std::endl;

// create a dataset named "example dataset" of data type int of two dimensions (size
3x2)
HDFqgl::execute ("CREATE DATASET example dataset AS INT (3, 2)");

// populate variable "values" with certain values
for(x = 0; x < 3; x++)
{
for(y = 0; y < 2; y++)
{
values[x][y] = x * 2 + y + 1;

Version 2.0.1 Page 142 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// register variable "values" for subsequent use (by HDFql)

HDFql::variableRegister (values);

// insert (i.e. write) values from variable "values" into dataset "example dataset"
sprintf(script, "INSERT INTO example dataset VALUES FROM MEMORY %d",
HDFql::variableGetNumber (values))

HDFqgl::execute (script);

// populate variable "values" with zeros (i.e. reset variable)

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
values[x][y] = 0;
}
}

// select (i.e. read) data from dataset "example dataset" and populate variable
"values" with it

sprintf(script, "SELECT FROM example dataset INTO MEMORY 3d",
HDFql::variableGetNumber (values))

HDFql::execute (script);

// unregister variable "values'" as it is no longer used/needed (by HDFql)

HDFql::variableUnregister (values)

// display content of variable "values"
std: :cout << '"Dataset value (through variable) :" << std::endl;

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
std::cout << values[x][y] << std::endl;,
}
}

// another way to select (i.e. read) data from dataset "example dataset" using HDFql

default cursor

Version 2.0.1 Page 143 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

HDFql::execute ("SELECT FROM example dataset");

// display content of HDFgl default cursor
std: :cout << '"Dataset value (through cursor):" << std::endl;
while (HDFql: :cursorNext () == HDFql::Success)

{
std::cout << *HDFql::cursorGetInt () << std::endl;,

// use cursor "myCursor"

HDFql::cursorUse (&myCursor) ;

// show (i.e. get) size (in bytes) of dataset "example dataset" and populate cursor
"myCursor" with it

HDFqgl::execute ("SHOW SIZE example dataset");
// display content of cursor "myCursor"
HDFqgl: :cursorFirst()

std::cout << "Dataset size (in bytes): " << *HDFqgl::cursorGetBigInt () << std::endl;

return EXIT SUCCESS;

5.3.3 JAVA

import HDFgl package (make sure it can be found by the Java compiler/JVM)
import as.hdfqgl.*;

public class HDFglExample
{
public static void main(String args[])
{
// declare variables
HDFglCursor myCursor;
int values[][];
int x;

int y;

Version 2.0.1 Page 144 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// display HDFgl version in use
System.out.println("HDFgl version: " 4+ HDFql.VERSION)

// create an HDF5 file named "example.h5" and use (i.e. open) it
HDFql.execute ("CREATE FILE example.h5");
HDFql.execute ("USE FILE example.h5");

// show (i.e. get) HDF5 file currently in use and populate HDFgl default cursor
with it
HDFqgl.execute ("SHOW USE FILE");

// display HDF5 file currently in use
HDFgl.cursorFirst(),
System.out.println("File in use: " + HDFql.cursorGetChar())

// create an attribute named "example attribute" of data type float with an initial

value of 12.4
HDFqgl.execute ("CREATE ATTRIBUTE example attribute AS FLOAT VALUES (12.4)");

// select (i.e. read) data from attribute "example attribute" and populate HDFql
default cursor with it

HDFql.execute ("SELECT FROM example attribute");

// display value of attribute "example attribute"
HDFql.cursorFirst();
System.out.println("Attribute value: " + HDFql.cursorGetFloat())

// create a dataset named "example dataset" of data type int of two dimensions

(size 3x2)

HDFql.execute ("CREATE DATASET example dataset AS INT(3, 2)");

// create variable "values" and populate it with certain values
values = new int[3][”];

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
values[x][y] = x * 2 + y + 1;
}
}

Version 2.0.1 Page 145 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// register variable "values" for subsequent use (by HDFql)
HDFgl.variableRegister (values);,

// insert (i.e. write) values from variable "values" into dataset "example dataset"
HDFql.execute ("INSERT INTO example dataset VALUES FROM MEMORY " +
HDFqgl.variableGetNumber (values))

// populate variable "values" with zeros (i.e. reset variable)

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
values[x][y] = 0;
}
}

// select (i.e. read) data from dataset "example dataset" and populate variable
"values" with it

HDFql.execute ("SELECT FROM example dataset INTO MEMORY " +
HDFqgl.variableGetNumber (values))

// unregister variable "values" as it is no longer used/needed (by HDFql)

HDFgl.variableUnregister (values),

// display content of variable "values"
System.out.println("Dataset value (through variable):");

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
System.out.println(values([x][y]) s
}
}

// another way to select (i.e. read) data from dataset "example dataset" using
HDFgl default cursor

HDFql.execute ("SELECT FROM example dataset");

// display content of HDFgl default cursor
System.out.println("Dataset value (through cursor):");

while (HDFql.cursorNext () == HDFql.SUCCESS)

Version 2.0.1 Page 146 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

System.out.println (HDFql.cursorGetInt())

// create cursor "myCursor" and use it
myCursor = new HDFglCursor();,

HDFqgl.cursorUse (myCursor) ;

// show (i.e. get) size (in bytes) of dataset "example dataset" and populate cursor

"myCursor" with it

HDFql.execute ("SHOW SIZE example dataset");

// display content of cursor "myCursor"
HDFgl.cursorFirst(),
System.out.println("Dataset size (in bytes): " + HDFql.cursorGetBigInt())

5.3.4 PYTHON

import HDFgl module (make sure it can be found by the Python interpreter)
import HDFql

import numpy

display HDFql version in use
print ("HDFql version: $s'" % HDFql.VERSION)

create an HDF5 file named "example.h5" and use (i.e. open) it
HDFgl.execute ("CREATE FILE example.h5")
HDFqgl.execute ("USE FILE example.h5")

show (i.e. get) HDF5 file currently in use and populate HDFql default cursor with it
HDFqgl.execute ("SHOW USE FILE")

display HDF5 file currently in use
HDFqgl.cursor first()

print("File in use: 5s" % HDFqgl.cursor get char())

create an attribute named "example attribute" of data type float with an initial value

Version 2.0.1 Page 147 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

of 12.4
HDFqgl.execute ("CREATE ATTRIBUTE example attribute AS FLOAT VALUES (12.4)")

select (i.e. read) data from attribute "example attribute'" and populate HDFgl default
cursor with it

HDFqgl.execute ("SELECT FROM example attribute")

display value of attribute "example attribute”
HDFql.cursor first()
print("Attribute value: 5f" % HDFqgl.cursor get float())

create a dataset named "example dataset" of data type int of two dimensions (size 3x2)

HDFqgl.execute ("CREATE DATASET example dataset AS INT (3, 2)")

create variable "values" and populate it with certain values
values = numpy.zeros((3, 2), dtype = numpy.int32)
for x in range(3):
for y in range(2):
values[x][y] = x * 2 + y + 1

register variable "values" for subsequent use (by HDFql)

HDFgl.variable register (values)

insert (i.e. write) values from variable "values" into dataset "example dataset"
HDFqgl.execute ("INSERT INTO example dataset VALUES FROM MEMORY 3%d" $%

HDFgl.variable get number (values))

populate variable "values" with zeros (i.e. reset variable)
for x in range(3):
for y in range(2):

values[x][y] = 0

select (i.e. read) data from dataset "example dataset" and populate variable "values'
with it
HDFql.execute ("SELECT FROM example dataset INTO MEMORY 3d" %

HDFgl.variable get number (values))

unregister variable "values" as it is no longer used/needed (by HDFql)

HDFgl.variable unregister (values)

display content of variable "values"

Version 2.0.1 Page 148 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

print("Dataset value (through variable) :")
for x in range(3):
for y in range(2):
print(values([x][y])

another way to select (i.e. read) data from dataset "example dataset" using HDFgl
default cursor

HDFqgl.execute ("SELECT FROM example dataset")

display content of HDFgl default cursor
print("Dataset value (through cursor):")
while HDFqgl.cursor next() == HDFql.SUCCESS:

print (HDFgl.cursor get int())

create cursor "my cursor" and use it
my cursor = HDFql.Cursor()

HDFqgl.cursor use(my cursor)

show (i.e. get) size (in bytes) of dataset "example dataset" and populate cursor
"my cursor" with it

HDFqgl.execute ("SHOW SIZE example dataset")

display content of cursor "my cursor"
HDFql.cursor first()

print("Dataset size (in bytes): %d" % HDFql.cursor get bigint())

5.3.5 C#

// use HDFql namespace (make sure it can be found by the C# compiler)
using AS.HDFql;

public class HDFglExample
{
public static void Main(string []args)
{
// declare variables
HDFglCursor myCursor;
int [,]values;

int x;

Version 2.0.1 Page 149 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

int y;

// display HDFgl version in use
System.Console.WriteLine ("HDFql version: {0}", HDFql.Version);,

// create an HDF5 file named "example.h5" and use (i.e. open) it
HDFql.Execute ("CREATE FILE example.h5");
HDFql.Execute ("USE FILE example.h5");

// show (i.e. get) HDF5 file currently in use and populate HDFgl default cursor
with it
HDFql .Execute ("SHOW USE FILE");

// display HDF5 file currently in use
HDFgl.CursorFirst(),;
System.Console.WriteLine ("File in use: {0}", HDFql.CursorGetChar())

// create an attribute named "example attribute" of data type float with an initial

value of 12.4
HDFqgl.Execute ("CREATE ATTRIBUTE example attribute AS FLOAT VALUES (12.4)");

// select (i.e. read) data from attribute "example attribute" and populate HDFql

default cursor with it

HDFqgl .Execute ("SELECT FROM example attribute");

// display value of attribute "example attribute"
HDFql.CursorFirst();
System.Console.WriteLine ("Attribute value: {0}", HDFql.CursorGetFloat())

// create a dataset named "example dataset" of data type int of two dimensions

(size 3x2)

HDFqgl .Execute ("CREATE DATASET example dataset AS INT(3, 2)");

// create variable "values'" and populate it with certain values
values = new int[3, 2];

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
values[x, y] = x * 2 + y + 1;
}

Version 2.0.1 Page 150 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// register variable '"values'" for subsequent use (by HDFgl)

HDFql.VariableRegister (values),

// insert (i.e. write) values from variable "values" into dataset "example dataset"
HDFql .Execute ("INSERT INTO example dataset VALUES FROM MEMORY " +
HDFql.VariableGetNumber (values));

// populate variable "values" with zeros (i.e. reset variable)

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
values[x, y] = 0;
}
}

// select (i.e. read) data from dataset "example dataset" and populate variable
"values" with it

HDFqgl.Execute ("SELECT FROM example dataset INTO MEMORY " +
HDFqgl.VariableGetNumber (values))

// unregister variable "values" as it is no longer used/needed (by HDFql)

HDFql.VariableUnregister (values),;

// display content of variable "values"
System.Console.WriteLine ("Dataset value (through variable):");

for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
System.Console.WriteLine (values([x, v]),
}
}

// another way to select (i.e. read) data from dataset "example dataset" using
HDFgl default cursor
HDFql.Execute ("SELECT FROM example dataset");

// display content of HDFql default cursor

Version 2.0.1 Page 151 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

System.Console.WriteLine ("Dataset value (through cursor):");,
while (HDFql.CursorNext () == HDFql.Success)

{
System.Console.WriteLine (HDFql.CursorGetInt())

// create cursor "myCursor" and use it
myCursor = new HDFglCursor();

HDFql.CursorUse (myCursor) ;

// show (i.e. get) size (in bytes) of dataset "example dataset" and populate cursor

"myCursor" with it

HDFqgl .Execute ("SHOW SIZE example dataset");

// display content of cursor "myCursor"
HDFgl.CursorFirst(),;
System.Console.WriteLine ("Dataset size (in bytes): {0}", HDFgl.CursorGetBigInt())

5.3.6 FORTRAN

PROGRAM HDFglExample

! use HDFgl module (make sure it can be found by the Fortran compiler)

USE HDFql

! declare variables

TYPE (HDFQL CURSOR) :: my cursor
CHARACTER :: variable number
INTEGER, DIMENSION(:, ”) :: values
INTEGER :: state

INTEGER :: X

INTEGER :: y

! display HDFql version in use

WRITE(*, *) "HDFql version: ", HDFQL VERSION

! create an HDF5 file named "example.h5" and use (i.e. open) it

Version 2.0.1 Page 152 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

state = hdfql execute("CREATE FILE example.h5")
state = hdfql execute("USE FILE example.h5")

! show (i.e. get) HDF5 file currently in use and populate HDFgl default cursor with
it
state = hdfql execute("SHOW USE FILE")

! display HDF5 file currently in use
state = hdfql cursor first()
WRITE (*, *) "File in use: ", hdfql cursor get char()

! create an attribute named "example attribute" of data type float with an initial

value of 12.4
state = hdfql execute ("CREATE ATTRIBUTE example attribute AS FLOAT VALUES (12.4)")

! select (i.e. read) data from attribute "example attribute" and populate HDFql

default cursor with it

state = hdfql execute("SELECT FROM example attribute)

! display value of attribute "example attribute”
state = hdfql cursor first()
WRITE (*, *) "Attribute value: ", hdfqgl cursor get float()

! create a dataset named "example dataset" of data type int of two dimensions (size

3x2)
state = hdfgl execute("CREATE DATASET example dataset AS INT(3, 2)")

! populate variable "values" with certain values
DO x =1, ~
DOy =1, 3
values(y, x) = x * 3 + y - 3
END DO
END DO

! register variable "values'" for subsequent use (by HDFql)
state = hdfqgl variable register(values)

WRITE (variable number, " (I0)") state

! insert (i.e. write) values from variable "values" into dataset "example dataset"

state = hdfgl execute ("INSERT INTO example dataset VALUES FROM MEMORY " //

variable number)

Version 2.0.1 Page 153 of 336

Reference Manual

Hierarchical Data Format query language (HDFql)

! populate variable "values" with zeros (i.e. reset variable)
DO x =1,

DOy =1, 3
values(y, x)

=0

END DO
END DO

! select (i.e. read) data from dataset "example dataset" and populate variable

"values" with it
state = hdfqgl execute("SELECT FROM example dataset INTO MEMORY " // variable number)

! unregister variable "values" as it is no longer used/needed (by HDFql)

= hdfql variable unregister (values)

state =

! display content of variable "values"

WRITE(*, *) "Dataset value (through variable):"
DO x =1, 2
DOy =1, 3

WRITE (*, *) values(y, x)

END DO
END DO

! another way to select (i.e. read) data from dataset "example dataset" using HDFql

default cursor
hdfgl execute("SELECT FROM example dataset")

state =

! display content of HDFql default cursor

WRITE(*, *) "Dataset value (through cursor):"

DO WHILE (hdfgl cursor next() .EQ. HDFQL SUCCESS)
WRITE (*, *) hdfql cursor get int()

END DO

! use cursor "my cursor"
hdfql cursor use(my cursor)

state =

! show (i.e. get) size (in bytes) of dataset "example dataset'" and populate cursor

"my cursor" with it
hdfql execute("SHOW SIZE example dataset")

state =

! display content of cursor "my cursor"

Page 154 of 336

Version 2.0.1

Hierarchical Data Format query language (HDFql) Reference Manual

state = hdfql cursor first()
WRITE (*, *) "Dataset size (in bytes): ", hdfql cursor get bigint()

END PROGRAM

53.7 R

load HDFql R wrapper (make sure it can be found by the R interpreter)
source ("HDFgl.R")

display HDFql version in use
print (paste("HDFql version:'", HDFQL VERSION))

create an HDF5 file named "example.h5" and use (i.e. open) it
hdfgl execute ("CREATE FILE example.hb5")
hdfql execute("USE FILE example.hb5")

show (i.e. get) HDF5 file currently in use and populate HDFql default cursor with it
hdfgl execute ("SHOW USE FILE")

display HDF5 file currently in use
hdfgl cursor first()
print (paste("File in use:", hdfgl cursor get char()))

create an attribute named "example attribute" of data type float with an initial value
of 12.4
hdfql execute("CREATE ATTRIBUTE example attribute AS FLOAT VALUES (12.4)")

select (i.e. read) data from attribute "example attribute" and populate HDFql default
cursor with it

hdfqgl execute("SELECT FROM example attribute')

display value of attribute "example attribute"
hdfql cursor first()
print (paste ("Attribute value:", hdfql cursor get float()))

create a dataset named "example dataset" of data type int of two dimensions (size 3x2)

hdfql execute ("CREATE DATASET example dataset AS INT (3, 2)")

Version 2.0.1 Page 155 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

create variable "values" and populate it with certain values
values <- array(dim = c(3, 7))

for(x in 1:2)

{
for(y in 1:3)
{
values[y, x] <- as.integer(x * 3 + y - 3)
}
}

register variable '"values" for subsequent use (by HDFql)

hdfql variable register(values)

insert (i.e. write) values from variable "values" into dataset "example dataset"
hdfgl execute (paste("INSERT INTO example dataset VALUES FROM MEMORY",

hdfgl variable get number (values)))

unregister variable "values" as it is no longer used/needed (by HDFql)

hdfgl variable unregister (values)

populate variable "values" with zeros (i.e. reset variable)

for(x in 1:7)

{
for(y in 1:3)
{
values[y, x] <- as.integer (0)
}
}

register variable '"values" for subsequent use (by HDFql)

hdfql variable register(values)

select (i.e. read) data from dataset "example dataset" and populate variable "values"
with it
hdfql execute (paste ("SELECT FROM example dataset INTO MEMORY",

hdfgl variable get number (values)))

unregister variable "values" as it is no longer used/needed (by HDFql)

hdfqgl variable unregister (values)

display content of variable "values"

Version 2.0.1 Page 156 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

print("Dataset value (through variable):")

for(x in 1:2)

{
for(y in 1:3)
{
print(values[y, x])
}
}

another way to select (i.e. read) data from dataset "example dataset" using HDFgl
default cursor

hdfql execute("SELECT FROM example dataset")

display content of HDFgl default cursor
print("Dataset value (through cursor):")
while (hdfql cursor next () == HDFQL SUCCESS)
{

print (hdfgl cursor get int())

create cursor "my cursor" and use it
my cursor <- hdfgl cursor()

hdfgl cursor use(my_ cursor)

show (i.e. get) size (in bytes) of dataset "example dataset"”" and populate cursor
"my cursor" with it

hdfql execute("SHOW SIZE example dataset')

display content of cursor "my cursor"
hdfgl cursor first()

print (paste("Dataset size (in bytes):", hdfgl cursor get bigint()))

5.3.8 OUTPUT

HDFqgl version: 2.0.1

File in use: example.hb
Attribute value: 12.400000
Dataset value (through variable):

1

Version 2.0.1 Page 157 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

2
3
4
5
6
Dataset value (through cursor):
1
2
3
4
5
6

Dataset size (in bytes): 24

Version 2.0.1 Page 158 of 336

6. LANGUAGE

HDFql is a high-level language to manage HDF5 files in a simple and natural way. It was designed to be similar to SQL
(wherever possible) so that its learning effort is kept at minimum while still providing great power and flexibility to
the programmer. This chapter describes data types, post-processing options to further transform result sets,
redirecting options to read/write data/result sets from/into disparate input/output sources, and operations (i.e. the
language itself) available in HDFql. It also introduces text formatting conventions used throughout this chapter to
describe HDFgl operations (Table 6.1), and a summary of existing operations (Table 6.2). Before continuing, it is
highly recommended to first read the HDF5 User’s Guide available at
http://www.hdfgroup.org/HDF5/doc/UG/HDF5_Users_Guide.pdf to facilitate the understanding of the current

chapter.

Convention Description Example
Bold Keyword that must be typed exactly as shown CREATE
Italic Value that the programmer must supply dataset_name
Between brackets ([]) Optional keyword/value [DATASET]

Between braces ({}) Logical grouping of keywords/values (to ease understanding) | {[TRUNCATE] BINARY FILE file_name}

Separated with a pipe (]) Set of keywords/values from which one must be chosen GROUP | DATASET | ATTRIBUTE

Asterisk (*) Keyword/value that can be supplied several times group_name [, group_namel*

Table 6.1 — HDFgl operations text formatting conventions

Operation Description
CREATE DIRECTORY Create a directory
CREATE FILE Create an HDFS5 file

Version 2.0.1 Page 159 of 336

http://www.hdfgroup.org/HDF5/doc/UG/HDF5_Users_Guide.pdf

Hierarchical Data Format query language (HDFql)

Reference Manual

CREATE GROUP

Create an HDF5 group

CREATE DATASET

Create an HDF5 dataset

CREATE ATTRIBUTE

Create an HDF5 attribute

CREATE [SOFT | HARD] LINK

Create an HDF5 soft or hard link

CREATE EXTERNAL LINK

Create an HDF5 external link

ALTER DIMENSION

Alter (i.e. change) dimensions of an existing HDF5 dataset

RENAME DIRECTORY

Rename (or move) an existing directory

RENAME FILE

Rename (or move) an existing file

RENAME [GROUP | DATASET | ATTRIBUTE |
[SOFT] LINK | EXTERNAL LINK]

Rename (or move) an existing HDF5 group, dataset, attribute, (soft) link or external

link

COPY FILE

Copy an existing file

COPY [GROUP | DATASET | ATTRIBUTE |
[SOFT] LINK | EXTERNAL LINK]

Copy an existing HDF5 group, dataset, attribute, (soft) link or external link

DROP DIRECTORY

Drop (i.e. delete) an existing directory

DROP FILE

Drop (i.e. delete) an existing file

DROP [GROUP | DATASET | ATTRIBUTE |
[SOFT] LINK | EXTERNAL LINK]

Drop (i.e. delete) an existing HDF5 group, dataset, attribute, (soft) link or external

link

INSERT

Insert (i.e. write) data into an HDF5 dataset or attribute

SELECT

Select (i.e. read) data from an HDF5 dataset or attribute

SHOW FILE VALIDITY

Get validity of a file (i.e. whether it is a valid HDFS5 file or not)

SHOW USE DIRECTORY

Get working directory currently in use

SHOW USE FILE

Get HDF5 file currently in use

SHOW ALL USE FILE

Get all HDFS5 files in use (i.e. open)

SHOW USE GROUP

Get HDF5 group currently in use

SHOW [GROUP | DATASET | ATTRIBUTE |
[SOFT] LINK | EXTERNAL LINK]

Get HDF5 objects (i.e. groups, datasets, attributes, (soft) links or external links) or

check existence of an object

SHOW TYPE

Get type of an HDF5 object (i.e. group, dataset or attribute)

Version 2.0.1

Page 160 of 336

Hierarchical Data Format query language (HDFql)

Reference Manual

SHOW DATA TYPE

Get data type of an HDF5 dataset or attribute

SHOW ENDIANNESS

Get endianness of an HDF5 dataset or attribute

SHOW CHARSET Get charset of an HDF5 dataset or attribute
SHOW STORAGE TYPE Get storage type (layout) of an HDF5 dataset
SHOW STORAGE ALLOCATION

Get storage allocation of an HDF5 dataset

SHOW STORAGE DIMENSION

Get storage dimensions of an HDF5 dataset

SHOW DIMENSION

Get dimensions of an HDF5 dataset or attribute

SHOW MAX DIMENSION

Get maximum dimensions of an HDF5 dataset or attribute

SHOW ORDER

Get (creation) order strategy of an HDF5 group or dataset

SHOW TAG

Get tag of an HDF5 dataset or attribute

SHOW FILL TYPE

Get fill type of an HDF5 dataset

SHOW FILL VALUE

Get fill values of an HDF5 dataset

SHOW FILE SIZE

Get size (in bytes) of a file

SHOW [DATASET | ATTRIBUTE] SIZE

Get size (in bytes) of an HDF5 dataset or attribute

SHOW HDFQL VERSION

Get version of HDFql library

SHOW HDF5 VERSION

Get version of HDFS5 library used by HDFql

SHOW PCRE VERSION

Get version of PCRE library used by HDFql

SHOW ZLIB VERSION

Get version of ZLIB library used by HDFqg|

SHOW MPI VERSION

Get version of MPI library used by HDFql

SHOW DIRECTORY

Get directory names within a directory

SHOW FILE

Get file names within a directory or check existence of a file

SHOW EXECUTE STATUS

Get status of the last executed operation

SHOW LIBRARY BOUNDS

Get library bound values for creating or opening HDF5 files

SHOW CACHE

Get cache parameters for accessing HDFS5 files or datasets

SHOW FLUSH

Get status of the automatic flushing

Version 2.0.1

Page 161 of 336

Hierarchical Data Format query language (HDFql)

Reference Manual

SHOW DEBUG

Get status of the debug mechanism

USE DIRECTORY

Use a directory for subsequent operations

USE FILE Use (i.e. open) an HDF5 file for subsequent operations
USE GROUP Use (i.e. open) an HDF5 group for subsequent operations
FLUSH Flush the entire virtual HDF5 file (global) or only the HDFS5 file (local) currently in use
CLOSE FILE Close HDFS5 file currently in use

CLOSE ALL FILE

Close all HDFS files in use

CLOSE GROUP

Close HDF5 group currently in use

SET LIBRARY BOUNDS

Set library bound values for creating and opening HDF5 files

SET CACHE Set cache parameters for accessing HDF5 files or datasets
Set automatic flushing of the entire virtual HDFS5 file or only the HDFS5 file currently in
SET FLUSH
use to enabled or disabled
SET DEBUG Set debug mechanism to enabled or disabled
RUN Run (i.e. execute) an external command

6.1 DATA TYPES

Table 6.2 — HDFqgl operations

A data type is a classification identifying one of various types of data such as integer, real or string, which determines

the possible values for that type, the operations that can be done on values of that type, the meaning of the data,

and the way values of that type can be stored. In other words, a data type is a classification of data that tells HDFq|

how the user intends to use it. The following table summarizes all existing HDFgl data types and how these map with

the HDF5 data types’.

! For a detailed explanation of HDF5 data types please refer to https://support.hdfgroup.org/HDF5/docl.8/UG/HDF5_Users_Guide-Responsive
HTML5/index.html#t=HDF5_Users_Guide/Datatypes/HDF5_Datatypes.htm.

Version 2.0.1

Page 162 of 336

https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide/Datatypes/HDF5_Datatypes.htm
https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide/Datatypes/HDF5_Datatypes.htm

Hierarchical Data Format query language (HDFql)

Reference Manual

HDFq| HDF Range of Values
-128to 127
TINYINT H5T_NATIVE_CHAR
(1 byte)
0 to 255
UNSIGNED TINYINT H5T_NATIVE_UCHAR
(1 byte)

-32,768 to 32,767

SMALLINT H5T_NATIVE_SHORT
(2 bytes)
0to 65,535
UNSIGNED SMALLINT H5T_NATIVE_USHORT
(2 bytes)

-2,147,483,648 to 2,147,483,647

INT H5T_NATIVE_INT
(4 bytes)
0to 4,294,967,295
UNSIGNED INT H5T_NATIVE_UINT
(4 bytes)
-9,223,372,036,854,775,808 t0 9,223,372,036,854,775,807
BIGINT H5T_NATIVE_LLONG

(8 bytes)

UNSIGNED BIGINT

H5T_NATIVE_ULLONG

0 to 18,446,744,073,709,551,615
(8 bytes)

-3.4E +38to 3.4E + 38

FLOAT H5T_NATIVE_FLOAT
(4 bytes)
-1.79E + 308 to 1.79E + 308
DOUBLE H5T_NATIVE_DOUBLE
(8 bytes)
0to 255
CHAR H5T_C_S1
(1 byte)
-128 to 127
VARTINYINT H5T_NATIVE_CHAR

(size * 1 byte)

UNSIGNED VARTINYINT

H5T_NATIVE_UCHAR

0to 255

(size * 1 byte)

VARSMALLINT

H5T_NATIVE_SHORT

-32,768 to 32,767

(size * 2 bytes)

UNSIGNED VARSMALLINT

H5T_NATIVE_USHORT

0 to 65,535
(size * 2 bytes)

VARINT

H5T_NATIVE_INT

-2,147,483,648 to 2,147,483,647

(size * 4 bytes)

Version 2.0.1

Page 163 of 336

Hierarchical Data Format query language (HDFql)

Reference Manual

UNSIGNED VARINT H5T_NATIVE_UINT

0to 4,294,967,295

(size * 4 bytes)

VARBIGINT H5T_NATIVE_LLONG

-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

(size * 8 bytes)

UNSIGNED VARBIGINT H5T_NATIVE_ULLONG

0to 18,446,744,073,709,551,615

(size * 8 bytes)

-3.4E +38to 3.4E + 38

VARFLOAT H5T_NATIVE_FLOAT
(size * 4 bytes)
-1.79E + 308 to 1.79E + 308
VARDOUBLE H5T_NATIVE_DOUBLE
(size * 8 bytes)
0to 255
VARCHAR H5T_C_S1
(size * 1 byte)
0to 255
OPAQUE H5T_OPAQUE
(1 byte)

Table 6.3 — HDFql data types and their corresponding definitions in HDF

6.1.1 TINYINT

The HDFgl TINYINT data type corresponds to the HDF5 H5T_NATIVE_CHAR data type. It may store a value between -

128 and 127, and occupies 1 byte in memory. Depending on the programming language (supported by HDFql), the

TINYINT data type is represented by:

In C, the “char” data type.

o In C++, the “char” data type.

e InJava, the “byte” data type or its corresponding wrapper class “Byte”.

e In Python, the “int8” NumPy data type.

e In CH, the “SByte” data type or its alias “sbyte”.

e In Fortran, the “INTEGER(KIND = 1)” data type.

Version 2.0.1

Page 164 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

e InR? the “integer” data type.

6.1.2 UNSIGNED TINYINT

The HDFgl UNSIGNED TINYINT data type corresponds to the HDF5 H5T_NATIVE_UCHAR data type. It may store a
value between 0 and 255, and occupies 1 byte in memory. Depending on the programming language (supported by

HDFql), the UNSIGNED TINYINT data type is represented by:

In C, the “unsigned char” data type.

o In C++, the “unsigned char” data type.

e InJava3, the “byte” data type or its corresponding wrapper class “Byte”.
e In Python, the “uint8” NumPy data type.

o In CH, the “Byte” data type or its alias “byte”.

e In Fortran®, the “INTEGER(KIND = 1)” data type.

e In R’ the “integer” data type.

2 By design, R does not have a data type that may store a value between -128 and 127 with exactly 1 byte in memory. As a substitute, the R “integer”
data type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower
performance (as bytes alignment must be made by HDFq]l).

3 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a sighed number to its
equivalent unsigned number in Java.

4 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible
for making the conversion from a signed number to its equivalent unsigned number in Fortran.

5 By design, R does not have a data type that may store a value between 0 and 255 with exactly 1 byte in memory. As a substitute, the R “integer” data

type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower
performance (as bytes alignment must be made by HDFql).

Version 2.0.1 Page 165 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

6.1.3 SMALLINT

The HDFql SMALLINT data type corresponds to the HDF5 H5T_NATIVE_SHORT data type. It may store a value
between -32,768 and 32,767, and occupies 2 bytes in memory. Depending on the programming language (supported

by HDFqgl), the SMALLINT data type is represented by:

e InC, the “short” data type.

e In C++, the “short” data type.

e InJava, the “short” data type or its corresponding wrapper class “Short”.

e In Python, the “int16” NumPy data type.

e InCH, the “Int16” data type or its alias “short”.

e In Fortran, the “INTEGER(KIND = 2)” data type.

e InR?® the “integer” data type.

6.1.4 UNSIGNED SMALLINT

The HDFgl UNSIGNED SMALLINT data type corresponds to the HDF5 H5T_NATIVE_USHORT data type. It may store a
value between 0 and 65,535, and occupies 2 bytes in memory. Depending on the programming language (supported

by HDFql), the UNSIGNED SMALLINT data type is represented by:

o InC, the “unsigned short” data type.

o In C++, the “unsigned short” data type.

e InlJava’, the “short” data type or its corresponding wrapper class “Short”.

6 By design, R does not have a data type that may store a value between -32,768 and 32,767 with exactly 2 bytes in memory. As a substitute, the R
“integer” data type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and
lower performance (as bytes alighment must be made by HDFql).

7 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a sighed number to its
equivalent unsigned number in Java.

Version 2.0.1 Page 166 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

e In Python, the “uint16” NumPy data type.

e In CH, the “UInt16” data type or its alias “ushort”.
e In Fortran3, the “INTEGER(KIND = 2)” data type.

e InR? the “integer” data type.

6.1.5 INT

The HDFqgl INT data type corresponds to the HDF5 H5T_NATIVE_INT data type. It may store a value between -
2,147,483,648 and 2,147,483,647, and occupies 4 bytes in memory. Depending on the programming language
(supported by HDFql), the INT data type is represented by:

e InC, the “int” data type.

o In C++, the “int” data type.

e InJava, the “int” data type or its corresponding wrapper class “Integer”.

e In Python, the “int32” NumPy data type.

e In CH, the “Int32” data type or its alias “int”.

e In Fortran, the “INTEGER(KIND = 4)” or “INTEGER” data types.

e InR, the “integer” data type.

8 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible
for making the conversion from a signed number to its equivalent unsigned number in Fortran.

9 By design, R does not have a data type that may store a value between 0 and 65,535 with exactly 2 bytes in memory. As a substitute, the R “integer”

data type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower
performance (as bytes alignment must be made by HDFql).

Version 2.0.1 Page 167 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

6.1.6 UNSIGNED INT

The HDFql UNSIGNED INT data type corresponds to the HDF5 H5T_NATIVE_UINT data type. It may store a value
between 0 and 4,294,967,295, and occupies 4 bytes in memory. Depending on the programming language

(supported by HDFqgl), the UNSIGNED INT data type is represented by:

e InC, the “unsigned int” data type.

e In C++, the “unsigned int” data type.

e InJaval® the “int” data type or its corresponding wrapper class “Integer”.
e In Python, the “uint32” NumPy data type.

e In CH, the “UInt32” data type or its alias “uint”.

e InFortran'?, the “INTEGER(KIND = 4)” or “INTEGER” data types.

e In R, the “integer” data type.

6.1.7 BIGINT

The HDFgl BIGINT data type corresponds to the HDF5 H5T_NATIVE_LLONG data type. It may store a value between -
9,223,372,036,854,775,808 and 9,223,372,036,854,775,807, and occupies 8 bytes in memory. Depending on the

programming language (supported by HDFql), the BIGINT data type is represented by:

e InC, the “long long” data type.

o In C++, the “long long” data type.

e InJava, the “long” data type or its corresponding wrapper class “Long”.

10 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a sighed number to its
equivalent unsigned in Java.

11 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible
for making the conversion from a signed number to its equivalent unsigned in Fortran.

12 By design, R does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned in R.

Version 2.0.1 Page 168 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

e In Python, the “int64” NumPy data type.

e In CH, the “Int64” data type or its alias “long”.
e In Fortran, the “INTEGER(KIND = 8)” data type.
e InR, the “integer64” bit64 data type.

6.1.8 UNSIGNED BIGINT

The HDFgl UNSIGNED BIGINT data type corresponds to the HDF5 H5T_NATIVE_ULLONG data type. It may store a
value between 0 and 18,446,744,073,709,551,615, and occupies 8 bytes in memory. Depending on the programming
language (supported by HDFql), the UNSIGNED BIGINT data type is represented by:

e InC, the “unsigned long long” data type.

e In C++, the “unsigned long long” data type.

e InJava®?, the “long” data type or its corresponding wrapper class “Long”.

e In Python, the “uint64” NumPy data type.

e In CH, the “UInt64” data type or its alias “ulong”.

e In Fortran!4, the “INTEGER(KIND = 8)” data type.

e InRY, the “integer64” bit64 data type.

13 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a sighed number to its
equivalent unsigned in Java.

14 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible
for making the conversion from a signed number to its equivalent unsigned in Fortran.

15 By design, R does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned in R.

Version 2.0.1 Page 169 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

6.1.9 FLOAT

The HDFql FLOAT data type corresponds to the HDF5 H5T_NATIVE_FLOAT data type. It may store a value between -
3.4E + 38 and 3.4E + 38, and occupies 4 bytes in memory. Depending on the programming language (supported by
HDFql), the FLOAT data type is represented by:

e InC, the “float” data type.

e In C++, the “float” data type.

e InJava, the “float” data type or its corresponding wrapper class “Float”.
e In Python, the “float32” NumPy data type.

e In CH, the “Single” data type or its alias “float”.

e In Fortran, the “REAL(KIND = 4)” or “REAL” data types.

e InR?, the “numeric” or “double” data types.

6.1.10 DOUBLE

The HDFql DOUBLE data type corresponds to the HDF5 H5T_NATIVE_DOUBLE data type. It may store a value
between -1.79E + 308 and 1.79E + 308, and occupies 8 bytes in memory. Depending on the programming language

(supported by HDFql), the DOUBLE data type is represented by:

o InC, the “double” data type.

In C++, the “double” data type.

In Java, the “double” data type or its corresponding wrapper class “Double”.

In Python, the “float64” NumPy data type.

In C#, the “Double” data type or its alias “double”.

16 By design, R does not have a data type that may store a value between -3.4E + 38 and 3.4E + 38 with exactly 4 byte in memory. As a substitute, the R
“numeric” or “double” data types may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 8 bytes in
memory) and lower performance (as bytes alignment must be made by HDFql).

Version 2.0.1 Page 170 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

e In Fortran, the “REAL(KIND = 8)” or “DOUBLE PRECISION” data types.

e InR, the “numeric” or “double” data types.

6.1.11 CHAR

The HDFql CHAR data type corresponds to the HDF5 H5T_C_S1 data type. It may store a value between 0 and 255,
and occupies size * 1 byte in memory (size being the length of the string). The CHAR data type is useful for storing
fixed-length strings. Depending on the programming language (supported by HDFql), the CHAR data type is

represented by:

o InC, the “unsigned char [size]” data type.

o In C++, the “unsigned char [size]” data type.

e InJava, the “byte [size]” data type or its corresponding wrapper class “Byte [size]”.
e In Python, the “Ssize” NumPy data type.

e In CH, the “Byte [size]” data type or its alias “byte [size]”.

e In Fortran, the “CHARACTER(LEN = size)” data type.

e InRY, the “integer” data type.

6.1.12 VARTINYINT

The HDFgl VARTINYINT data type corresponds to the HDF5 H5T_NATIVE_CHAR data type. It may store a value
between -128 and 127, and occupies size * 1 byte in memory (size being the number of elements composing the
VARTINYINT data type). Depending on the programming language (supported by HDFgl), the VARTINYINT data type

is represented by:

17 By design, R does not have a data type that may store a value between 0 and 255 with exactly 1 byte in memory. As a substitute, the R “integer” data
type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower
performance (as bytes alignment must be made by HDFql).

Version 2.0.1 Page 171 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

In C, the “char” data type.

e In C++, the “char” data type.

e InJava, the “byte” data type or its corresponding wrapper class “Byte”.
e In Python, the “int8” NumPy data type.

e In CH, the “SByte” data type or its alias “sbyte”.

e In Fortran, the “INTEGER(KIND = 1)” data type.

e InR®, the “integer” data type.

6.1.13 UNSIGNED VARTINYINT

The HDFgl UNSIGNED VARTINYINT data type corresponds to the HDF5 H5T_NATIVE_UCHAR data type. It may store a
value between 0 and 255, and occupies size * 1 byte in memory (size being the number of elements composing the
VARTINYINT data type). Depending on the programming language (supported by HDFql), the UNSIGNED VARTINYINT

data type is represented by:

In C, the “unsigned char” data type.
e In C++, the “unsigned char” data type.
e InJava?®, the “byte” data type or its corresponding wrapper class “Byte”.

e In Python, the “uint8” NumPy data type.

o In C#, the “Byte” data type or its alias “byte”.

18 By design, R does not have a data type that may store a value between -128 and 127 with exactly 1 byte in memory. As a substitute, the R “integer”
data type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower
performance (as bytes alignment must be made by HDFql).

19 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned number in Java.

Version 2.0.1 Page 172 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

e In Fortran®, the “INTEGER(KIND = 1)” data type.

e InR%, the “integer” data type.

6.1.14 VARSMALLINT

The HDFgl VARSMALLINT data type corresponds to the HDF5 H5T_NATIVE_SHORT data type. It may store a value
between -32,768 and 32,767, and occupies size * 2 bytes in memory (size being the number of elements composing
the VARSMALLINT data type). Depending on the programming language (supported by HDFql), the VARSMALLINT

data type is represented by:

In C, the “short” data type.

o In C++, the “short” data type.

e InJava, the “short” data type or its corresponding wrapper class “Short”.

e In Python, the “int16” NumPy data type.

e InCH, the “Int16” data type or its alias “short”.

e In Fortran, the “INTEGER(KIND = 2)” data type.

e InR%, the “integer” data type.

20 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible
for making the conversion from a signed number to its equivalent unsigned number in Fortran.

21 By design, R does not have a data type that may store a value between 0 and 255 with exactly 1 byte in memory. As a substitute, the R “integer” data
type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower
performance (as bytes alignment must be made by HDFql).

22 By design, R does not have a data type that may store a value between -32,768 and 32,767 with exactly 2 bytes in memory. As a substitute, the R

“integer” data type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and
lower performance (as bytes alighment must be made by HDFql).

Version 2.0.1 Page 173 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

6.1.15 UNSIGNED VARSMALLINT

The HDFql UNSIGNED VARSMALLINT data type corresponds to the HDF5 H5T_NATIVE_USHORT data type. It may
store a value between 0 and 65,535, and occupies size * 2 bytes in memory (size being the number of elements
composing the VARSMALLINT data type). Depending on the programming language (supported by HDFql), the
UNSIGNED VARSMALLINT data type is represented by:

In C, the “unsigned short” data type.

e In C++, the “unsigned short” data type.

e InJava?, the “short” data type or its corresponding wrapper class “Short”.

e In Python, the “uint16” NumPy data type.

e In CH, the “UInt16” data type or its alias “ushort”.

e In Fortran?, the “INTEGER(KIND = 2)” data type.

e InR%, the “integer” data type.

6.1.16 VARINT

The HDFgl VARINT data type corresponds to the HDF5 H5T_NATIVE_INT data type. It may store a value between -
2,147,483,648 and 2,147,483,647, and occupies size * 4 bytes in memory (size being the number of elements
composing the VARINT data type). Depending on the programming language (supported by HDFql), the VARINT data

type is represented by:

e InC, the “int” data type.

2 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned number in Java.

24 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible
for making the conversion from a signed number to its equivalent unsigned number in Fortran.

25 By design, R does not have a data type that may store a value between 0 and 65,535 with exactly 2 bytes in memory. As a substitute, the R “integer”

data type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower
performance (as bytes alignment must be made by HDFql).

Version 2.0.1 Page 174 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

In C++, the “int” data type.

e InJava, the “int” data type or its corresponding wrapper class “Integer”.
e In Python, the “int32” NumPy data type.

e In CH, the “Int32” data type or its alias “int”.

e In Fortran, the “INTEGER(KIND = 4)” data type.

e InR, the “integer” data type.

6.1.17 UNSIGNED VARINT

The HDFqgl UNSIGNED VARINT data type corresponds to the HDF5 H5T_NATIVE_UINT data type. It may store a value
between 0 and 4,294,967,295, and occupies size * 4 bytes in memory (size being the number of elements composing
the UNSIGNED VARINT data type). Depending on the programming language (supported by HDFgl), the UNSIGNED
VARINT data type is represented by:

In C, the “unsigned int” data type.

e In C++, the “unsigned int” data type.

e InJava?, the “int” data type or its corresponding wrapper class “Integer”.

e In Python, the “uint32” NumPy data type.

o In CH, the “UInt32” data type or its alias “uint”.

e InFortran?, the “INTEGER(KIND = 4)” data type.

26 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned number in Java.

27 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible
for making the conversion from a signed number to its equivalent unsigned number in Fortran.

Version 2.0.1 Page 175 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

e InR%, the “integer” data type.

6.1.18 VARBIGINT

The HDFgl VARBIGINT data type corresponds to the HDF5 H5T_NATIVE_LLONG data type. It may store a value
between -9,223,372,036,854,775,808 and 9,223,372,036,854,775,807, and occupies size * 8 bytes in memory (size
being the number of elements composing the VARBIGINT data type). Depending on the programming language
(supported by HDFqgl), the VARBIGINT data type is represented by:

e InC, the “long long” data type.

o In C++, the “long long” data type.

e InJava, the “long” data type or its corresponding wrapper class “Long”.

e In Python, the “int64” NumPy data type.

o In CH, the “Int64” data type or its alias “long”.

e In Fortran, the “INTEGER(KIND = 8)” data type.

e InR, the “integer64” bit64 data type.

6.1.19 UNSIGNED VARBIGINT

The HDFgl UNSIGNED VARBIGINT data type corresponds to the HDF5 H5T_NATIVE_ULLONG data type. It may store a
value between 0 and 18,446,744,073,709,551,615, and occupies size * 8 bytes in memory (size being the number of
elements composing the UNSIGNED VARBIGINT data type). Depending on the programming language (supported by
HDFql), the UNSIGNED VARBIGINT data type is represented by:

o InC, the “unsigned long long” data type.

e In C++, the “unsigned long long” data type.

28 By design, R does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned number in R.

Version 2.0.1 Page 176 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

In Java®®, the “long” data type or its corresponding wrapper class “Long”.
e In Python, the “uint64” NumPy data type.
e In CH, the “UInt64” data type or its alias “ulong”.

e InFortran3’, the “INTEGER(KIND = 8)” data type.

e In R, the “integer64” bit64 data type.

6.1.20 VARFLOAT

The HDFqgl VARFLOAT data type corresponds to the HDF5 H5T_NATIVE_FLOAT data type. It may store a value
between -3.4E + 38 and 3.4E + 38, and occupies size * 4 bytes in memory (size being the number of elements
composing the VARFLOAT data type). Depending on the programming language (supported by HDFql), the
VARFLOAT data type is represented by:

In C, the “float” data type.

e In C++, the “float” data type.

e InJava, the “float” data type or its corresponding wrapper class “Float”.
e In Python, the “float32” NumPy data type.

e In CH, the “Single” data type or its alias “float”.

e In Fortran, the “REAL(KIND = 4)” data type.

29 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned number in Java.

30 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible
for making the conversion from a signed number to its equivalent unsigned number in Fortran.

31 By design, R does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned number in R.

Version 2.0.1 Page 177 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

e In R, the “numeric” or “double” data types.

6.1.21 VARDOUBLE

The HDFgl VARDOUBLE data type corresponds to the HDF5 H5T_NATIVE_DOUBLE data type. It may store a value
between -1.79E + 308 and 1.79E + 308, and occupies size * 8 bytes in memory (size being the number of elements
composing the VARDOUBLE data type). Depending on the programming language (supported by HDFql), the
VARDOUBLE data type is represented by:

o InC, the “double” data type.

o In C++, the “double” data type.

e InJava, the “double” data type or its corresponding wrapper class “Double”.

e InPython, the “float64” NumPy data type.

e In CH, the “Double” data type or its alias “double”.

e In Fortran, the “REAL(KIND = 8)” or “DOUBLE PRECISION” data types.

e InR, the “numeric” or “double” data types.

6.1.22 VARCHAR

The HDFgl VARCHAR data type corresponds to the HDF5 H5T_C_S1 data type. It may store a value between 0 and
255, and occupies size * 1 byte in memory (size being the length of the string). The VARCHAR data type is useful for
storing variable-length strings. Depending on the programming language (supported by HDFql), the VARCHAR data

type is represented by:

e InC, the “unsigned char *” data type.

32 By design, R does not have a data type that may store a value between -3.4E + 38 and 3.4E + 38 with exactly 4 byte in memory. As a substitute, the R
“numeric” or “double” data types may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 8 bytes in
memory) and lower performance (as bytes alignment must be made by HDFql).

Version 2.0.1 Page 178 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

e In C++, the “unsigned char *” data type.

e InJava, the “String” object.

e In Python, the “Ssize” NumPy data type.

e In CH, the “String” data type or its alias “string”.
e In Fortran, the “CHARACTER(LEN = *)” data type.

e InR, the “character” data type.

6.1.23 OPAQUE

The HDFgl OPAQUE data type corresponds to the HDF5 H5T_OPAQUE data type. It may store a value between 0 and
255, and occupies 1 byte in memory. The OPAQUE data type is useful for representing data that should not be
interpreted/rearranged by the HDF5 library when reading/writing it from/into in an HDF5 dataset or attribute.

Depending on the programming language (supported by HDFql), the OPAQUE data type is represented by:

In C, the “unsigned char” data type.

e In C++, the “unsigned char” data type.

e InJava®, the “byte” data type or its corresponding wrapper class “Byte”.

e In Python, the “ubyte” NumPy data type.

o In CH, the “Byte” data type or its alias “byte”.

e InFortran, the “CHARACTER” data type.

o InR, the “raw” data type.

33 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned number in Java.

Version 2.0.1 Page 179 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

6.2 POST-PROCESSING

Post-processing options enable transforming results of a query according to the programmer’s needs such as
ordering or truncating. These options may be used to create a (linear) pipeline to further process result sets
returned by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION LANGUAGE (DIL) operations. In case a
pipeline is composed of two or more options, the order in which they are used affects the final outcome (e.g. usage
of ORDER ASC followed by TOP 2 in a result set composed of 4, 2, 3 and 1, returns 1 and 2; usage of these same two
options inversed — i.e. TOP 2 followed by ORDER ASC - returns 2 and 4 instead). The next subsections describe the

post-processing options provided by HDFql.

Post-processing Option Description

ORDER Order (i.e. sort) a result set in an ascending, descending or reverse way
TOP Truncate a result set after a certain given position in a topmost way
BOTTOM Truncate a result set after a certain given position in a bottommost way

FROM TO Retain a result set within a certain given range
STEP Step (i.e. jump) the result set at every given position

Table 6.4 — HDFql post-processing options

6.2.1 ORDER

Syntax

ORDER {{ASC | DESC | REV} | {, {ASC | DESC | REV}} | {{ASC | DESC | REV}, {ASC | DESC | REV}}}

Description

Order (i.e. sort) a result set in an ascending, descending or reverse way by specifying either the keyword ASC, DESC
or REV respectively. When in an ascending or descending order, HDFql automatically uses all available CPU cores to

speed-up the task completion3*. Additionally, if the result set is of data type HDFQL_CHAR, HDFQL_VARTINYINT,

34 Through a parallelized Quicksort algorithm.

Version 2.0.1 Page 180 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT,
HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT,
HDFQL_VARDOUBLE or HDFQL_OPAQUE, the result subset can be ordered (i.e. sorted) in an ascending, descending

or reverse way by specifying a comma (,) and either the keyword ASC, DESC or REV, respectively.
Parameter(s)

None

Return

The result set and/or subset is ordered (i.e. sorted) in an ascending, descending or reverse way depending on

whether the keyword ASC, DESC or REV is specified respectively.

Example(s)

create an HDF5 dataset named "my dataset(0" of data type float of four dimensions (size
5x8x4x7)
CREATE DATASET my dataset(O AS FLOAT (5, &8, 4, 7)

show (i.e. get) dimensions of dataset "my dataset(0" and populate cursor in use with
these (should be 5, 8, 4, 7)
SHOW DIMENSION my dataset(

show (i.e. get) dimensions of dataset "my dataset0" and populate cursor in use with
these in ascending order (should be 4, 5, 7, 8)

SHOW DIMENSION my dataset(O ORDER ASC

show (i.e. get) dimensions of dataset "my dataset0" and populate cursor in use with
these in descending order (should be 8, 7, 5, 4)

SHOW DIMENSION my dataset(O ORDER DESC

show (i.e. get) dimensions of dataset "my dataset0" and populate cursor in use with
these in reversed order (should be 7, 4, 8, 5)

SHOW DIMENSION my dataset(ORDER REV

create an HDF5 dataset named "my datasetl" of data type double of two dimensions (size

3x2)

Version 2.0.1 Page 181 of 336

Hierarchical Data Format query language (HDFql)

Reference Manual

CREATE DATASET

insert (i.e.

INSERT INTO my

my datasetl AS DOUBLE (3, 2)

write) values into dataset

datasetl VALUES((3.2, 1.3),

"my datasetl"

(0, 0.2), (9.1, 6.5))

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with it
(should be 3.2, 1.3, 0, 0.2, 9.1, 6.5)

SELECT FROM my datasetl

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with it
in ascending order (should be 0, 0.2, 1.3, 3.2, 6.5, 9.1)

SELECT FROM my datasetl ORDER ASC

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with it
in descending order (should be 9.1, 6.5, 3.2, 1.3, 0.2, 0)

SELECT FROM my datasetl ORDER DESC

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with it
in reversed order (should be 6.5, 9.1, 0.2, 0, 1.3, 3.2)

SELECT FROM my datasetl ORDER REV

create an HDF5 dataset named "my dataset2" of data
dimension (size 3)

CREATE DATASET my dataset2Z AS VARDOUBLE (5)

type variable-length double of one

insert (i.e. write) values into dataset "my dataset2"

INSERT INTO my dataset2 VALUES((3.2, 1.3), (0, 0.2),
select (i.e. read) data from dataset "my dataset2"
(should be 3.2, 1.3, 0, 0.2, 9.1, 6.5)

SELECT FROM my dataset2

7.4,

select (i.e. read) data from dataset "my dataset2"
in ascending order on the result subset only (should

SELECT FROM my dataset2? ORDER , ASC

select (i.e. read) data from dataset "my dataset2"

in descending order on the result subset only (should be 3.2,

SELECT FROM my dataset2 ORDER , DESC

select (i.e. read) data from dataset "my dataset2"

(9.1, 7.4, 6.5))

T

and populate cursor in use with it

and populate cursor in use with it

be 1.3, 3.2, 0, 0.2, 6.5, 7.4, 9.1)

and populate cursor in use with it

Ao, OBy, Oy Gody 7od, 6.8)

and populate cursor in use with it

Version 2.0.1

Page 182 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

in reversed order on the result set only (should be 9.1, 7.4, 6.5, 0, 0.2, 3.2, 1.3)
SELECT FROM my datasetZ ORDER REV

select (i.e. read) data from dataset "my dataset2" and populate cursor in use with it
in reversed order on the result subset only (should be 1.3, 3.2, 0.2, 0, 6.5, 7.4, 9.1)
SELECT FROM my dataset2 ORDER , REV

select (i.e. read) data from dataset "my dataset2" and populate cursor in use with it
in reversed order on both the result set and result subset (should be 6.5, 7.4, 9.1, 0.2,
O, 1.3, IJo2)

SELECT FROM my dataset2 ORDER REV, REV

6.2.2 TOP

Syntax

TOP {top_value | {, subtop value} | {top_value, subtop_value}}

Description

Truncate a result set after position top_value in a topmost way. In other words, all elements after position top_value
are discarded from the result set. Additionally, if the result set is of data type HDFQL_CHAR, HDFQL_VARTINYINT,
HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT,
HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT,
HDFQL_VARDOUBLE or HDFQL_OPAQUE, the result subset can be truncated in a topmost way by specifying a

comma (,) and subtop_value.

Parameter!s)

top_value — optional integer that specifies the position of the truncation of a result set in a topmost way. If negative,

the TOP option will behave as the BOTTOM option with a positive top_value.

subtop_value — optional integer that specifies the position of the truncation of a result set in a topmost way. If
negative, the TOP option will behave as the BOTTOM option with a positive subtop_value. Of note, this parameter is

only applicable for a result set of one of the aforementioned data types and ignored otherwise.

Version 2.0.1 Page 183 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Return

The result set and/or subset is truncated in a topmost way in function of the position provided.

Example(s)

create an HDF5 dataset named "my dataset0" of data type float of four dimensions (size
5x8x4x7)
CREATE DATASET my dataset(0 AS FLOAT(5, &8, 4, 7)

show (i.e. get) dimensions of dataset "my dataset(0" and populate cursor in use with
these (should be 5, 8, 4, 7)
SHOW DIMENSION my dataset(

show (i.e. get) dimensions of dataset "my dataset0" and populate cursor in use with the
topmost (i.e. first) dimension (should be 5)

SHOW DIMENSION my dataset(O TOP 1

show (i.e. get) dimensions of dataset "my dataset0" and populate cursor in use with the
two topmost dimensions (should be 5, 8)

SHOW DIMENSION my dataset(O TOP 2

show (i.e. get) dimensions of dataset "my dataset0" and populate cursor in use with the
two bottommost dimensions (should be 4, 7)

SHOW DIMENSION my dataset(O TOP -2

create an HDF5 dataset named "my datasetl" of data type variable-length int of one
dimension (size 3) with initial values of 12, 14 and 16 for the first position, 18 for
the second position, and 20, 22, 24 and 26 for the third position

CREATE DATASET my datasetl AS VARINT(3) VALUES((12, 14, 16), (18), (20, 22, 24, 26))

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with it
(should be 12, 14, 16, 18, 20, 22, 24, 26)
SELECT FROM my datasetl

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with
values of the topmost (i.e. first) position (should be 12, 14, 16)
SELECT FROM my datasetl TOP I

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with

values of the two topmost positions (should be 12, 14, 18, 20, 22)

Version 2.0.1 Page 184 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

SELECT FROM my datasetl TOP ,

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with the
topmost value of the two bottommost positions (should be 18, 20)
SELECT FROM my datasetl TOP --,

6.2.3 BOTTOM

Syntax

BOTTOM {bottom value | {, subbottom value} | {bottom_value, subbottom value}}

Description

Truncate a result set after position bottom_value in a bottommost way. In other words, all elements before position
bottom_value are discarded from the result set. Additionally, if the result set is of data type HDFQL_CHAR,
HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT,
HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT,
HDFQL_VARFLOAT, HDFQL_VARDOUBLE or HDFQL_OPAQUE, the result subset can be truncated in a bottommost

way by specifying a comma (,) and subbottom_value.

Parameter(s)

bottom_value — optional integer that specifies the position of the truncation of a result set in a bottommost way. If

negative, the BOTTOM option will behave as the TOP option with a positive bottom_value.

subbottom_value — optional integer that specifies the position of the truncation of a result set in a bottommost way.
If negative, the BOTTOM option will behave as the TOP option with a positive subbottom_value. Of note, this

parameter is only applicable for a result set of one of the aforementioned data types and ignored otherwise.
Return

The result set and/or subset is truncated in a bottommost way in function of the position provided.

Example(s)

create an HDF5 dataset named "my dataset(0" of data type float of four dimensions (size

Version 2.0.1 Page 185 of 336

Hierarchical Data Format query language (HDFql)

Reference Manual

5x8x4x7)
CREATE DATASET my dataset(0 AS FLOAT (5, &8, 4, 7)

show (i.e. get) dimensions of dataset "my dataset(0" and populate cursor

these (should be 5, 8, 4, 7)
SHOW DIMENSION my dataset(

show (i.e. get) dimensions of dataset "my dataset(0" and populate cursor

bottommost (i.e. last) dimension (should be 7)

SHOW DIMENSION my dataset(O BOTTOM 1

show (i.e. get) dimensions of dataset "my dataset(0" and populate cursor

two bottommost dimensions (should be 4, 7)

SHOW DIMENSION my dataset(O BOTTOM ~

show (i.e. get) dimensions of dataset "my dataset(0" and populate cursor

two topmost dimensions (should be 5, 8)

SHOW DIMENSION my dataset(O BOTTOM -2

in

in

in

in

use

use

use

use

with

with the

with the

with the

create an HDF5 dataset named "my datasetl" of data type variable-length int of one

dimension (size 3) with initial values of 12, 14 and 16 for the first position,

the second position, and 20, 22, 24 and 26 for the third position

CREATE DATASET my datasetl AS VARINT(3) VALUES((12, 14,

16), (18), (20, 2

select (i.e. read) data from dataset "my datasetl" and populate cursor

(should be 12, 14, 16, 18, 20, 22, 24, 26)
SELECT FROM my datasetl

select (i.e. read) data from dataset "my datasetl" and populate cursor

values of the bottommost (i.e. last) position (should be 20, 22, 24, 26)

SELECT FROM my datasetl BOTTOM |

select (i.e. read) data from dataset "my datasetl" and populate cursor

values of the two bottommost positions (should be 14, 16,

SELECT FROM my datasetl BOTTOM , ~

18, 24, 26)

select (i.e. read) data from dataset "my datasetl" and populate cursor

bottommost value of the two topmost positions (should be 16, 18)

SELECT FROM my datasetl BOTTOM -2, |

2,

in

in

in

in

:
24,

use

use

use

use

18 for

with

with

with the

Version 2.0.1

Page 186 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

6.2.4 FROMTO

Syntax

FROM {from value | {, subfrom _value} | {from_value, subfrom value}} TO {to value | {, subto_value} |

{to_value, subto_value}}

Description

Retain a result set from from_value to to_value. In other words, all elements before position from_value and after
position to_value are discarded from the result set. The first element of the result set is at position zero, while the
last element is located at the position returned by hdfql_cursor_get count - 1. Additionally, if the result set is of
data type HDFQL_CHAR, HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT,
HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT,
HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE or HDFQL_OPAQUE, the result subset can

be retained by specifying a comma (,), subfrom_value and/or subto_value.

Parameter(s)

from_value — optional integer that specifies the starting position to retain elements of a result set. If negative, the

FROM option will retain elements of a result set starting from its end.

subfrom_value — optional integer that specifies the starting position to retain elements of a result set. If negative,
the FROM option will retain elements of a result set starting from its end. Of note, this parameter is only applicable

for a result set of one of the aforementioned data types and ignored otherwise.

to_value — optional integer that specifies the ending position to retain elements of a result set. If negative, the TO

option will retain elements of a result set starting from its end.

subto_value — optional integer that specifies the ending position to retain elements of a result set. If negative, the
TO option will retain elements of a result set starting from its end. Of note, this parameter is only applicable for a

result set of one of the aforementioned data types and ignored otherwise.
Return

The result set and/or subset is retained in function of the position provided.

Version 2.0.1 Page 187 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

create an HDF5 dataset named "my dataset0" of data type float of four dimensions (size
5x8x4x7)
CREATE DATASET my dataset(0 AS FLOAT(5, &8, 4, 7)

show (i.e. get) dimensions of dataset "my dataset(0" and populate cursor in use with
these (should be 5, 8, 4, 7)
SHOW DIMENSION my dataset(

show (i.e. get) dimensions of dataset "my dataset0" and populate cursor in use with the
first, second and third dimensions (should be 5, 8, 4)

SHOW DIMENSION my dataset(O FROM (0 TO ”

show (i.e. get) dimensions of dataset "my dataset0" and populate cursor in use with the
second and third dimensions (should be 8, 4)

SHOW DIMENSION my dataset(O FROM 1 TO ”

show (i.e. get) dimensions of dataset "my dataset0" and populate cursor in use with the
second, third and fourth dimensions (should be 8, 4, 7)

SHOW DIMENSION my dataset(FROM -5 TO -1

show (i.e. get) dimensions of dataset "my dataset(0" and populate cursor in use with the
second and third dimensions (should be 8, 4)

SHOW DIMENSION my dataset(FROM 1 TO -2

create an HDF5 dataset named "my datasetl" of data type variable-length int of one
dimension (size 3) with initial values of 12, 14 and 16 for the first position, 18 for
the second position, and 20, 22, 24 and 26 for the third position

CREATE DATASET my datasetl AS VARINT(3) VALUES((12, 14, 1¢6), (18), (20, 22, 24, 26))

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with it
(should be 12, 14, 16, 18, 20, 22, 24, 26)
SELECT FROM my datasetl

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with
values of the second position (should be 18)

SELECT FROM my datasetl FROM | TO I

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with

values of the second and third positions (should be 18, 20, 22, 24, 26)

Version 2.0.1 Page 188 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

SELECT FROM my datasetl FROM -2 TO -

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with the
second and third values of all positions (should be 14, 16, 22, 24)
SELECT FROM my datasetl FROM , TO ,

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with
second bottommost and bottommost values of the first position (should be 14, 16)

SELECT FROM my datasetl FROM 0O, -2 TO 0, =

6.2.5 STEP

Syntax

STEP {step_value | {, substep _value} | {step_value, substep value}}

Description

Step (i.e. jump) the result set at every step_value position. In other words, all elements between steps are discarded
from the result set. Additionally, if the result set is of data type HDFQL_CHAR, HDFQL_VARTINYINT,
HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT,
HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT,
HDFQL_VARDOUBLE or HDFQL_OPAQUE, the result subset can be stepped (i.e. jumped) by specifying a comma (,)

and substep_value.

Parameter(s)

step_value — optional integer that specifies the position to step (i.e. jump) a result set. If step_value is negative, the

STEP option will step (i.e. jump) the result set starting from its end.

substep_value — optional integer that specifies the position to step (i.e. jump) a result set. If substep_value is
negative, the STEP option will step (i.e. jump) the result set starting from its end. Of note, this parameter is only

applicable for a result set of one of the aforementioned data types and ignored otherwise.
Return

The result set and/or subset is stepped (i.e. jumped) in function of the position provided.

Version 2.0.1 Page 189 of 336

Hierarchical Data Format query language (HDFql)

Example(s)

Reference Manual

create an HDF5 dataset named "my dataset(0" of data type float of

5x8x4x7)
CREATE DATASET my dataset(0 AS FLOAT(5, &8, 4, 7)

show (i.e. get) dimensions of dataset "my dataset0"
these (should be 5, 8, 4, 7)
SHOW DIMENSION my dataset(

show (i.e. get) dimensions of dataset "my dataset(O"
these (should be 5, 8, 4, 7)
SHOW DIMENSION my dataset(O STEP I

show (i.e. get) dimensions of dataset "my dataset(O"
every second dimension (should be 5, 4)

SHOW DIMENSION my dataset(O STEP ”

show (i.e. get) dimensions of dataset "my dataset0O"

and populate

and populate

and populate

and populate

every second dimension starting from the end (should be 8, 7)

SHOW DIMENSION my dataset(O STEP -~

show (i.e. get) dimensions of dataset "my dataset(O"
every third dimension (should be 5, 7)

SHOW DIMENSION my dataset(O STEP 5

and populate

four dimensions (size

cursor 1in

cursor 1in

cursor 1in

cursor 1in

cursor 1in

use

use

use

use

use

with

with

with

with

with

create an HDF5 dataset named "my datasetl" of data type variable-length int of one

dimension (size 3) with initial values of 12, 14 and 16 for the first position,

the second position, and 20, 22, 24 and 26 for the third position
CREATE DATASET my datasetl AS VARINT(3) VALUES((12, 14, 16), (18),

(20, 22,

select (i.e. read) data from dataset "my datasetl" and populate cursor in

(should be 12, 14, 16, 18, 20, 22, 24, 26)
SELECT FROM my datasetl

select (i.e. read) data from dataset "my datasetl" and populate cursor in

values of every second position (should be 12, 14, 16, 20, 22, 24,

SELECT FROM my datasetl STEP ”

26)

select (i.e. read) data from dataset "my datasetl" and populate cursor in

every third value of all positions (should be 12, 18,

20, 26)

24,

use

use

use

18 for

26))

with it

with

with

Version 2.0.1

Page 190 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

SELECT FROM my datasetl STEP ,

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with
every second value of every second position (should be 12, 16, 22, 26)

SELECT FROM my datasetl STEP ~, -

6.3 REDIRECTING

Redirecting options enable reading data from the cursor in use, a (text or binary) file or memory (i.e. user-defined
variable) and writing it into an HDF5 dataset or attribute through a CREATE DATASET, CREATE ATTRIBUTE or INSERT
operation. It also enables writing result sets (i.e. data) returned by DATA QUERY LANGUAGE (DQL) and DATA
INTROSPECTION LANGUAGE (DIL) operations into the cursor in use, a (text or binary) file or memory. The next

subsections describe the redirecting options provided by HDFql.

Redirecting Option Description
Read data from the cursor in use, a file or memory and write it into an HDF5 dataset or
FROM
attribute
INTO Write result sets into the cursor in use, a file or memory
Table 6.5 — HDFql redirecting options
6.3.1 FROM

Syntax

FROM {CURSOR | {[DOS | UNIX] [TEXT] FILE file_name [SEPARATOR {separator value | {,
subseparator_value} | {separator_value, subseparator_value}}]} | {BINARY FILE file_name} | {MEMORY

variable_number [SIZE variable_sizel}}

Description

Read data from the cursor in use (default behavior when no redirecting option is specified), a (text or binary) file or

memory (i.e. user-defined variable) and write it into an HDF5 dataset or attribute through a CREATE DATASET,

Version 2.0.1 Page 191 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE ATTRIBUTE or INSERT operation. This procedure (which is known as input redirecting option) can be

performed from:

e The cursor in use. Example: “CREATE DATASET my_dataset AS FLOAT VALUES FROM CURSOR” or “INSERT INTO
my_dataset VALUES FROM CURSOR”.

e Atext file using optional parameters such as which terminator to use — DOS (CR+LF) or UNIX (LF) — for the end of
line (EOL), or the separator to use between elements (of the data). Example: “CREATE DATASET my_dataset AS
FLOAT VALUES FROM TEXT FILE my _file.txt” or “INSERT INTO my_dataset VALUES FROM TEXT FILE my_file.txt".

e A binary file. Example: “CREATE DATASET my_dataset AS FLOAT VALUES FROM BINARY FILE my _file.bin” or
“INSERT INTO my_dataset VALUES FROM BINARY FILE my_file.bin”.

o A user-defined variable that was previously registered through the function hdfql_variable_register. Example:
“CREATE DATASET my_dataset AS FLOAT VALUES FROM MEMORY 0” or “INSERT INTO my_dataset VALUES
FROM MEMORY 2”. Of note, when working in Java, HDFgl has to copy each element of the Java variable into the
HDF5 dataset or attribute (managed by the underlying HDFqgl C library) as the JVM does not provide a direct
access to the memory associated to the variable, which induces a performance penalty. This penalty is not
present when working in other programming languages supported by HDFgl — namely C, C++, Python, C#, Fortan

and R —as these provide a way for the underlying HDFqgl C library to access the variable directly.

Parameter(s)

file_name — optional string that specifies the name of a text or binary file to read data from.

separator_value — optional string that specifies the separator to use between elements (of the data) when reading

these from a text file. If not specified, its default value is a comma (,).

subseparator_value — optional string that specifies the subseparator to use between elements (of the data) when
reading these from a text file. The subseparator is only applicable when the data type of the HDF5 dataset or
attribute is either HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT,
HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT,
HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE or HDFQL_OPAQUE, and ignored

otherwise. If not specified, its default value is a space.

Version 2.0.1 Page 192 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

variable_number — optional integer that specifies the number of the variable whose data will be written into the
HDF5 dataset or attribute. The number is returned by the function hdfql_variable_register upon registering the

variable or, subsequently, returned by the function hdfqgl_variable_get_number.

variable_size — optional integer that specifies the maximum size (in bytes) of the data stored in the variable to write
into the HDF5 dataset or attribute. In other words, only the first variable_size bytes of the data stored in the variable
will be written into the dataset or attribute. Of note, variable_size may be smaller than the size (in bytes) of the
dataset or attribute (in this case, the remainder of the dataset or attribute will be zeroed if a number or emptied if a

string).

Example(s)

use (i.e. open) an HDF5 file named "my file.h5"
USE FILE my file.hb

show (i.e. get) HDF5 file currently in use and populate cursor in use with it

SHOW USE FILE

create an HDF5 dataset named "my dataset(0" of data type variable-length char with
initial values from the cursor in use

CREATE DATASET my dataset(O AS VARCHAR VALUES FROM CURSOR

select (i.e. read) data from dataset "my dataset0" and populate cursor in use with it
(should be "my file.h5")
SELECT FROM my datasetO

create an HDF5 dataset named "my datasetl" of data type char of one dimension (size 3)

CREATE DATASET my datasetl AS TINYINT (3)

create a file named "my file.txt" that contains "65,66,67"
RUN "echo 65,66,67 > my file.txt"

insert (i.e. write) values from text file "my file.txt" into dataset "my datasetl”

INSERT INTO my datasetl VALUES FROM FILE my file.txt

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with it
(should be 65, 66, 67)
SELECT FROM my datasetl

Version 2.0.1 Page 193 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

create a file named "my file.txt" that contains "90**92%**94"

RUN "echo 90**92*%*94 > my file.txt"

insert (i.e. write) values from text file "my file.txt" into dataset "my datasetl"

INSERT INTO my datasetl VALUES FROM TEXT FILE my file.bin SEPARATOR **

create a file named "my file.bin" that contains "ABC"

RUN "echo ABC > my file.bin"

insert (i.e. write) values from binary file "my file.bin" into dataset "my datasetl"
(should be 65, 66, 67)
INSERT INTO my datasetl VALUES FROM BINARY FILE my file.bin

// declare variables
char script[1024];
double data[3][”];
int x;

int y;

// create an HDF5 dataset named "my dataset2" of data type double of two dimensions (size
3x2)
hdfql execute("CREATE DATASET my dataset2 AS DOUBLE (3, 2)");

// populate variable "data" with certain values
data[0] [0] = 3.2;

dataf[0][1] = 1.3;

data[l1][0] = 0
data[l][1] = 0.2;
data[”?][0] = 9.1;
data[Z][1] = 6.5;

// register variable "data'" for subsequent use (by HDFql)
hdfgl variable register(data);

// prepare script to insert (i.e. write) values from variable "data" into dataset

"my dataset2"
sprintf(script, "INSERT INTO my dataset2 VALUES FROM MEMORY 3d",

hdfgl variable get number (data));

Version 2.0.1 Page 194 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// execute script

hdfqgl execute(script);

// unregister variable '"data" as it is no longer used/needed (by HDFql)
hdfql variable unregister (data);

// select (i.e. read) data from dataset "my dataset2" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset2");

// display content of cursor in use (should be 3.2, 1.3, 0, 0.2, 9.1, 6.5)
while (hdfgl cursor next (NULL) == HDFQL SUCCESS)

{
printf("¢f\n", #*hdfql cursor get double (NULL));

// declare variables
char script[1024];

HDFQL VARIABLE LENGTH datal[3];

// create an HDF5 dataset named "my dataset3" of data type variable-length double of one
dimension (size 3)

hdfql execute("CREATE DATASET my dataset3 AS VARDOUBLE (3)");

// allocate memory in variable "data"
data[0].address = malloc(”? * sizeof (double));,
data[(0] .count = 2;

data[l].address = malloc(3 * sizeof (double));,
data[l].count = 3;

data[”].address = malloc(! * sizeof (double));,

S

data[”].count = 1;

// populate variable "data" with certain values
*((double *) data[(0].address + 0) =
*((double *) data[(0].address +
*((double *) data[l].address +
*((double *) data[l].address + 1) = 0.2;
+
+

W
N
S,

*((double *) data[l].address
*((double *) data[”].address

Version 2.0.1 Page 195 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// register variable "data" for subsequent use (by HDFql)
hdfql variable register(data);

// prepare script to insert (i.e. write) values from variable "data" into dataset
"my dataset3"

sprintf(script, "INSERT INTO my dataset3 VALUES FROM MEMORY %d",

hdfql variable get number (data));

// execute script

hdfql execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)
hdfgl variable unregister(data);

// select (i.e. read) data from dataset "my dataset3" and populate cursor in use with it

hdfgl execute ("SELECT FROM my dataset3");

// display content of cursor in use (should be 3.2, 1.3, 0, 0.2, 9.1, 6.5)

while (hdfql cursor next (NULL) == HDFQL SUCCESS)

{
while (hdfgl subcursor next (NULL) == HDFQL SUCCESS)
{

printf("sf\n", *hdfql subcursor get double(NULL))

// release memory allocated in variable "data"
free(data[(].address);
free(data[l].address);
free(data[”].address);

// declare variables
char script[1024];
char *datal[3];

// create an HDF5 dataset named "my dataset4" of data type variable-length char of one
dimension (size 3)

hdfgl execute("CREATE DATASET my dataset4 AS VARCHAR(3)");

Version 2.0.1 Page 196 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// allocate memory in variable "data"
data[0] = malloc(13 * sizeof(char));
data[l] = malloc(5 * sizeof(char));

data[”] = malloc(/ * sizeof(char));,;

// populate variable "data" with certain values
strcpy (data[0], "Hierarchical");,

strcpy (data[l], "Data');

strcpy(data[?], "Format');

// register variable "data" for subsequent use (by HDFql)
hdfgl variable register(data);

// prepare script to insert (i.e. write) values from variable "data" into dataset
"my dataset4"
sprintf(script, "INSERT INTO my dataset4 VALUES FROM MEMORY 3d",

hdfgl variable get number (data));

// execute script

hdfgl execute(script);

// unregister variable '"data" as it is no longer used/needed (by HDFql)
hdfgl variable unregister(data);

// select (i.e. read) data from dataset "my dataset4" and populate cursor in use with it

hdfqgl execute("SELECT FROM my dataset4");

// display content of cursor in use (should be "Hierarchical", "Data", "Format")
while (hdfgl cursor next (NULL) == HDFQL SUCCESS)

{
printf("¢s\n", hdfgl cursor get char (NULL));

// release memory allocated in variable "data"
free(data[0]);
free(datal[l]),
free(datal[”’]);

Version 2.0.1 Page 197 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

6.3.2 INTO

Syntax

INTO {CURSOR | {[TRUNCATE] [DOS | UNIX] [TEXT] FILE file_name [SEPARATOR {separator value | {,
subseparator_value} | {separator value, subseparator value}}] [SPLIT split value]} | {{TRUNCATE] BINARY FILE
file_name} | {MEMORY variable_number [SIZE variable_sizel}}

Description

Write result sets (i.e. data) returned by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION LANGUAGE (DIL)
operations into the cursor in use (default behavior when no redirecting option is specified), a (text or binary) file or
memory (i.e. user-defined variable). This procedure (which is known as output redirecting option) can be performed

into:

e The cursor in use. Example: “SELECT FROM my_dataset INTO CURSOR” or “SHOW USE DIRECTORY INTO
CURSOR”.

e Atext file using optional parameters such as which terminator to use — DOS (CR+LF) or UNIX (LF) — for the end of
line (EOL), which separator to use between elements (of the result set), or the number of elements to write per
line before starting writing remaining elements in a new line. Example: “SELECT FROM my_dataset INTO TEXT
FILE my_file.txt” or “SHOW USE DIRECTORY INTO TEXT FILE output.txt”.

o A binary file. Example: “SELECT FROM my_dataset INTO BINARY FILE my_file.bin” or “SHOW USE DIRECTORY
INTO BINARY FILE output.bin”. When redirecting data of type HDFQL_VARTINYINT,
HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT,
HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT or
HDFQL_VARDOUBLE into a binary file, each result subset to be written is preceeded by its number of elements
(as a C “unsigned int” data type with a 4 bytes size). This is to enable a correct interpretation/parsing of the

binary file when reading it afterwards.

o A user-defined variable that was previously registered through the function hdfql_variable_register. Example:
“SELECT FROM my_dataset INTO MEMORY 0” or “SHOW USE DIRECTORY INTO MEMORY 2”. When redirecting
data of type HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT,
HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT,
HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE or HDFQL_VARCHAR into a user-

Version 2.0.1 Page 198 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

defined variable, the programmer is responsible for releasing the memory (allocated by HDFqgl) afterwards. Of
note, when working in Java, HDFql has to copy each element of the result set (managed by the underlying HDFqgl
C library) into the Java variable as the JVM does not provide a direct access to the memory associated to the
variable, which induces a performance penalty. This penalty is not present when working in other programming
languages supported by HDFgl — namely C, C++, Python, C#, Fortan and R — as these provide a way for the

underlying HDFql C library to access the memory of the variable directly.

When redirecting a result set into a file that already exists, the result set is appended to it. To overwrite an existing

file, specify the keyword TRUNCATE (all data stored in the file will be permanently lost).

Parameter(s)

file_name — optional string that specifies the name of a text or binary file to redirect (i.e. write) a result set into.

separator_value — optional string that specifies the separator to use between elements (of the result set) when

redirecting (i.e. writing) these in a text file. If not specified, its default value is a comma (,).

subseparator_value — optional string that specifies the subseparator to use between elements (of the result subset)
when redirecting (i.e. writing) these in a text file. The subseparator is only applicable when the data type of the
result set is either HDFQL_VARTINYINT, @ HDFQL_UNSIGNED_VARTINYINT, @ HDFQL_VARSMALLINT,
HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT,
HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE or HDFQL_OPAQUE, and ignored

otherwise. If not specified, its default value is a space.

split_value — optional integer that specifies the number of elements (of the result set) to redirect (i.e. write) per line
before starting writing remaining elements in a new line in a text file. If split_value is specified it must be equal or
greater than zero (otherwise an error will be raised). Otherwise, if it is not specified, no splitting is done which

means that all elements (of the result set) are redirectered (i.e. written) in the same line.

variable_number — optional integer that specifies the number of the variable that will store the result set (i.e. data)
returned by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION LANGUAGE (DIL) operations. The number is
returned by the function hdfgl_variable_register upon registering the variable or, subsequently, returned by the

function hdfqgl_variable_get _number.

variable_size — optional integer that specifies the maximum size (in bytes) to use from the variable to store the
result set (i.e. data). In other words, only the first variable_size bytes of the variable will be used to store the result

set. Of note, variable_size may be smaller than the size (in bytes) of the result set (in this case, the remainder of the

Version 2.0.1 Page 199 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

result set is discarded). If variable_size is specified it must be equal or greater than zero (otherwise an error will be
raised). Otherwise, if it is not specified, the variable must have enough space to store the entire result set (otherwise

an error may occur such as a segmentation fault).

Example(s)

create an HDF5 dataset named "my dataset(0" of data type char of one dimension (size 3)

CREATE DATASET my dataset(O AS TINYINT(3)

insert (i.e. write) values into dataset "my dataset0"

INSERT INTO my dataset(O VALUES (05, 66, 07)

select (i.e. read) data from dataset "my dataset0" and populate cursor in use with it
(should be 65, 66, 67)
SELECT FROM my datasetO

select (i.e. read) data from dataset "my dataset0" and populate cursor in use with it
(should be 65, 66, 67)
SELECT FROM my dataset(O INTO CURSOR

select (i.e. read) data from dataset "my dataset0" and write it into a text file named
"my fileO.txt" using default separator "," (should be "65,66,67," in one single line)

SELECT FROM my dataset(INTO FILE my file0.txt

select (i.e. read) data from dataset "my dataset0" and write it into a text file named
"my filel.txt" using separator "**" (should be "65**66**67**" in one single line)

SELECT FROM my dataset(O INTO TEXT FILE my filel.txt SEPARATOR **

select (i.e. read) data from dataset "my dataset(0" and write it into a text file named
"my fileZ.txt" splitting every two values in a new line using a UNIX-based EOL terminator
(should be "65,65" in the first 1line and "67" in the second line)
SELECT FROM my dataset(O INTO UNIX TEXT FILE my fileZ.txt SPLIT ”

select (i.e. read) data from dataset "my dataset(0" and write it into a binary file
(truncate it if it already exists) named "my file.bin" (should be "ABC")
SELECT FROM my dataset(O INTO TRUNCATE BINARY FILE my file.bin

// declare variables

char script[1024];

Version 2.0.1 Page 200 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

double data[3][”];
int x;

int y;

// create an HDF5 dataset named "my datasetl" of data type double of two dimensions (size
3x2)
hdfql execute ("CREATE DATASET my datasetl AS DOUBLE (3, 2)");

// insert (i.e. write) values into dataset "my datasetl"

hdfql execute("INSERT INTO my datasetl VALUES((3.2, 1.3), (0, 0.2), (9.1, 6.5))");

// register variable "data" for subsequent use (by HDFql)
hdfgl variable register(data);

// prepare script to select (i.e. read) data from dataset "my datasetl" and populate
variable '"data" with it
sprintf(script, "SELECT FROM my datasetl INTO MEMORY 3d",

hdfgl variable get number (data));

// execute script

hdfgl execute(script);

// unregister variable '"data" as it is no longer used/needed (by HDFql)
hdfgl variable unregister(data);

// display content of variable "data" (should be 3.2, 1.3, 0, 0.2, 9.1, 6.5)
for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
printf(":d\n", datalx][yl]);
}
}

// declare variables

char script[1024];

HDFQIL VARIABLE LENGTH data[3];
int x;

int y;

Version 2.0.1 Page 201 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

int count;

// create an HDF5 dataset named "my dataset2" of data type variable-length double of one
dimension (size 3)

hdfqgl execute("CREATE DATASET my dataset2 AS VARDOUBLE (3)");

// insert (i.e. write) values into dataset "my dataset2"

hdfqgl execute("INSERT INTO my dataset2 VALUES((3.2, 1.3), (0, 0.2), (9.1, 7.4, 6.5))");

// register variable "data'" for subsequent use (by HDFql)

hdfql variable register(data);

// prepare script to select (i.e. read) data from dataset "my dataset2" and populate
variable '"data" with it

sprintf(script, "SELECT FROM my datasetZ2 INTO MEMORY 3d",

hdfql variable get number (data));

// execute script

hdfql execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)

hdfql variable unregister(data);

// display content of cursor in use (should be 3.2, 1.3, 0, 0.2, 9.1, 7.4, 6.5)
for(x = 0; x < 3; x++)

{
count = data[x].count;,
for(y = 0; y < count; y++)
{
printf("sf\n", *((double *) data[x].address + y));
}
}

// release memory allocated (by HDFgl) in variable "data"
for(x = 0; x < 3; x++)
{

free(data[x].address);

Version 2.0.1 Page 202 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// declare variables
char script[1024];
char *datal[3];

int x;

// create an HDF5 dataset named "my dataset3" of data type variable-length char of one
dimension (size 3)

hdfql execute("CREATE DATASET my dataset3 AS VARCHAR(3)");

// insert (i.e. write) values into dataset "my dataset3"

hdfgl execute ("INSERT INTO my dataset3 VALUES (\"Hierarchical\", \"Data\", \"Format\")");

// register variable "data'" for subsequent use (by HDFql)
hdfgl variable register(data);

// prepare script to select (i.e. read) data from dataset "my dataset3" and populate
variable '"data" with it

sprintf(script, "SELECT FROM my dataset3 INTO MEMORY 3d",

hdfql variable get number (data));

// execute script

hdfql execute(script);

// unregister variable '"data" as it is no longer used/needed (by HDFql)
hdfgl variable unregister(data);

// display content of cursor in use (should be "Hierarchical", "Data", "Format")
for(x = 0; x < 3; x++)
{

printf("%s\n", data[x]),

// release memory allocated (by HDFgl) in variable "data"
for(x = 0; x < 3; x++)
{

free(data[x]);

Version 2.0.1 Page 203 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

6.4 DATA DEFINITION LANGUAGE (DDL)

Data Definition Language (DDL) is, generally speaking, syntax for defining and modifying structures that store data.
In HDFqgl, the DDL assembles the operations that enable the creation, alteration, renaming, copying and deletion of
HDF5 files, groups, datasets, attributes and links. These operations begin either with the keyword CREATE, ALTER,
RENAME, COPY or DROP.

6.4.1 CREATE DIRECTORY

Syntax

CREATE DIRECTORY directory_name [, directory_name]*

Description

Create a directory named directory_name. Multiple directories can be created at once by separating these with a
comma (,). If directory_name already exists, it will not be overwritten, no subsequent directories are created, and an
error is raised. In case directory_name has intermediate directories that do not exist, besides directory_name being
created, all these intermediate directories will be created on the fly (e.g. when creating the directory
“my_directory/my_subdirectory/my_subsubdirectory”, besides “my_subsubdirectory” being created,

“my_directory” and “my_subdirectory” will be created in case they do not exist).

Parameter(s)

directory_name — mandatory string that specifies the name of the directory to create. Multiple directories are
separated with a comma (,). As a general rule, in case directory_name is composed of spaces, special characters or
reserved keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by
double-quotes, the directory will not be created and an error is raised. This rule also applies to any other HDFql

operation that works with directory names (e.g. RENAME DIRECTORY).
Return

Nothing

Version 2.0.1 Page 204 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

create a directory named "my directory0" (the directory will not be overwritten if it
already exists)

CREATE DIRECTORY my directory0

create a directory named "my directoryl" in a root directory named '"data" (neither
directory will be overwritten if they already exist; directory "data" will be created on
the fly if it does not exist)

CREATE DIRECTORY /data/my directoryl

create two directories named "my directory2" and "my directory3" (neither directory
will be overwritten if they already exist)

CREATE DIRECTORY my directory2, my directory3

create a directory named "this is a long directory name" (the directory will not be
overwritten if it already exists)

CREATE DIRECTORY "this is a long directory name"

6.4.2 CREATE FILE

Syntax
CREATE [TRUNCATE] [PARALLEL] FILE file_name [, file_name]*

[LIBRARY BOUNDS [FROM {EARLIEST | LATEST | V18 | DEFAULT}] [TO {LATEST | V18 | DEFAULT}]

Description

Create an HDFS5 file named file_name. Multiple files can be created at once by separating these with a comma (,). If
file_name already exists, it will not be overwritten, no subsequent files are created, and an error is raised. To
overwrite an existing file, specify the keyword TRUNCATE (all data stored in the file will be permanently lost). In case
the keyword PARALLEL®® is specified, HDFgl creates the file using all the MPI processes specified upon launching the
program (that employs HDFql). In case the keyword LIBRARY BOUNDS is specified, HDFql creates the file using these
bounds (instead of the library bounds that may have been set through the operation SET LIBRARY BOUNDS).

35 This option is not allowed in Windows as HDFqgl does not support the parallel HDF5 (PHDF5) library in this platform currently.

Version 2.0.1 Page 205 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

file_name — mandatory string that specifies the name of the HDF5 file to create. Multiple files are separated with a

comma (,). As a general rule, in case file_name is composed of spaces, special characters or reserved keywords (e.g.

SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by double-quotes, the file

will not be created and an error is raised. This rule also applies to any other HDFgl operation that works with file

names (e.g. RENAME FILE).
Return

Nothing

Example(s)

create an HDF5 file named "my fileO.h5" (the file will not be overwritten if it already
exists)

CREATE FILE my file(0.h5

create an HDF5 file named "my filel.h5" in a root directory named '"data" (the file will
not be overwritten if it already exists)

CREATE FILE /data/my filel.hb

create two HDF5 files named "my fileZ2.h5" and "my file3.h5" (both files will be
overwritten if they already exist)

CREATE TRUNCATE FILE my file2.h5, my file3.h5

create an HDF5 file named "my file4.h5" (the file will not be overwritten if it already
exists) with the latest version of the HDF5 library
CREATE FILE my file4.h5 LIBRARY BOUNDS FROM LATEST TO LATEST

create an HDF5 file named "this is a long file name.h5" (the file will not be
overwritten if it already exists)

CREATE FILE "this is a long file name.h5"

create an HDF5 file named "my file5.h5" (the file will not be overwritten if it already
exists) in parallel (i.e. all the MPI processes specified upon launching the program
(that employs HDFql) will collectively create the file - e.g. 1f the program is launched
as "mpiexec -n 3 my program'", all three MPI processes will participate in the creation of
the file)

CREATE PARALLEL FILE my fileb5.hb

Version 2.0.1 Page 206 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

6.4.3 CREATE GROUP

Syntax
CREATE [TRUNCATE] GROUP group _name [, group_namel*
[ORDER {TRACKED | INDEXED}]
[STORAGE COMPACT object_max_compact DENSE object_min_dense]

[ATTRIBUTE [ORDER {TRACKED | INDEXED}] [STORAGE COMPACT attribute_max_compact DENSE

attribute_min_densel]]

Description

Create an HDF5 group named group_name. Multiple groups can be created at once by separating these with a
comma (,). If group_name already exists, it will not be overwritten, no subsequent groups are created, and an error
is raised. To overwrite an existing group, specify the keyword TRUNCATE (all data stored in the group will be
permanently lost). In case group_name has intermediate groups that do not exist, besides group_name being
created, all these intermediate groups will be created on the fly (e.g. when creating the group
“my_group/my_subgroup/my_subsubgroup”, besides “my_subsubgroup” being created, “my_group” and

“my_subgroup” will be created in case they do not exist).

Parameter(s)

group_name — mandatory string that specifies the name of the HDF5 group to create. Multiple groups are separated
with a comma (,). As a general rule, in case group_name is composed of spaces, special characters or reserved
keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by double-
quotes, the group will not be created and an error is raised. This rule also applies to any other HDFgl operation that

works with group names (e.g. RENAME GROUP).

object_max_compact — optional integer that specifies the maximum number of links (i.e. objects) to store in the
compact format. In case the number of links (stored in group_name) exceeds object_max_compact, the storage of

links switches to the dense format. If not specified, its default value is 8 (defined by the HDF5 library).

Version 2.0.1 Page 207 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

object_min_dense — optional integer that specifies the minimum number of links (i.e. objects) to store in the dense

format. In case the number of links (stored in group_name) falls below object min_dense, the storage of links

switches to the compact format. If not specified, its default value is 6 (defined by the HDF5 library).

attribute_max_compact — optional integer that specifies the maximum number of attributes to store in the compact

format. In case the number of attributes (stored in group_name) exceeds attribute_max_compact, the storage of

attributes switches to the dense format. If not specified, its default value is 8 (defined by the HDFS5 library).

attribute_min_dense — optional integer that specifies the minimum number of attributes to store in the dense

format. In case the number of attributes (stored in group_name) falls below attribute_min_dense, the storage of

attributes switches to the compact format. If not specified, its default value is 6 (defined by the HDFS5 library).
Return

Nothing

Example(s)

create an HDF5 group named "my groupO" (the group will not be overwritten if it already
exists)

CREATE GROUP my group0

create an HDF5 group named "my subgroupO" in a root group named "my groupl" (neither
group will be overwritten if they already exist; group "my groupl" will be created on the
fly if it does not exist)

CREATE GROUP /my groupl/my subgroup0

create two HDF5 groups named "my group2" and "my group3" (both groups will be
overwritten if they already exist)

CREATE TRUNCATE GROUP my groupZ2Z, my group3

create an HDF5 group named "this is a long group name" (the group will not be
overwritten if it already exists)

CREATE GROUP "this is a long group name"

create an HDF5 group named "my group4" that tracks the objects’ (i.e. groups and
datasets) creation order within the group and using compact storage

CREATE GROUP my group4 ORDER TRACKED STORAGE COMPACT DENSE

Version 2.0.1 Page 208 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

create an HDF5 group named "my groupb5" that indexes the attributes’ creation order

CREATE GROUP my group5 ATTRIBUTE ORDER INDEXED

6.4.4 CREATE DATASET

Syntax

CREATE [TRUNCATE] [EARLY | INCREMENTAL | LATE] [CONTIGUOUS | COMPACT | {CHUNKED [(chunk_dim
[, chunk_dim]*)]}] DATASET dataset_name [, dataset_name]* AS [NATIVE | LITTLE ENDIAN | BIG ENDIAN |
ASCIl | UTF8] {TINYINT | UNSIGNED TINYINT | SMALLINT | UNSIGNED SMALLINT | INT | UNSIGNED INT |
BIGINT | UNSIGNED BIGINT | FLOAT | DOUBLE | CHAR | VARTINYINT | UNSIGNED VARTINYINT |
VARSMALLINT | UNSIGNED VARSMALLINT | VARINT | UNSIGNED VARINT | VARBIGINT | UNSIGNED
VARBIGINT | VARFLOAT | VARDOUBLE | VARCHAR | OPAQUE} [(UNLIMITED | {dataset dim [TO
{dataset_max_dim | UNLIMITED}]} [, UNLIMITED | {dataset dim [TO {dataset max_dim | UNLIMITED}]}]*)]

[TAG tag_value)
[FILL {(fill_value [, fill_value]*) | UNDEFINED}]

[ATTRIBUTE [ORDER {TRACKED | INDEXED}] [STORAGE COMPACT attribute_max_compact DENSE

attribute_min_densel]]

[ENABLE [NBIT PRECISION nbit_precision_value OFFSET nbit_offset_value] [SCALEOFFSET scaleoffset value]
[SHUFFLE] [ZLIB [LEVEL zlib_level]] [FLETCHER32]]

[VALUES {(initial_value [, initial_valuel*) | input_redirecting_option}]

Description

Create an HDF5 dataset named dataset_name. Multiple datasets can be created at once by separating these with a
comma (,). If dataset_name already exists, it will not be overwritten, no subsequent datasets are created, and an
error is raised. To overwrite an existing dataset, specify the keyword TRUNCATE (all data stored in the dataset will be
permanently lost). In case dataset_name has intermediate groups that do not exist, besides dataset_name being
created, all these intermediate groups will be created on the fly (e.g. when creating the dataset
“my_group/my_subgroup/my_dataset”, besides “my_dataset” being created as a dataset, “my_group” and

“my_subgroup” will be created as groups in case they do not exist).

Version 2.0.1 Page 209 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

By default, if no storage type (layout) is specified and 1) the dataset is not extendible and 2) no HDF5 pre-defined
filter is used, the dataset will be created as contiguous. To specify a certain storage type (layout), one of the

following keywords may be employed:
e CONTIGUOUS — the data is stored in the HDF5 file in one contiguous block.

o COMPACT —the data is stored in the object header of the dataset. This storage type (layout) should only be used

for data with a size limit of 65520 bytes (otherwise an error is raised).

e CHUNKED - the data is stored in equal-sized blocks or chunks of a pre-defined size. This storage type (layout)
should be used when the dataset is extendible and/or HDF5 pre-defined filters are specified (otherwise an error

is raised).

By default, if no storage allocation is specified, the dataset will have an early, incremental or late storage allocation
depending on whether its storage type (layout) is compact, chunked or contiguous, respectively. To specify a certain

storage allocation, one of the following keywords may be employed:
e EARLY —the space necessary to store the entire dataset is immediately allocated (i.e. reserved) in the HDF5 file.

e INCREMENTAL — the space necessary to store the dataset is incrementally allocated (i.e. reserved) according to

the ongoing needs in the HDFS5 file.

e LATE —the space necessary to store the entire dataset is only allocated (i.e. reserved) in the HDF5 file when data

is written into the dataset for the first time.

To create an extendible dataset®, the keyword TO may be employed when specifying the dimensions that are
extendible (i.e. that can grow) along with the initial size of the dimension (dataset_dim) and the maximum size
(dataset_max_dim) that it may grow to. If a dimension is expected to grow infinitely, the keyword UNLIMITED
should be specified. Of note, when a dimension has an initial size of one and is expected to grow infinitely, the

keyword TO along with dataset_dim and dataset_max_dim may simply be replaced by the keyword UNLIMITED.

36 An extendible HDF5 dataset is one whose one or more dimensions can grow. These dimensions start with an initial size and may be increased in a later
stage. To be able to create an extendible dataset, the storage type (layout) of the dataset must be chunked (otherwise an error is raised). In case the
storage type (layout) is not specified, HDFql will automatically set it to chunked and calculate an appropriate value for the chunk size.

Version 2.0.1 Page 210 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

In case the keyword ENABLE is specified, one or more HDF5 pre-defined filters3” may be used to create a (linear)

pipeline by additionaly specifying one or more of the following keywords:

e NBIT — Compresses the data of an n-bit data type (including arrays and the n-bit fields of compound data types)
by packing n-bit data on output (i.e. stripping off all unused bits) and unpacking on input (i.e. restoring the extra
bits required by the computation). This filter may only be used for integer and floating-point data types

(otherwise an error is raised).

e SCALEOFFSET — Compresses the data by performing a scale and/or offset operation on each element and
truncates the result to a minimum number of bits. This filter may only be used for integer and floating-point

data types (otherwise an error is raised).

e SHUFFLE — Rearranges the bytes in the chunk by de-interlacing a block of data, which may lead to a better

compression ratio. This filter is usually used in conjunction with the ZLIB filter.

e ZLIB — Compresses the data using the ZLIB library which is based on the Deflate lossless data compression

algorithm.

e FLETCHER32 — Adds a checksum to each chunk to detect data corruption. In case a chunk gets corrupted, any

attempt to read it afterwards will raise an error.

Parameter(s)

chunk_dim — optional integer that specifies the chunk size of the dimension. Multiple chunk sizes are separated with
a comma (,). If chunk_dim is specified it must be equal or greater than one (otherwise an error will be raised).
Otherwise, if not specified and in case the keyword CHUNKED is specified, HDFgl will automatically calculate an

appropriate value3® and assign it to chunk_dim.

dataset_name — mandatory string that specifies the name of the HDF5 dataset to create. Multiple datasets are
separated with a comma (,). As a general rule, in case dataset_name is composed of spaces, special characters or

reserved keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by

37 To be able use HDF5 pre-defined filters the storage type (layout) of the HDF5 dataset must be chunked (otherwise an error is raised). In case the
storage type (layout) is not specified, HDFql will automatically set it to chunked and calculate an appropriate value for the chunk size.

38 This calculated value may not be optimal as it is based on a best guess approach with the main purpose of alleviating the programmer from specifying

it. In case performance is critical, the chunk size of the dimension should be explicitly specified taking into account how the data (stored in the HDF5
dataset) is accessed as it greatly influences performance (HDFgl does not have enough information on how this access is ultimately done).

Version 2.0.1 Page 211 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

double-quotes, the dataset will not be created and an error is raised. This rule also applies to any other HDFq|

operation that works with dataset names (e.g. RENAME DATASET).

dataset_dim — optional integer that specifies the size of the dimension. Multiple dimensions are separated with a

comma (,). If not specified, the size of the dimension is zero.

dataset_max_dim — optional integer that specifies the maximum size of the dimension. Multiple dimensions are
separated with a comma (,). To specify an unlimited size, the keyword UNLIMITED should be specified for this
purpose. If dataset_max_dim is specified it must be equal or greater than dataset dim and the keyword CHUNKED

should be specified (otherwise an error will be raised).

tag_value — optional string that specifies the value of a tag attached to the HDF5 dataset. Of note, the specification

of a tag is only available for a dataset of data type HDFQL_OPAQUE (any other data type will raise an error).

fill_value — optional integer, float or string that specifies the (default) value to return in case of reading the HDF5
dataset when no data has ever been written into it. Multiple fill values are separated with a comma (,). If not
specified, the dataset will be zeroed or emptied depending on whether the dataset is a number or a string,

respectively.

attribute_max_compact — optional integer that specifies the maximum number of attributes to store in the compact
format. In case the number of attributes (stored in dataset_name) exceeds attribute_max_compact, the storage of

attributes switches to the dense format. If not specified, its default value is 8 (defined by the HDF5 library).

attribute_min_dense — optional integer that specifies the minimum number of attributes to store in the dense
format. In case the number of attributes (stored in dataset_name) falls below attribute_min_dense, the storage of

attributes switches to the compact format. If not specified, its default value is 6 (defined by the HDF5 library).

nbit_precision_value — optional integer that specifies the precision of the N-bit filter.

nbit_offset_value — optional integer that specifies the offset of the N-bit filter.

scaleoffset_value — optional integer that specifies the offset of the scale-offset filter. The scaleoffset_value must be
equal or greater than zero (otherwise an error is raised). In case the HDF5 dataset is of integer data type,
scaleoffset_value specifies the number of bits to retain (of note, if scaleoffset _value is zero, the HDF5 library
automatically calculates the number of bits required for lossless compression). In case the dataset is of floating-point

data type, scaleoffset_value specifies the number of digits after the decimal point to retain.

Version 2.0.1 Page 212 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

zlib_level — optional integer that specifies the compression level of the ZLIB filter. The zlib_level must be between 0

(no compression) and 9 (best compression) (otherwise an error is raised). If not specified and in case the keyword

ZLIB is specified, its default value is 9.

initial_value — optional integer, float or string to write into the created HDF5 dataset. Multiple values are separated

with a comma (,).

input_redirecting_option — optional option that specifies a file or memory to read data from in order to write it into

the created HDF5 dataset (please refer to the subsection FROM for additional information).
Return

Nothing

Example(s)

create an HDF5 dataset named "my dataset(0" of data type int (the dataset will not be
overwritten if it already exists)

CREATE DATASET my dataset(O AS INT

create an HDF5 dataset named "my datasetl" of data type char in a root group named
"my group" (the dataset will not be overwritten if it already exists)

CREATE DATASET /my group/my datasetl AS CHAR

create two HDF5 datasets named "my dataset2" and "my dataset3" of data type short (both
datasets will be overwritten if they already exist)

CREATE TRUNCATE DATASET my datasetZ, my dataset3 AS SMALLINT

create an HDF5 dataset named "this is a long dataset name" of data type float (the
dataset will not be overwritten if it already exists)

CREATE DATASET "this is a long dataset name" AS FLOAT

create an HDF5 dataset named "my dataset4" of data type unsigned long long using the
big endian representation

CREATE DATASET my dataset4 AS BIG ENDIAN UNSIGNED BIGINT

create an HDF5 dataset named "my datasetb5" of data type int using the little endian
representation with an initial value of 80178

CREATE DATASET my datasetb5 AS LITTLE ENDIAN INT VALUES (50178)

Version 2.0.1 Page 213 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

create an HDF5 dataset named "my dataset6" of data type char using an ASCII
representation

CREATE DATASET my dataset6 AS ASCII CHAR

create an HDF5 dataset named "my dataset7" of data type float of one dimension (size
1024) with a fill value (i.e. default) of 85.2
CREATE DATASET my dataset?7 AS FLOAT(1024) FILL(55.2)

create a compact HDF5 dataset named "my dataset8" of data type double of three
dimensions (size 2x5x10)

CREATE COMPACT DATASET my dataset8 AS DOUBLE (Z, 5, 10)

create a chunked (20x100) HDF5 dataset named "my dataset9" of data type unsigned char
of two dimensions (size 500x1000)

CREATE CHUNKED (20, 100) DATASET my dataset9 AS UNSIGNED TINYINT (500, 1000)

create an HDF5 dataset named "my datasetl(0" of data type int of two dimensions (size
20x400) using the N-bit data compression filter
CREATE DATASET my datasetl(0 AS INT (20, 400) ENABLE NBIT PRECISION |06 OFFSET 4

create an HDF5 dataset named "my datasetll" of data type float of one dimension (size
500000) using both the ZLIB data compression and Fletcher32 checksum error detection
filters

CREATE DATASET my datasetll AS FLOAT (500000) ENABLE ZLIB LEVEL 5 FLETCHER32

create an HDF5 dataset named "my datasetl2" of data type variable-length float
CREATE DATASET my datasetl2 AS VARFLOAT

create an HDF5 dataset named "my datasetl3" of data type variable-length short of one
dimension (size 5) with initial values from a text file named "my file.txt"

CREATE DATASET my datasetl3 AS VARSMALLINT (5) VALUES FROM FILE my file.txt

create an HDF5 dataset named "my datasetl4" of data type variable-length char with an
initial value of "Hierarchical Data Format"

CREATE DATASET my datasetl4 AS VARCHAR VALUES ("Hierarchical Data Format'")

Version 2.0.1 Page 214 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

create an HDF5 dataset named "my datasetlb5" of data type opaque
CREATE DATASET my datasetl5 AS OPAQUE

create an HDF5 dataset named "my datasetl6" of data type opaque of one dimension (size
6) with initial (ASCII) values of 72, 68, 70, 0, 113 and 108 (i.e. "HDF\0Oqgl")
CREATE DATASET my datasetlé6 AS OPAQUE (¢) VALUES (72, 7 s Op 7)

create an HDF5 dataset named "my datasetl?7" of data type opaque of two dimensions (size
10x1024) with a tag value "Raw data”
CREATE DATASET my datasetl7 AS OPAQUE (10,) TAG "Raw data"

create an HDF5 dataset named "my datasetl8" of data type float of one dimension (size 5
and extendible up to 10)
CREATE CHUNKED DATASET my datasetl8 AS FLOAT (5 TO)

create an HDF5 dataset named "my datasetl9" of data type variable-length int of one
dimension (size 1 and extendible to an unlimited size)

CREATE CHUNKED DATASET my datasetl9 AS VARINT (UNLIMITED)

create an HDF5 dataset named "my dataset20" of data type double of three dimensions
(first dimension with size 3 and extendible up to 5; second dimension with size 7, third
dimension with size 20 and extendible to an unlimited size)

CREATE CHUNKED DATASET my dataset20 AS DOUBLE (3 TO 5, 7/, TO UNLIMITED)

6.4.5 CREATE ATTRIBUTE

Syntax

CREATE [TRUNCATE] ATTRIBUTE attribute_name [, attribute_name]* AS [NATIVE | LITTLE ENDIAN | BIG
ENDIAN | ASCIl | UTF8] {TINYINT | UNSIGNED TINYINT | SMALLINT | UNSIGNED SMALLINT | INT |
UNSIGNED INT | BIGINT | UNSIGNED BIGINT | FLOAT | DOUBLE | CHAR | VARTINYINT | UNSIGNED
VARTINYINT | VARSMALLINT | UNSIGNED VARSMALLINT | VARINT | UNSIGNED VARINT | VARBIGINT |
UNSIGNED VARBIGINT | VARFLOAT | VARDOUBLE | VARCHAR | OPAQUE} [(attribute_dim |,

attribute_dim]*)]

Version 2.0.1 Page 215 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

[TAG tag_value)

[VALUES {(initial_value [, initial_valuel*) | input_redirecting_option}]

Description

Create an HDF5 attribute named attribute_name. Multiple attributes can be created at once by separating these
with a comma (,). If attribute_name already exists, it will not be overwritten, no subsequent attributes are created,
and an error is raised. To overwrite an existing attribute, specify the keyword TRUNCATE (all data stored in the

attribute will be permanently lost).

Parameter(s)

attribute_name — mandatory string that specifies the name of the HDF5 attribute to create. Multiple attributes are
separated with a comma (,). As a general rule, in case attribute_name is composed of spaces, special characters or
reserved keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by
double-quotes, the attribute will not be created and an error is raised. This rule also applies to any other HDFql

operation that works with attribute names (e.g. RENAME ATTRIBUTE).

attribute_dim — optional integer that specifies the size of the dimension. Multiple dimensions are separated with a

comma (,).

tag_value — optional string that specifies the value of a tag attached to the HDF5 attribute. Of note, the specification

of a tag is only available for an attribute of data type HDFQL_OPAQUE (any other data type will raise an error).

initial_value — optional integer, float or string to write into the created HDF5 attribute. Multiple values are separated
with a comma (,). In case initial_value is not specified, the element in question will be zeroed or emptied depending

on whether the attribute is a number or a string, respectively.

input_redirecting_option — optional option that specifies a file or memory to read data from in order to write it into

the created HDF5 attribute (please refer to the subsection FROM for additional information).
Return

Nothing

Version 2.0.1 Page 216 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

create an HDF5 attribute named '"my attribute(0" of data type int (the attribute will not
be overwritten 1if it already exists)

CREATE ATTRIBUTE my attribute(O AS INT

create an HDF5 attribute named "my attributel" of data type char in a root object
(either a group or dataset) named "my object" (the attribute will not be overwritten if
it already exists)

CREATE ATTRIBUTE /my object/my attributel AS CHAR

create two HDF5 attributes named "my attribute2" and "my attribute3" of data type short
(both attributes will be overwritten if they already exist)

CREATE TRUNCATE ATTRIBUTE my attribute2, my attribute3 AS SMALLINT

create an HDF5 attribute named "this is a long attribute name" of data type float (the
attribute will not be overwritten if it already exists)

CREATE ATTRIBUTE "this is a long attribute name" AS FLOAT

create an HDF5 attribute named "my attribute4" of data type unsigned long long using
the big endian representation

CREATE ATTRIBUTE my attribute4 AS BIG ENDIAN UNSIGNED BIGINT

create an HDF5 attribute named "my attributeb" of data type int using the little endian
representation with an initial value of 80178

CREATE ATTRIBUTE my attributeb5 AS LITTLE ENDIAN INT VALUES (50178)

create an HDF5 attribute named "my attribute6" of data type char using an UTF8
representation

CREATE ATTRIBUTE my attribute6é AS UTF8 CHAR

create an HDF5 attribute named "my attribute7" of data type float of one dimension
(size 512)
CREATE ATTRIBUTE my attribute7 AS FLOAT(512)

create an HDF5 attribute named "my attribute8" of data type unsigned char of two

dimensions (size 500x1000)

Version 2.0.1 Page 217 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE ATTRIBUTE my attribute8 AS UNSIGNED TINYINT (!

create an HDF5 attribute named "my attribute9" of data type variable-length float
CREATE ATTRIBUTE my attribute9 AS VARFLOAT

create an HDF5 attribute named "my attributel0O" of data type variable-length short of
one dimension (size 5) with initial values from a text file named "my file.txt"

CREATE ATTRIBUTE my attributel(AS VARSMALLINT (5) VALUES FROM FILE my file.txt

create an HDF5 attribute named "my attributell" of data type variable-length char with
an initial value of "Hierarchical Data Format"

CREATE ATTRIBUTE my attributell AS VARCHAR VALUES ("Hierarchical Data Format'")

create an HDF5 attribute named "my attributel2" of data type opaque
CREATE ATTRIBUTE my attributel2 AS OPAQUE

create an HDF5 attribute named "my attributel3" of data type opaque of one dimension
(size 6) with initial (ASCII) values 72, 68, 70, 0, 113 and 108 (i.e. "HDF\O0gl")
CREATE ATTRIBUTE my attributel3 AS OPAQUE (©) VALUES (72, ©¢8, 70, 0, 113, 108)

create an HDF5 attribute named "my attributel4" of data type opaque of two dimensions
(size 10x1024) with a tag value "Raw data"
CREATE ATTRIBUTE my attributel4 AS OPAQUE (10, 10:

1) TAG "Raw data'

6.4.6 CREATE [SOFT | HARD] LINK
Syntax
CREATE [TRUNCATE] [SOFT | HARD] LINK link_name [, link_name]* TO object name [, object name]*

Description

Create an HDF5 soft or hard link named link_name to a group or dataset named object_name. Multiple links can be
created at once by separating these with a comma (,). If link_name already exists, it will not be overwritten, no

subsequent links are created, and an error is raised. To overwrite an existing link, specify the keyword TRUNCATE. If

Version 2.0.1 Page 218 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

neither the keyword SOFT nor HARD is specified, a soft link is created by default. To create a hard link, the keyword
HARD must be specified.

Parameter(s)

link_name — mandatory string that specifies the name of the HDF5 soft or hard link to create. Multiple links are
separated with a comma (,). As a general rule, in case link_name is composed of spaces, special characters or
reserved keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by
double-quotes, the link will not be created and an error is raised. This rule also applies to any other HDFgl operation

that works with link names (e.g. RENAME LINK).

object_name — mandatory string that specifies the name of the HDF5 group or dataset that /link_name points to.
Multiple objects are separated with a comma (,). As a general rule, in case object_name is composed of spaces,
special characters or reserved keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it
is not surrounded by double-quotes, the link will not be created and an error is raised. This rule also applies to any

other HDFql operation that works with link names (e.g. RENAME LINK).
Return

Nothing

Example(s)

create an HDF5 group named "my groupO"
CREATE GROUP my group0

create an HDF5 dataset named "my dataset(0" of data type variable-length unsigned int
CREATE DATASET my dataset(O AS UNSIGNED VARINT

create an HDF5 soft link named "my 1inkO" to group "my groupO" (the soft link will not
be overwritten 1f it already exists)

CREATE LINK my 1ink0O TO my group0

create an HDF5 soft link named "my 1linkl" to dataset "my datasetO" (the soft link will
not be overwritten if it already exists)

CREATE SOFT LINK my linkl TO my dataset(

create two HDF5 soft links named "my 1ink2" and "my 1ink3" to dataset "my dataset0" and

group "my group0" respectively (both soft links will be overwritten if they already

Version 2.0.1 Page 219 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

exist)

CREATE TRUNCATE SOFT LINK my link2, my 1ink3 TO my dataset(O, my group0

create an HDF5 soft link named '"this is a long link name" to dataset "my dataset0" (the
soft link will not be overwritten if it already exists)

CREATE LINK "this is a long link name" TO my datasetO

create an HDF5 group named "my groupl"
CREATE GROUP my groupl

create an HDF5 dataset named "my datasetl" of data type variable-length unsigned int
CREATE DATASET my datasetl AS UNSIGNED VARINT

create an HDF5 hard link named "my 1ink4" to group "my groupl" (the hard link will not
be overwritten 1if it already exists)

CREATE HARD LINK my link4 TO my groupl

create an HDF5 hard link named "my 1ink5" to dataset "my datasetl" (the hard link will
not be overwritten if it already exists)

CREATE HARD LINK my link5 TO my datasetl

create two HDF5 hard links named "my 1ink6" and "my 1ink7" to dataset "my datasetl" and
group "my groupl" respectively (both hard links will be overwritten if they already
exist)

CREATE TRUNCATE HARD LINK my 1ink6é, my 1ink7 TO my datasetl, my groupl

6.4.7 CREATE EXTERNAL LINK

Syntax

CREATE [TRUNCATE] EXTERNAL LINK /ink_name [, link_name]* TO file_name object_name |, file_name

object_name]*

Description

Create an HDF5 external link named link_name to a group or dataset named object_name belonging to another

HDF5 file named file_name. Multiple external links can be created at once by separating these with a comma (,). If

Version 2.0.1 Page 220 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

link_name already exists, it will not be overwritten, no subsequent external links are created, and an error is raised.

To overwrite an existing external link, specify the keyword TRUNCATE.

Parameter(s)

link_name — mandatory string that specifies the name of the HDF5 external link to create. Multiple external links are
separated with a comma (,). As a general rule, in case link_name is composed of spaces, special characters or
reserved keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by
double-quotes, the link will not be created and an error is raised. This rule also applies to any other HDFgl operation

that works with external link names (e.g. RENAME EXTERNAL LINK).

file_name — mandatory string that specifies the name of the HDF5 file where object_name is stored and link_name
points to. Multiple files are separated with a comma (,). As a general rule, in case object_name is composed of
spaces, special characters or reserved keywords (e.g. SELECT), it should be surrounded by double-quotes (“).
Otherwise, if it is not surrounded by double-quotes, the link will not be created and an error is raised. This rule also

applies to any other HDFgl operation that works with link names (e.g. RENAME LINK).

object_name — mandatory string that specifies the name of the HDF5 group or dataset (stored in file_name) that
link_name points to. As a general rule, in case object_name is composed of spaces, special characters or reserved
keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by double-
quotes, the link will not be created and an error is raised. This rule also applies to any other HDFql operation that

works with link names (e.g. RENAME LINK).
Return

Nothing

Example(s)

use (i.e. open) an HDF5 file named "my fileO.h5"
USE FILE my file0.h5

create an HDF5 group named "my groupO"
CREATE GROUP my group0

create an HDF5 dataset named "my dataset(0" of data type variable-length unsigned int
CREATE DATASET my_datasetO AS UNSIGNED VARINT

Version 2.0.1 Page 221 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

create an HDF5 external link named "my 1ink0" to object "my group0" in file
"my fileO.h5" (the external link will not be overwritten if it already exists)

CREATE EXTERNAL LINK my 1ink0 TO my file0.h5 my group0

create an HDF5 external link named "my 1inkl" to object "my object0" in file
"my filel.h5" (the external link will be overwritten if it already exists)

CREATE TRUNCATE EXTERNAL LINK my linkl TO my filel.h5 my objectO

create two HDF5 external links named "my 1ink2" and "my 1ink3" to object "my objectl"
in file "my filel.h5" and object "my object2" in file "my file2.h5" respectively (neither
external links will be overwritten if they already exist)

CREATE EXTERNAL LINK my link2, my 1ink3 TO my filel.h5 my objectl, my file2.h5 my object2

create an HDF5 external link named "this is a long external link name" to object
"my object3" in file "my file3.h5" (the external link will not be overwritten if it
already exists)

CREATE EXTERNAL LINK "this is a long external link name'" TO my file3.h5 my object3

6.4.8 ALTER DIMENSION

Syntax

ALTER DIMENSION dataset_name [, dataset_name]* TO (dataset_dim [, dataset_dim]*)

Description

Alter (i.e. change) the dimensions of an existing HDF5 dataset named dataset_name. Multiple datasets can have
their dimensions altered at once by separating these with a comma (,). If dataset_name was not found or its
dimensions could not be altered (due to its storage type not being HDFQL_CHUNKED or for unknown/unexpected

reasons), no subsequent datasets are altered, and an error is raised.

Parameter!s)

dataset_name — mandatory string that specifies the name of the HDF5 dataset whose dimensions are to be altered

(i.e. changed). Multiple datasets are separated with a comma (,).

Version 2.0.1 Page 222 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

dataset_dim — mandatory integer that specifies the new size for the dimension in question. Multiple dimensions are
separated with a comma (,). Depending on the prefix of the value specified in dataset_dim, one of the following

behaviors applies:

o Ifits prefix is “+”, the dimension will have its size increased by this value.

“ n

o Ifits prefixis “-”, the dimension will have its size decreased by this value.

“n

e In case its prefix is neither “+” nor “-”, the dimension will have exactly the size of this value.

To preserve the value of a certain dimension (i.e. for its size not to be altered), it should be skipped with a comma

()-

Return

Nothing

Example(s)

create an HDF5 dataset named "my dataset" of data type double of three dimensions
(first dimension with size 2 and extendible up to 10; second dimension with size 7; third
dimension with size 20 and extendible to an unlimited size)

CREATE CHUNKED DATASET my dataset AS DOUBLE(Z TO 10, 7/, 20 TO UNLIMITED)

show (i.e. get) current dimensions of dataset "my dataset" (should be 2, 7, 20)

SHOW DIMENSION my dataset

alter (i.e. change) dimensions of dataset "my dataset" to set its first dimension size
to 6, and increase the third dimension size by 10 (the second dimension size remains
intact)

ALTER DIMENSION my dataset TO (6, , +10)

show (i.e. get) current dimensions of dataset "my dataset" (should be 6, 7, 30)

SHOW DIMENSION my dataset

alter (i.e. change) dimensions of dataset "my dataset" to increase its first dimension
size by 2, to set the second dimension size to 3, and to decrease the third dimension
size by 5

ALTER DIMENSION my dataset TO (+2, 3, -=5)

show (i.e. get) current dimensions of dataset "my dataset" (should be 8, 3, 25)

Version 2.0.1 Page 223 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

SHOW DIMENSION my dataset

6.4.9 RENAME DIRECTORY

Syntax

RENAME DIRECTORY directory_name [, directory_namel* AS new_directory_name [, new_directory_name]*

Description

Rename (or move) an existing directory named directory_name as new_directory_name. Multiple directories can be
renamed (or moved) at once by separating these with a comma (,). If new_directory_name already exists, it will not

be overwritten, no subsequent directories are renamed (or moved), and an error is raised.

Parameter(s)

directory_name — mandatory string that specifies the name of the directory to rename (or move). Multiple

directories are separated with a comma (,).

new_directory_name — mandatory string that specifies the new name and/or location (in the file system) to use for

renaming and/or moving directory_name. Multiple directories are separated with a comma (,).
Return

Nothing

Example(s)

rename a directory named "my directory0" as "my directoryl" (the directory
"my directoryl" will not be overwritten if it already exists)

RENAME DIRECTORY my directory(O AS my directoryl
rename two directories named "my directory2" and "my directory3" as "my directory4" and
"my directoryb" respectively (neither directory will be overwritten if it already exists)

RENAME DIRECTORY my directory2?, my directory3 AS my directory4, my directoryb

move a directory named "my directory6" into a root directory named '"data" and rename it

as "my directory7" (the directory "my directory?7" will not be overwritten if it already

Version 2.0.1 Page 224 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

exists)

RENAME DIRECTORY my directory6 AS /data/my directory?

move a directory named "my directory8" into a relative directory named "backup" (the
directory "my directory8" will not be overwritten if it already exists)

RENAME DIRECTORY my directory8 AS backup/

6.4.10 RENAME FILE

Syntax

RENAME [TRUNCATE] FILE file_name |, file_name]* AS new_file_name [, new_file_name]*

Description

Rename (or move) an existing file named file_name as new_file_name. Multiple files can be renamed (or moved) at
once by separating these with a comma (,). If new_file_name already exists, it will not be overwritten, no
subsequent files are renamed (or moved), and an error is raised. To overwrite an existing file, specify the keyword

TRUNCATE (all data stored in the file will be permanently lost).

Parameter!s)

file_name — mandatory string that specifies the name of the file to rename (or move). Multiple files are separated

with a comma (,).

new_file_name — mandatory string that specifies the new name and/or location (in the file system) to use for

renaming and/or moving file_name. Multiple files are separated with a comma (,).
Return

Nothing

Example(s)

rename a file named "my file0.h5" as "my filel.h5" (the file "my filel.h5" will not be
overwritten if it already exists)

RENAME FILE my file0.h5 AS my filel.h5

Version 2.0.1 Page 225 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

rename a file named "my file2.h5" as "my file3.h5" (the file "my file3.h5" will be
overwritten if it already exists)

RENAME TRUNCATE FILE my fileZ2.h5 AS my file3.h5

rename two files named "my file4.h5" and "my file5.h5" as "my file6.h5" and
"my file7.h5" respectively (both files "my file6.h5" and "my file7.h5" will be
overwritten if they already exist)

RENAME TRUNCATE FILE my file4.h5, my file5.h5 AS my file6.h5, my file7.h5

move a file named "my file8.h5" into a root directory named "data" and rename it as
"my file9.h5" (the file "my file9.h5" will not be overwritten if it already exists 1in
this directory)

RENAME FILE my file8.h5 AS /data/my file9.hb

move a file named "my filel0.h5" into a relative directory named "backup" (the file
"my filelO.hb5" will not be overwritten if it already exists in this directory)

RENAME FILE my filel(0.h5 AS backup/

6.4.11 RENAME [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK]

Syntax

RENAME [TRUNCATE] [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK] object_name [,

object_namel* AS new_object_name [, new_object_namel*

Description

Rename (or move) an existing HDF5 group, dataset, attribute, (soft) link or external link named object_name as
new_object_name. Multiple groups, datasets, attributes, (soft) links or external links can be renamed (or moved) at
once by separating these with a comma (,). If new_object name already exists, it will not be overwritten, no
subsequent objects are renamed (or moved), and an error is raised. To overwrite an existing object, specify the
keyword TRUNCATE (all data stored in the object will be permanently lost). In case (1) a group and an attribute or (2)
a dataset and an attribute with identical names (object_name) are stored in the same location (i.e. group) and
neither the keyword GROUP, DATASET nor ATTRIBUTE is specified, the object to be renamed is the group or dataset,
respectively. To explicitly rename an object according to its type, the keyword GROUP, DATASET, ATTRIBUTE, [SOFT]
LINK or EXTERNAL LINK must be specified. While the renaming (or moving) of groups and datasets to a different

location is supported by the HDF5 library, this is not the case for attributes; HDFql overcomes this limitation by (1)

Version 2.0.1 Page 226 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

creating a new attribute with the same characteristics as the existing one (e.g. data type, number of dimensions)
using the new specified location and name, (2) writing the data from the existing attribute to the newly created

attribute, and (3) deleting the existing attribute.

Parameter(s)

object_name — mandatory string that specifies the name of the object to rename (or move). Multiple objects are

separated with a comma (,).

new_object_name — mandatory string that specifies the new name and/or location (within the HDF5 file) to use for

renaming and/or moving object_name. Multiple objects are separated with a comma (,).
Return

Nothing

Example(s)

create two HDF5 groups named "my group0" and "my groupl"
CREATE GROUP my group(O, my groupl

create two HDF5 datasets named '"my dataset" and "my common" of data type short

CREATE DATASET my dataset, my common AS SMALLINT

create two HDF5 attributes named "my attribute" and "my common" of data type float

CREATE ATTRIBUTE my attribute, my common AS FLOAT

rename an object named "my groupO" as "my group" (the object "my group" will not be
overwritten if it already exists)

RENAME my group(O AS my group

move an object named "my groupl" into object "my group" and rename it as "my subgroup'
(the object "my subgroup'" will be overwritten if it already exists in object "my group")

RENAME TRUNCATE my groupl AS my group/my subgroup

move two objects named "my dataset" and "my attribute" into objects "my group" and
"my group/my subgroup" respectively (both objects "my dataset" and "my attribute" will
not be overwritten if they already exist in objects "my group" and

"my group/my_subgroup")

RENAME my dataset, my attribute AS my group/, my group/my subgroup/

Version 2.0.1 Page 227 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

rename attribute "my common" as "my attribute" (the attribute "my attribute" will not
be overwritten if it already exists)

RENAME ATTRIBUTE my common AS my attribute

rename dataset "my common" as "my dataset" (the dataset "my dataset" will not be
overwritten if it already exists)

RENAME DATASET my common AS my dataset

6.4.12 COPY FILE

Syntax

COPY [TRUNCATE] FILE file_name [, file_name]* TO new_file_name [, new_file_name]*

Description

Copy an existing file named file_name to new_file_name. Multiple files can be copied at once by separating these
with a comma (,). If new_file_name already exists, it will not be overwritten, no subsequent files are copied, and an
error is raised. To overwrite an existing file, specify the keyword TRUNCATE (all data stored in the file will be

permanently lost).

Parameter(s)

file_name — mandatory string that specifies the name of the file to copy. Multiple files are separated with a comma

().

new_file_name — mandatory string that specifies the new name and/or location (in the file system) to use for

copying file_name. Multiple files are separated with a comma (,).
Return

Nothing

Example(s)

copy a file named "my file0.h5" to "my filel.h5" (the file "my filel.h5" will not be

overwritten if it already exists)

Version 2.0.1 Page 228 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

COPY FILE my file0.h5 TO my filel.hb

copy a file named "my file2.h5" to "my file3.h5" (the file "my file3.h5" will be
overwritten if it already exists)

COPY TRUNCATE FILE my file2.h5 TO my file3.h5

copy two files named "my file4.h5" and "my file5.h5" to "my file6.h5" and "my file7.h5"
respectively (both files "my file6.h5" and "my file7.h5" will be overwritten if they
already exist)

COPY TRUNCATE FILE my file4.h5, my file5.h5 TO my file6.h5, my file7.h5

copy a file named "my file8.h5" into a root directory named "data" and rename it as
"my file9.h5" (the file "my file9.h5" will not be overwritten if it already exists 1in
this directory)

COPY FILE my file8.h5 TO /data/my file9.h5

copy a file named "my filelO.h5" into a relative directory named "backup" (the file
"my filel0.h5" will not be overwritten if it already exists in this directory)

COPY FILE my filel0.h5 TO backup/

6.4.13 COPY [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK]

Syntax

COPY [TRUNCATE] [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK] object_name |,

object_namel* TO new_object_ name [, new_object_namel*

Description

Copy an existing HDF5 group, dataset, attribute, (soft) link or external link named object name to
new_object_name. Multiple groups, datasets, attributes, (soft) links or external links can be copied at once by
separating these with a comma (,). If new_object_name already exists, it will not be overwritten, no subsequent
objects are copied, and an error is raised. To overwrite an existing object, specify the keyword TRUNCATE (all data
stored in the object will be permanently lost). In case (1) a group and an attribute or (2) a dataset and an attribute
with identical names (object_name) are stored in the same location (i.e. group) and neither the keyword GROUP,

DATASET nor ATTRIBUTE is specified, the object to be copied is the group or dataset, respectively. To explicitly copy

Version 2.0.1 Page 229 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

an object according to its type, the keyword GROUP, DATASET, ATTRIBUTE, [SOFT] LINK or EXTERNAL LINK must be

specified.

Parameter(s)

object_name — mandatory string that specifies the name of the object to copy. Multiple objects are separated with a

comma (,).

new_object_name — mandatory string that specifies the new name and/or location (within the HDF5 file) to use for

copying object_name. Multiple objects are separated with a comma (,).
Return

Nothing

Example(s)

create two HDF5 groups named "my group0" and "my groupl"
CREATE GROUP my group(O, my groupl

create two HDF5 datasets named "my dataset(0" and "my common" of data type short

CREATE DATASET my dataset(O, my common AS SMALLINT

create two HDF5 attributes named "my attributeO" and "my common'" of data type float

CREATE ATTRIBUTE my attribute(, my common AS FLOAT

copy an object named "my group0" to "my group2" (the object "my group2" will not be
overwritten if it already exists)

COPY my groupO TO my groupZ2

copy an object named "my groupl" into object "my group0O" and rename it as

"my subgroup0" (the object "my subgroupO" will be overwritten if it already exists 1in
object "my group0")

COPY TRUNCATE my groupl TO my groupO/my subgroupO

copy two objects named "my dataset(0" and "my attribute(O" into objects "my group0" and
"my groupO/my subgroup0" respectively (both objects "my dataset0" and "my attribute(O"
will not be overwritten if they already exist in objects "my group0O" and

"my group0/my subgroup0")

COPY my dataset0, my attribute0 TO my groupO/, my group0O/my subgroup0/

Version 2.0.1 Page 230 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

copy attribute "my common" to "my attributel" (the attribute "my attributel" will not
be overwritten if it already exists)

COPY ATTRIBUTE my common TO my attributel

copy dataset "my common" to "my datasetl" (the dataset "my datasetl" will not be
overwritten if it already exists)

COPY DATASET my common TO my datasetl

6.4.14 DROP DIRECTORY

Syntax
DROP DIRECTORY directory_name [, directory_name]*

Description

Drop (i.e. delete) an existing directory named directory_name. Multiple directories can be dropped at once by
separating these with a comma (,). If directory_name contains directories or files (i.e. if it is not empty), it will not be

dropped, no subsequent directories are dropped, and an error is raised.

Parameter(s)

directory_name — mandatory string that specifies the name of the directory to drop (i.e. delete). Multiple directories

are separated with a comma (,).
Return

Nothing

Example(s)

create two directories named "my directoryO" and "my directoryl" within the current
working directory

CREATE DIRECTORY my directory(O, my directoryl

create two directories named "my subdirectory0" and "my subdirectoryl" within the

directory "my directory0"

Version 2.0.1 Page 231 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE DIRECTORY my directory0/my subdirectory0, my directory0/my subdirectoryl

drop (i.e. delete) directory "my directoryl" within the current working directory

DROP DIRECTORY my directoryl

drop (i.e. delete) directory "my subdirectory0" within directory "my directory0"

DROP DIRECTORY my directory0/my subdirectory0

6.4.15 DROP FILE

Syntax

DROP FILE file_name |, file_name]*

Description

Drop (i.e. delete) an existing file named file_name. Multiple files can be dropped at once by separating these with a
comma (,). If file_name was not found or could not be dropped (due to unknown/unexpected reasons), no

subsequent files are dropped, and an error is raised.

Parameter!s)

file_name — mandatory string that specifies the name of the file to drop (i.e. delete). Multiple files are separated

with a comma (,).
Return

Nothing

Example(s)

create two HDF5 files named "my file(O.h5" and "my filel.h5" within the current working
directory

CREATE FILE my file0.h5, my filel.hb

create two HDF5 files named "my file2.h5" and "my file3.h5" within a directory named
"my directory"

CREATE FILE my directory/my file2.h5, my directory/my file3.h5

Version 2.0.1 Page 232 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

drop (i.e. delete) file "my filel.h5" within the current working directory
DROP FILE my filel.hb

drop (i.e. delete) file "my file2.h5" within directory "my directory"
DROP FILE my directory/my file2.h5

6.4.16 DROP [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK]

Syntax

DROP {GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK} | {{GROUP | DATASET |
ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK] [{object name [, object name]*} | {[object name] LIKE

regular_expression [DEEP deep_value [, deep_value]*]}]}

Description

Drop (i.e. delete) an existing HDF5 group, dataset, attribute, (soft) link or external link named object_name. Multiple
groups, datasets, attributes, (soft) links or external links can be dropped at once by separating these with a comma
(,). If object_name was not found or could not be dropped (due to unknown/unexpected reasons), no subsequent
objects are dropped, and an error is raised. In case (1) a group and an attribute or (2) a dataset and an attribute with
identical names (object_name) are stored in the same location (i.e. group) and neither the keyword GROUP,
DATASET nor ATTRIBUTE is specified, the object to be dropped is the group or dataset, respectively. To explicitly
drop an object according to its type, the keyword GROUP, DATASET, ATTRIBUTE, [SOFT] LINK or EXTERNAL LINK must

be specified.

Parameter(s)

object_name — mandatory string that specifies the name of the object to drop (i.e. delete). Multiple objects are

separated with a comma (,).

regular_expression — optional string that specifies the regular expression which only names of objects that comply

with it are dropped. If regular_expression includes “**”, recursive search is performed.

deep_value — optional integer that specifies the maximum recursiveness limit.

Version 2.0.1 Page 233 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Return

Nothing

Example(s)

create three HDF5 groups named "my group0", "my groupl" and "my group2"
CREATE GROUP my group(, my groupl, my groupZ2

create two HDF5 datasets named "my dataset(0'" and "my datasetl" of data type short in
group "my group2"
CREATE DATASET my group2/my datasetO, my group2/my datasetl AS SMALLINT

create two HDF5 datasets named "my dataset2" and "my common" of data type short

CREATE DATASET my dataset2, my common AS SMALLINT

create two HDF5 attributes named "my attributeO" and "my common'" of data type float

CREATE ATTRIBUTE my attribute(, my common AS FLOAT

drop (i.e. delete) an object named "my group0" (and all objects that may eventually be
stored in 1it)

DROP my group0

drop (i.e. delete) attribute "my common"

DROP ATTRIBUTE my common

drop (i.e. delete) all existing datasets in group "my group2" (should be "my dataset2"
and "my dataset3")
DROP DATASET my groupZ2/

drop (i.e. delete) all existing groups (should be "my groupl" and "my group2")
DROP GROUP

drop (i.e. delete) all existing objects (should be "my dataset2", "my common" and
"my attributel")
DROP /

Version 2.0.1 Page 234 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

6.5 DATA MANIPULATION LANGUAGE (DML)

Data Manipulation Language (DML) is, generally speaking, syntax for defining and modifying data stored in
structures. In HDFql, the DML is composed of only one operation (INSERT), which enables the insertion (i.e. writing)
of data into HDF5 datasets or attributes. Moreover, it supports REDIRECTING options to redirect the input source

according to the programmer’s needs.

6.5.1 INSERT

Syntax

INSERT INTO [PARALLEL] [DATASET | ATTRIBUTE] object_name [({[start]:[stride]:[count]:[block] [,
[start):[stride]:[count]:[block]]* [, {OR | AND | XOR | NOTA | NOTB} [start]:[stride]:[count]:[block] [,
[start):[stride]:[count]:[block]1*1*} | {coord [, coord]* [; coord [, coord]*]*})] [, object name
[({[start]:[stride]:[count]:[block] [, [start]:[stride]:[count]:[block]]* [, {OR | AND | XOR | NOTA | NOTB}

[start):[stride]:[count):[block] [, [start]:[stride]:[count]:[block]]*]*} | {coord [, coord]* [; coord [, coord]*1*})I1*

[VALUES {(value [, valuel*) | input_redirecting_option}]

Description

Insert (i.e. write) data into an HDF5 dataset or attribute named object_name. Multiple datasets or attributes can be
written at once by separating these with a comma (,). If object_name was not found or could not be written (due to
unknown/unexpected reasons), no subsequent objects are written, and an error is raised. In case a dataset and an
attribute with identical names (object_name) are stored in the same location (i.e. group) and neither the keyword
DATASET nor ATTRIBUTE is specified, the object that will have data inserted into it is the dataset. To explicitly insert
data into an object according to its type, the keyword DATASET or ATTRIBUTE must be specified. In case the keyword
PARALLEL® is specified, HDFgl inserts data into a dataset in parallel using all the MPI processes specified upon

launching the program (that employs HDFq]l).

By default, the entire object_name is written when performing an insert operation. To write only a subset (i.e.

portion) of object_ name, hyperslab and point selections can be used (only available for datasets; i.e. not for

39 This option is not allowed in Windows as HDFql does not support the parallel HDF5 (PHDF5) library in this platform currently. Moreover, due to a
limitation of the PHDF5 library, inserting (i.e. writing) data into an HDF5 dataset of data type variable-length in parallel is not supported.

Version 2.0.1 Page 235 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

attributes®?). To enable a (regular) hyperslab selection, the start, stride, count and block parameters may be
specified and separated with a colon (:). For each dimension of object name, a set of such parameters may be
specified and each set should be separated with a comma (,). In case start is not specified, its default value is O (i.e.
the first position of the dimension in question); in case start is negative, its value will be the last position of the
dimension in question minus the value of start. In case stride is not specified, its default value is equal to the value of
block. In case count is not specified, its default value is 1. In case block is not specified, its default value is the size of
the dimension in question minus the value of start divided by the value of count. Multiple hyperslab selections can
be enabled at once (in this case, the hyperslab will be considered irregular). This is enabled by using the following

boolean operators:
e OR—adds the new selection to the existing selection.
e AND —retains only the overlapping portions of the new selection and the existing selection.

e XOR - retains only the elements that are members of the new selection or the existing selection, excluding

elements that are members of both selections.
e NOTA —retains only elements of the new selection that are not in the existing selection.
e NOTB - retains only elements of the existing selection that are not in the new selection.

To enable a point selection, a set of coordinates may be specified. Each coordinate is separated with a comma (,).
More than one set of coordinates (i.e. points) may be specified and each set should be separated with a semicolon
(;). In case coord is negative, its value will be the last position of the dimension in question minus the value of coord.
Of note, hyperslab and point selections cannot be used both at the same time (i.e. be mixed) in an insert operation.
Since hyperslab and point selections can be complicated to set up, it is highly recommended to first read
https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-

Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_|_O.htm
%23TOC_7_4_1_Data_Selectionbc-7 and eventually enable the debug mechanism (through the operation SET

DEBUG) when working with these to obtain debug information in case of errors.

HDFql provides several ways of inserting data into a dataset or attribute, namely either from a cursor (e.g. “INSERT
INTO my_dataset”), direct values (e.g. “INSERT INTO my_dataset VALUES(O, 2, 4, 6, 8)"), or an input redirecting
option (e.g. “INSERT INTO my_dataset VALUES FROM FILE my_file.txt”).

40 By design, both hyperslab and point selections for attributes are not supported by the HDFS5 library.

Version 2.0.1 Page 236 of 336

https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_I_O.htm%23TOC_7_4_1_Data_Selectionbc-7
https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_I_O.htm%23TOC_7_4_1_Data_Selectionbc-7
https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_I_O.htm%23TOC_7_4_1_Data_Selectionbc-7

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

object_name — mandatory string that specifies the name of the HDF5 dataset or attribute to insert (i.e. write) data

into. Multiple datasets or attributes are separated with a comma (,).

start — optional integer that specifies the starting location of the hyperslab selection. If not specified, its default
value is O (i.e. the first position of the dimension in question). If negative, its value will be the last position of the

dimension in question minus the value of start.

stride — optional integer that specifies the number of elements to separate each block to be selected. If not

specified, its default value is equal to the value of block.

count — optional integer that specifies the number of blocks to select along each dimension. If not specified, its

default value is 1.

block — optional integer that specifies the size of the block selected (i.e. number of elements) from the HDF5
dataset. If not specified, its default value is the size of the dimension in question minus the value of start divided by

the value of count.

coord — optional integer that specifies the point of interest (i.e. to insert) for the point selection. If negative, its value

will be the last position of the dimension in question minus the value of coord.

value — optional integer, float or string to write into the HDF5 dataset or attribute. Multiple values are separated
with a comma (,). In case value is not specified, the element in question will be zeroed or emptied depending on

whether the dataset/attribute is a number or a string, respectively.

input_redirecting_option — optional option that specifies a file or memory to read data from in order to write it into

an HDF5 dataset or attribute (please refer to the subsection FROM for additional information).
Return

Nothing

Example(s)

create an HDF5 dataset named "my dataset(0" of data type short of one dimension (size 3)

CREATE DATASET my dataset(O AS SMALLINT (3)

create an HDF5 dataset named "my datasetl" of data type int of one dimension (size 5)

Version 2.0.1 Page 237 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE DATASET my datasetl AS INT(5)

insert (i.e. write) values into dataset "my dataset("

INSERT INTO my dataset(O VALUES (05, 66, 07)

select (i.e. read) data from dataset "my dataset0" and populate cursor in use with it
(should be 65, 66, 67)
SELECT FROM my dataset(

insert (i.e. write) values into dataset "my datasetl'" from cursor in use (should be 65,
66, 67, 0, 0)
INSERT INTO my datasetl

create an HDF5 attribute named "my attribute(" of data type short
CREATE ATTRIBUTE my attribute(AS SMALLINT

insert (i.e. write) value 95 into attribute "my attribute0"

INSERT INTO my attribute(VALUES (95)

create an HDF5 attribute named "my attributel" of data type unsigned short of one
dimension (size 2)

CREATE ATTRIBUTE my attributel AS UNSIGNED SMALLINT (Z)

insert (i.e. write) values 95 and 97 into attribute "my attributel”

INSERT INTO my attributel VALUES (95, 97)

create an HDF5 dataset named "my dataset2" of data type float of one dimension (size
512)
CREATE DATASET my dataset2 AS FLOAT (512)

insert (i.e. write) values into dataset "my dataset2" from a text file named
"my file0.txt" that has values separated with "," (i.e. default separator)

INSERT INTO my dataset2? VALUES FROM FILE my file(.txt

insert (i.e. write) values into dataset "my dataset2" from a text file named
"my filel.txt" that has a DOS-based end of line (EOL) terminator and values separated
With mxxn

INSERT INTO my dataset? VALUES FROM DOS TEXT FILE my filel.txt SEPARATOR **

Version 2.0.1 Page 238 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

insert (i.e. write) values into dataset "my dataset2" from a binary file named
"my file.bin"

INSERT INTO my dataset2? VALUES FROM BINARY FILE my file.bin

create an HDF5 dataset named "my dataset3" of data type short of one dimension (size 5)

CREATE DATASET my dataset3 AS SMALLINT (5)

insert (i.e. write) value 9 into position #3 of dataset "my dataset3" using a hyperslab
selection

INSERT INTO my dataset3(3:::) VALUES (9)

select (i.e. read) data from dataset "my dataset3" and populate cursor in use with it
(should be 0, 0, 0, 9, 0)
SELECT FROM my dataset3

insert (i.e. write) value 9 into position #4 of dataset "my dataset3" using a hyperslab

selection

select (i.e. read) data from dataset "my dataset3" and populate cursor in use with it
(should be 0, 0, 0, 9, 7)
SELECT FROM my dataset3

insert (i.e. write) values 5 and 3 into positions #1 and #2 of dataset "my dataset3"
using a hyperslab selection

INSERT INTO my dataset3(1:::7) VALUES(5, 3)

select (i.e. read) data from dataset "my dataset3" and populate cursor in use with it
(should be 0, 5, 3, 9, 7)
SELECT FROM my dataset3

create an HDF5 dataset named "my dataset4" of data type int of two dimensions (size
3x3)
CREATE DATASET my dataset4 AS INT (3, 3)

insert (i.e. write) value 8 into position #2 of the first dimension and position #1 of
the second dimension of dataset "my dataset4" using a hyperslab selection

INSERT INTO my dataset4(Z:::, 1:::) VALUES(S)

Version 2.0.1 Page 239 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

select (i.e. read) data from dataset "my dataset4" and populate cursor in use with it
(should be 0, 0, 0, 0, 0, 0, 0, 8, 0)
SELECT FROM my dataset4

insert (i.e. write) value 4 into position #2 of the first dimension and position #0 of
the second dimension, and value 6 into position #2 of the first dimension and position #2
of the second dimension of dataset "my dataset4" using a hyperslab selection

INSERT INTO my dataset4(”2:::, 0:2:2:1) VALUES (4, ©)

select (i.e. read) data from dataset "my dataset4" and populate cursor in use with it
(should be 0, 0, 0, 0, 0, 0, 4, 8, 6)
SELECT FROM my dataset4

create an HDF5 dataset named "my datasetb5" of data type short of one dimension (size
10)
CREATE DATASET my datasetb5 AS SMALLINT (10)

insert (i.e. write) values 90, 91 and 92 into positions #2, #3 and #4, value 93 into
position#5, and values 94 and 95 into positions #7 and #8 of dataset "my datasetb" using
an irregular hyperslab selection

INSERT INTO my datasetb(Z::3:1 OR 4::2:1 OR /::2:1) VALUES (90, 91, 92, 93, 94, 95)

select (i.e. read) data from dataset "my datasetb5" and populate cursor in use with it
(should be 0, 0, 90, 91, 92, 93, 0, 94, 95, 0)
SELECT FROM my dataset)b

create an HDF5 dataset named "my dataset6" of data type long long of one dimension
(size 15)
CREATE DATASET my dataset6 AS BIGINT(15)

insert (i.e. write) values 75 and 77 into positions #5 and #6 of dataset "my dataseté6"
using an irregular hyperslab selection

INSERT INTO my dataseté6(3::4:1 AND 5::5:1) VALUES(/5, 77, /9, 81, 83, 85, 87)

select (i.e. read) data from dataset "my dataset6" and populate cursor in use with it
(should be 0, 0, 0, 0, 0, 75, 77, 0, 0, 0, 0, 0, 0, 0, 0)
SELECT FROM my dataseté6

create an HDF5 dataset named "my dataset?7" of data type float of one dimension (size 8)

CREATE DATASET my dataset?7 AS FLOAT (&)

Version 2.0.1 Page 240 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

insert (i.e. write) values 7.5, 7.7 and 7.9 into positions #2, #4 and #7 of dataset
"my dataset?7" using a point selection

INSERT INTO my dataset7(2; 4; /) VALUES(/.5, 7.7, 7.9)

select (i.e. read) data from dataset "my dataset?7" and populate cursor in use with it
(should be 0, 0, 7.5, 0, 7.7, 0, 0, 7.9)
SELECT FROM my dataset?7

create an HDF5 dataset named "my dataset8" of data type double of two dimensions (size
4x3)
CREATE DATASET my dataset8 AS DOUBLE (4, 3)

insert (i.e. write) value 15.2 into position #1 of the first dimension and position #2
of the second dimension, and value 18.5 into position #3 of the first dimension and
position #0 of the second dimension of dataset "my dataset8" using a point selection

INSERT INTO my dataset8(1, 2; 3, 0) VALUES(15.2, 18.5)

select (i.e. read) data from dataset "my dataset8" and populate cursor in use with it
(should be 0, 0, 0, 0, 0, 15.2, 0, 0, 0, 18.5, 0, 0)
SELECT FROM my dataset$8

// declare variables
char script[1024];
double datal[3];

// create an HDF5 dataset named "my dataset9" of data type double of one dimension (size
3)
hdfgl execute ("CREATE DATASET my dataset9 AS DOUBLE (3)");

// populate variable "data" with certain values
datal[0] = 21.1;
datal[l] = 18.8;
data[”] = 75.6;

// register variable "data" for subsequent use (by HDFql)
hdfql variable register(data);

// prepare script to insert (i.e. write) values from variable "data'" into dataset

"my dataset9"

Version 2.0.1 Page 241 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

sprintf(script, "INSERT INTO my dataset9 VALUES FROM MEMORY 3d",
hdfql variable get number (data));

// execute script

hdfql execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)

hdfql variable unregister (data);

// declare variables
char script[1024];

HDFQL VARIABLE LENGTH datal[3];

// create an HDF5 dataset named "my datasetlO" of data type variable-length double of one
dimension (size 3)

hdfgl execute ("CREATE DATASET my datasetl(0 AS VARDOUBLE (3)");

// allocate memory in variable "data"

data[(0] .address = malloc(” * sizeof (double));,
data[0] .count = 2;

data[l].address = malloc(3 * sizeof (double));,
data[l].count = 3;

data[”] .address = malloc(l * sizeof (double));,

data[”].count = 1,

// populate variable "data" with certain values

*((double *) data[0].address + 0)

3.2;

*((double *) data[(0].address + 1) = 1.3;

*((double *) data[l].address +

*((double *) data[l].address +

*((double *) data[l].address + 7) = 9.1;
+

0) = 0;
1) = 0.2;
*((double *) data[”].address 0) = 6.5;

// register variable "data" for subsequent use (by HDFql)

hdfgl variable register(data);

// prepare script to insert (i.e. write) values from variable "data" into dataset
"my datasetl0O"
sprintf(script, "INSERT INTO my datasetl(O VALUES FROM MEMORY 3%d",

Version 2.0.1 Page 242 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

hdfqgl variable get number (data));

// execute script

hdfql execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)
hdfql variable unregister (data);

// select (i.e. read) data from dataset "my datasetlO" and populate cursor in use with it

hdfql execute("SELECT FROM my datasetlO0");

// display content of cursor in use (should be 3.2, 1.3, 0, 0.2, 9.1, 6.5)

while (hdfql cursor next (NULL) == HDFQL SUCCESS)

{
while (hdfgl subcursor next (NULL) == HDFQL SUCCESS)
{

printf("5f\n", *hdfql subcursor get double(NULL))

// release memory allocated in variable "data"
free(data[(].address);
free(data[!].address);
free(data[”].address);

// declare variables
char script[1024];

char *datal[3];

// create an HDF5 dataset named "my datasetll" of data type variable-length char of one
dimension (size 3)

hdfgl execute ("CREATE DATASET my datasetll AS VARCHAR(3)");

// allocate memory in variable "data"
data[0] = malloc(l3 * sizeof(char));,
data[l] = malloc(5 * sizeof(char));,;

data[”] = malloc(7 * sizeof(char));

// populate variable "data" with certain values

Version 2.0.1 Page 243 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

strcpy (data[0], "Hierarchical");,
strcpy (dataf[l], "Data');
strcpy(data[?], "Format');

// register variable "data" for subsequent use (by HDFql)
hdfql variable register(data);

// prepare script to insert (i.e. write) values from variable "data'" into dataset
"my datasetll"

sprintf(script, "INSERT INTO my datasetll VALUES FROM MEMORY %d",

hdfql variable get number (data));

// execute script

hdfgl execute(script);

// unregister variable '"data" as it is no longer used/needed (by HDFql)
hdfgl variable unregister(data);

// select (i.e. read) data from dataset "my datasetll" and populate cursor in use with it

hdfgl execute("SELECT FROM my datasetll");

// display content of cursor in use (should be "Hierarchical", "Data", '"Format")
while (hdfgl cursor next (NULL) == HDFQL SUCCESS)

{
printf("¢s\n", hdfgl cursor get char (NULL));

// release memory allocated in variable "data"
free(data[0]);
free(dataf[1]);
free(data[”]),;

// assume that the following program is launched in parallel using four MPI processes

(e.g. "mpiexec —n 4 my program")

// declare variables
char script[1024];

int rank;

Version 2.0.1 Page 244 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// create an HDF5 file named "my file.h5" in parallel

hdfgl execute ("CREATE PARALLEL FILE my file.h5");

// use (i.e. open) HDF5 file "my file.h5" in parallel

hdfgl execute("USE PARALLEL FILE my file.h5");

// create an HDF5 dataset named "my datasetl2" of data type int of one dimension (size 4)

hdfgl execute ("CREATE DATASET my datasetl2 AS INT(4)");

// get number (i.e. rank) of the MPI process (should be between 0 and 3)
rank = hdfql mpi get rank();

// prepare script to insert (i.e. write) in parallel the values 0, 10, 20 and 30 into
positions #0 (by MPI process rank 0), #1 (by MPI process rank 1), #2 (by MPI process rank
2) and #3 (by MPI process rank 3) of dataset "my datasetl2" using a point selection

sprintf(script, "INSERT INTO PARALLEL my datasetl2(%d) VALUES(%d)", rank, rank *)/

// execute script

hdfgl execute(script);

6.6 DATA QUERY LANGUAGE (DQL)

Data Query Language (DQL) is, generally speaking, syntax for retrieving data stored in structures. In HDFql, the DQL
is composed of only one operation (SELECT). It enables retrieval (i.e. reading) of data stored in HDF5 datasets or
attributes according to certain criteria. Moreover, it supports both POST-PROCESSING and REDIRECTING options to

further transform and redirect the result of the operation according to the programmer’s needs.

6.6.1 SELECT

Syntax

SELECT FROM [PARALLEL] [DATASET | ATTRIBUTE] object_name [({[start]:[stride]:[count]:[block] [,
[start]:[stride]:[count]:[block]]* [, {OR | AND | XOR | NOTA | NOTB} [start]:[stride]:[count]:[block] [,

[start):[stride]:[count]:[block]1*1*} | {coord [, coord]* [; coord [, coord]*]*})]

Version 2.0.1 Page 245 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

[CACHE [SLOTS {slots_value | DEFAULT | FILE}] [SIZE {size value | DEFAULT | FILE}] [PREEMPTION
{preemption_value | DEFAULT | FILE}]]

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Select (i.e. read) data from an HDF5 dataset or attribute named object name. In case the keyword CACHE is
specified, the dataset is read using cache parametrized with the values slots_value, size_value and preemption_value
(instead of the dataset cache parameters that may have been set through the operation SET CACHE). In case a
dataset and an attribute with identical names (object_name) are stored in the same location (i.e. group) and neither
the keyword DATASET nor ATTRIBUTE is specified, the object for which data will be read is the dataset. To explicitly
read data from an object according to its type, the keyword DATASET or ATTRIBUTE must be specified. In case the
keyword PARALLEL*! is specified, HDFql reads data from a dataset in parallel using all the MPI processes specified

upon launching the program (that employs HDFq]l).

By default, the entire object_name is read when performing a select operation. To read only a subset (i.e. portion)
of object_name, hyperslab and point selections can be used (only available for datasets; i.e. not for attributes*?). To
enable a (regular) hyperslab selection, the start, stride, count and block parameters may be specified and separated
with a colon (:). For each dimension of object_name, a set of such parameters may be specified and each set should
be separated with a comma (,). In case start is not specified, its default value is O (i.e. the first position of the
dimension in question); in case start is negative, its value will be the last position of the dimension in question minus
the value of start. In case stride is not specified, its default value is equal to the value of block. In case count is not
specified, its default value is 1. In case block is not specified, its default value is the size of the dimension in question
minus the value of start divided by the value of count. Multiple hyperslab selections can be enabled at once (in this

case, the hyperslab will be considered irregular). This is enabled by using the following boolean operators:
e OR-—adds the new selection to the existing selection.

e AND - retains only the overlapping portions of the new selection and the existing selection.

41 This option is not allowed in Windows as HDFql does not support the parallel HDF5 (PHDF5) library in this platform currently.

42 By design, both hyperslab and point selections for attributes are not supported by the HDFS5 library.

Version 2.0.1 Page 246 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

e XOR - retains only the elements that are members of the new selection or the existing selection, excluding

elements that are members of both selections.
e NOTA —retains only elements of the new selection that are not in the existing selection.
e NOTB —retains only elements of the existing selection that are not in the new selection.

To enable a point selection, a set of coordinates may be specified. Each coordinate is separated with a comma (,).
More than one set of coordinates (i.e. points) may be specified and each set should be separated with a semicolon
(;)- In case coord is negative, its value will be the last position of the dimension in question minus the value of coord.
Of note, hyperslab and point selections cannot be used both at the same time (i.e. be mixed) in a select operation.
Since hyperslab and point selections can be complicated to set up, it is highly recommended to first read
https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-

Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5 Dataspaces_and_Partial_|_O.htm
%23TOC_7_4_1 Data_Selectionbc-7 and eventually enable the debug mechanism (through the operation SET

DEBUG) when working with these to obtain debug information in case of errors.

HDFql provides several ways of writing result sets that was read from a dataset or attribute, namely either to a
cursor (e.g. “SELECT FROM my_dataset”) or an output redirecting option (e.g. “SELECT FROM my_dataset INTO FILE
my_file.txt”).

Parameter(s)

object_name — mandatory string that specifies the name of the HDF5 dataset or attribute to select (i.e. read) data

from.

start — optional integer that specifies the starting location of the hyperslab selection. If not specified, its default
value is O (i.e. the first position of the dimension in question). If negative, its value will be the last position of the

dimension in question minus the value of start.

stride — optional integer that specifies the number of elements to separate each block to be selected. If not

specified, its default value is equal to the value of block.

count — optional integer that specifies the number of blocks to select along each dimension. If not specified, its

default value is 1.

Version 2.0.1 Page 247 of 336

https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_I_O.htm%23TOC_7_4_1_Data_Selectionbc-7
https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_I_O.htm%23TOC_7_4_1_Data_Selectionbc-7
https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_I_O.htm%23TOC_7_4_1_Data_Selectionbc-7

Hierarchical Data Format query language (HDFql) Reference Manual

block — optional integer that specifies the size of the block (i.e. number of elements) selected from the HDF5
dataset. If not specified, its default value is the size of the dimension in question minus the value of start divided by

the value of count.

coord — optional integer that specifies the point of interest (i.e. to select) for the point selection. If negative, its value

will be the last position of the dimension in question minus the value of coord.

slots_value — optional integer that specifies the number of chunk slots in the raw data chunk cache for accessing the
HDF5 dataset. Due to the hashing strategy, its value should ideally be a prime number. When the keyword DEFAULT
is specified, its value is 521 (i.e. default value defined by the HDF5 library). When the keyword FILE is specified, its
value will be as defined in the cache slots parameter upon using (i.e. opening) the file. In case the keyword SLOTS is
not specified, its current value remains intact. Of note, if object_name is an HDF5 attribute then the cache is ignored

(i.e. it is not applicable for accessing attributes).

size_value — optional integer that specifies the total size of the raw data chunk cache in bytes for accessing the HDF5
dataset. When the keyword DEFAULT is specified, its value is 1048576 (i.e. 1 MB — default value defined by the HDF5
library). When the keyword FILE is specified, its value will be as defined in the cache size parameter upon using (i.e.
opening) the file. In case the keyword SIZE is not specified, its current value remains intact. Of note, if object_name

is an HDF5 attribute then the cache is ignored (i.e. it is not applicable for accessing attributes).

preemption_value — optional float that specifies the chunk preemption policy for accessing the HDF5 dataset. Its
value must be between 0 and 1. It indicates the weighting according to which chunks which have been fully read or
written are penalized when determining which chunks to flush from cache. When the keyword DEFAULT is specified,
its value is 0.75 (i.e. default value defined by the HDF5 library). When the keyword FILE is specified, its value will be
as defined in the cache preemption parameter upon using (i.e. opening) the file. In case the keyword PREEMPTION is
not specified, its current value remains intact. Of note, if object_name is an HDF5 attribute then the cache is ignored

(i.e. it is not applicable for accessing attributes).

post_processing_option — optional option that transforms the result set according to the programmer’s needs such
as ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post

processing options are separated with a space.

output_redirecting_option — optional option that specifies a (text or binary) file or memory (i.e. user-defined
variable) to write the result set into. If not specified, the cursor in use is populated with the result set instead (please

refer to the chapter CURSOR and subsection INTO for additional information).

Version 2.0.1 Page 248 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Return

The data selected (i.e. read) from an HDF5 dataset or attribute as an HDFQL_TINYINT (in case the data type of the
dataset or attribute is HDFQL_TINYINT), HDFQL_UNSIGNED_TINYINT (in case the data type of the dataset or
attribute is HDFQL_UNSIGNED_TINYINT), HDFQL_SMALLINT (in case the data type of the dataset or attribute is
HDFQL_SMALLINT), HDFQL_UNSIGNED_SMALLINT (in case the data type of the dataset or attribute is
HDFQL_UNSIGNED_SMALLINT), HDFQL_INT (in case the data type of the dataset or attribute is HDFQL_INT),
HDFQL_UNSIGNED_INT (in case the data type of the dataset or attribute is HDFQL_UNSIGNED_INT), HDFQL_BIGINT
(in case the data type of the dataset or attribute is HDFQL_BIGINT), HDFQL_UNSIGNED_BIGINT (in case the data type
of the dataset or attribute is HDFQL_UNSIGNED_BIGINT), HDFQL_FLOAT (in case the data type of the dataset or
attribute is HDFQL_FLOAT), HDFQL_DOUBLE (in case the data type of the dataset or attribute is HDFQL_DOUBLE),
HDFQL_CHAR (in case the data type of the dataset or attribute is HDFQL_CHAR), HDFQL_VARTINYINT (in case the
data type of the dataset or attribute is HDFQL _VARTINYINT), HDFQL_UNSIGNED_VARTINYINT (in case the data type
of the dataset or attribute is HDFQL_UNSIGNED_VARTINYINT), HDFQL_VARSMALLINT (in case the data type of the
dataset or attribute is HDFQL_VARSMALLINT), HDFQL_UNSIGNED_VARSMALLINT (in case the data type of the
dataset or attribute is HDFQL_UNSIGNED_VARSMALLINT), HDFQL_VARINT (in case the data type of the dataset or
attribute is HDFQL_VARINT), HDFQL _UNSIGNED_VARINT (in case the data type of the dataset or attribute is
HDFQL_UNSIGNED_VARINT), HDFQL_VARBIGINT (in case the data type of the dataset or attribute is
HDFQL_VARBIGINT), HDFQL_UNSIGNED_VARBIGINT (in case the data type of the dataset or attribute is
HDFQL_UNSIGNED_VARBIGINT), HDFQL_VARFLOAT (in case the data type of the dataset or attribute is
HDFQL_VARFLOAT), HDFQL_VARDOUBLE (in case the data type of the dataset or attribute is HDFQL_VARDOUBLE),
HDFQL_VARCHAR (in case the data type of the dataset or attribute is HDFQL_VARCHAR) or HDFQL_OPAQUE (in case
the data type of the dataset or attribute is HDFQL_OPAQUE).

Example(s)

create an HDF5 dataset named "my dataset(0" of data type short of one dimension (size 3)
with initial values of 65, 66 and 77
CREATE DATASET my dataset(O AS SMALLINT(3) VALUES (65, 66, 067)

select (i.e. read) data from dataset "my dataset0" and populate cursor in use with it
(should be 65, 66, 67)
SELECT FROM my datasetO

create an HDF5 attribute named "my attribute(O" of data type short
CREATE ATTRIBUTE my attribute(O AS SMALLINT

Version 2.0.1 Page 249 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

select (i.e. read) data from attribute "my attribute(0" and populate cursor in use with
it (should be 0)
SELECT FROM my attributel

create an HDF5 attribute named "my attributel" of data type unsigned short of one
dimension (size 2) with initial values of 95 and 97

CREATE ATTRIBUTE my attributel AS UNSIGNED SMALLINT (2) VALUES (95, 97)

select (i.e. read) data from attribute "my attributel" and populate cursor in use with
it (should be 95, 97)
SELECT FROM my attributel

create an HDF5 dataset named "my datasetl" of data type float of one dimension (size
512)
CREATE DATASET my datasetl AS FLOAT(512)

select (i.e. read) data from dataset "my datasetl" and write it into a text file named
"my fileO.txt" using default separator ",6"

SELECT FROM my datasetl INTO FILE my file(.txt

select (i.e. read) data from dataset "my datasetl" and write it into a text file named
"my filel.txt" using a DOS-based end of line (EOL) terminator and separator "**"

SELECT FROM my datasetl INTO DOS TEXT FILE my filel.txt SEPARATOR **

select (i.e. read) data from dataset "my datasetl" and write it into a binary file
named "my file.bin"

SELECT FROM my datasetl INTO BINARY FILE my file.bin

create an HDF5 dataset named "my dataset2" of data type short of one dimension (size 5)

CREATE DATASET my dataset2 AS SMALLINT (5)

insert (i.e. write) values 0, 5, 3, 9 and 7 into dataset "my dataset2"

INSERT INTO my dataset2 VALUES (0, 5, 3, 9, 7)

select (i.e. read) data from dataset "my dataset2" using a hyperslab selection
(starting from position #3) and populate cursor in use with it (should be 9, 7)
SELECT FROM my dataset2(3:::)

Version 2.0.1 Page 250 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

select (i.e. read) data from dataset "my dataset2" using a hyperslab selection
(starting from position #4) and populate cursor in use with it (should be 7)

SELECT FROM my dataset2(-1:::)

select (i.e. read) data from dataset "my dataset2" using a hyperslab selection
(starting from position #1 with a block of 2) and populate cursor in use with it (should
be 5, 3)

SELECT FROM my dataset2(l1:::7)

create an HDF5 dataset named "my dataset3" of data type int of two dimensions (size
3x3)
CREATE DATASET my dataset3 AS INT (3, 3)

insert (i.e. write) values 0, 0, 0, 0, 0, 0, 4, 8 and 6 into dataset "my dataset3"

INSERT INTO my dataset3 VALUES(0O, 0O, 0O, 0O, 0O, 0, 4, &, 6)

select (i.e. read) data from dataset "my dataset3" using a hyperslab selection
(starting from position #2 of the first dimension and position #1 of the second
dimension) and populate cursor in use with it (should be 8, 6)

SELECT FROM my dataset3(Z2:::, 1l:::)

select (i.e. read) data from dataset "my dataset3" using a hyperslab selection
(starting from position #2 of the first dimension and position #0 of the second dimension
with a stride of 2, count of 2 and block of 1) and populate cursor in use with it (should
be 4, 6)

SELECT FROM my dataset3(Z2:::, 0:2:2:1)

create an HDF5 dataset named "my dataset4" of data type short of one dimension (size
10)
CREATE DATASET my dataset4 AS SMALLINT (10)

insert (i.e. write) values 0, 0, 90, 91, 92, 93, 0, 94, 95 and 0 into dataset
"my dataset4"
INSERT INTO my dataset4 VALUES (0O, 0, 90, 91, 92, 93, 0, 94, 95, 0)

select (i.e. read) data from dataset "my dataset4" using an irregular hyperslab
selection (starting from position #2 with a count of 3 and block of 1; starting from
position #4 with a count of 2 and block of 1; starting from position #7 with a count of 2
and block of 1) and populate cursor in use with it (should be 90, 91, 92, 93, 94, 95)
SELECT FROM my dataset4(2::3:1 OR 4::2:1 OR 7::2:1)

Version 2.0.1 Page 251 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

create an HDF5 dataset named "my dataset5" of data type long long of one dimension
(size 15)
CREATE DATASET my dataset5 AS BIGINT(15)

insert (i.e. write) values 0, 0, 0, 0, 0, 75, 77, 0, 0, 0, 0, 0, 0, 0 and 0 into
dataset "my datasetb5"
INSERT INTO my dataset5 VALUES(0, 0, 0, 0, 0, 75, 77, 0, 0, 0, 0, 0, 0, 0, 0)

select (i.e. read) data from dataset "my dataset5" using an irregular hyperslab
selection (starting from position #3 with a count of 4 and block of 1; starting from
position #5 with a count of 3 and block of 1) and populate cursor in use with it (should
be 75, 77)

SELECT FROM my datasetb5(3::4:1 AND 5::3:1)

create an HDF5 dataset named "my dataset6" of data type float of one dimension (size 8)

CREATE DATASET my dataset6 AS FLOAT(8)

insert (i.e. write) values 0, 0, 7.5, 0, 7.7, 0, 0 and 7.9 into dataset "my dataseté6"
INSERT INTO my dataset6 VALUES (0O, 0, 7.5, 0, 7.7, 0, 0, 7.9)

select (i.e. read) data from dataset "my dataset6" using a point selection (positions
#2, #4 and #7) and populate cursor in use with it (should be 7.5, 7.7, 7.9)
SELECT FROM my dataset6(2; 4; 7/)

create an HDF5 dataset named "my dataset7" of data type double of two dimensions (size
4x3)
CREATE DATASET my dataset?7 AS DOUBLE (4, 3)

insert (i.e. write) values 0, 0, 0, 0, 0, 15.2, 0, 0, 0, 18.5, 0 and 0 into dataset
"my dataset7"
INSERT INTO my dataset?7 VALUES(0O, 0O, 0O, 0O, 0O, 15.2, 0, 0, 0, 18.5, 0, 0)

select (i.e. read) data from dataset "my dataset?7" using a point selection (position #1
of the first dimension and position #2 of the second dimension, position #3 of the first
dimension and position #0 of the second dimension) and populate cursor in use with it
(should be 15.2, 18.5)

SELECT FROM my dataset7(1, 2; 3, 0)

Version 2.0.1 Page 252 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// declare variables
char script[1024];
double datal[3];

int 1i;

// create an HDF5 dataset named "my dataset8" of data type double of one dimension (size
3) with initial values of 21.1, 18.8 and 75.6
hdfql execute("CREATE DATASET my dataset8 AS DOUBLE (3) VALUES (21.1, 18.8, 75.6)");

// register variable "data'" for subsequent use (by HDFql)
hdfql variable register(data);

// prepare script to select (i.e. read) data from dataset "my dataset8" and populate
variable '"data" with it

sprintf(script, "SELECT FROM my dataset8 INTO MEMORY 3d",

hdfql variable get number (data));

// execute script

hdfql execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)

hdfql variable unregister(data);

// display content of variable "data" (should be 21.1, 18.8, 75.6)
for(i = 0; i < 3; i++)
{

printf("s$f\n", data[i]),

// declare variables

char script[1024];

HDFQL VARIABLE LENGTH datal[3];
int x;

int y;

int count;

// create an HDF5 dataset named "my dataset9" of data type variable-length double of one
dimension (size 3)

hdfgl execute ("CREATE DATASET my dataset9 AS VARDOUBLE (3)");

Version 2.0.1 Page 253 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// insert (i.e. write) values into dataset "my dataset9"

hdfql execute("INSERT INTO my dataset9 VALUES((3.2, 1.3), (0, 0.2), (9.1, 7.4, 6.5))");

// register variable "data" for subsequent use (by HDFql)
hdfql variable register(data);

// prepare script to select (i.e. read) data from dataset "my dataset9" and populate
variable '"data" with it

sprintf(script, "SELECT FROM my dataset9 INTO MEMORY %d",

hdfql variable get number (data));

// execute script

hdfgl execute(script);

// unregister variable '"data" as it is no longer used/needed (by HDFql)
hdfgl variable unregister(data);

// display content of cursor in use (should be 3.2, 1.3, 0, 0.2, 9.1, 7.4, 6.5)
for(x = 0; x < 3; x++)

{
count = data[x].count;
for(y = 0; y < count; y++)
{
printf("2f\n", *((double *) data[x].address + y));,
}
}

// release memory allocated (by HDFgl) in variable "data"
for(x = 0; x < 3; x++)
{

free(data[x] .address) ;

// declare variables
char script[1024];
char *datal[3];

int x;

Version 2.0.1 Page 254 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// create an HDF5 dataset named "my datasetlO" of data type variable-length char of one
dimension (size 3)

hdfql execute ("CREATE DATASET my datasetlO AS VARCHAR(3)");

// insert (i.e. write) values into dataset "my datasetl0"

hdfgl execute("INSERT INTO my datasetlO VALUES(\"Hierarchical\", \"Data\", \"Format\")");

// register variable "data" for subsequent use (by HDFql)
hdfql variable register(data);

// prepare script to select (i.e. read) data from dataset "my datasetl0" and populate
variable '"data" with it
sprintf (script, "SELECT FROM my datasetl(0 INTO MEMORY $%d",

hdfqgl variable get number (data));

// execute script

hdfqgl execute(script);

// unregister variable '"data" as it is no longer used/needed (by HDFql)
hdfql variable unregister (data);

// display content of cursor in use (should be "Hierarchical", "Data", "Format")
for(x = 0; x < 3; x++)
{

printf("%s\n", data[x]);

// release memory allocated (by HDFgl) in variable "data"
for(x = 0; x < 3; x++)
{

free(data[x]);

// assume that 1) the following program is launched in parallel using four MPI processes
(e.g. "mpiexec —-n 4 my program"), 2) an HDF5 file named "my file.h5" containing a dataset
named "my datasetll"” of data type int of one dimension (size 4) already exists, and 3)
the dataset stores the values 0, 10, 20 and 30 in positions #0, #1, #2 and #3

respectively

Version 2.0.1 Page 255 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

// declare variables
char script[17

int rank;

// use (i.e. open) an HDF5 file named "my file.h5" in parallel
hdfql execute("USE PARALLEL FILE my file.h5");
// get number (i.e. rank) of the MPI process (should be between 0 and 3)

rank = hdfql mpi get rank();

// prepare script to select (i.e. read) in parallel positions #0 (by MPI process rank 0),
#1 (by MPI process rank 1), #2 (by MPI process rank 2) and #3 (by MPI process rank 3)
from dataset "my datasetll" using a point selection

sprintf(script, "SELECT FROM PARALLEL my datasetll (%d)", rank);

// execute script

hdfgl execute(script);

// move the cursor in use to the first position within the result set

hdfgl cursor first (NULL);

// display value selected (i.e. read) by each MPI process (should display message "Value
read by MPI process rank X is Y" four times, where X is 0 and Y is 0, X is 1 and Y is 10,
X is 2 and Y is 20, or X is 3 and Y is 30 (not necessarily in this order))

printf("Value read by MPI process rank $d is %d\n", rank, *hdfql cursor get int (NULL));

6.7 DATA INTROSPECTION LANGUAGE (DIL)

HDFqgl has certain operations that retrieve information about the internals of HDF5 files but also about HDFql itself
and the runtime environment. These operations are part of the Data Introspection Language (DIL) and they all begin
with the keyword SHOW. Moreover, these operations support both POST-PROCESSING and REDIRECTING options to
further transform and redirect the result of operations according to the programmer’s needs. Typically, a DIL

operation has the following syntactical form:

SHOW operation_name [post_processing_option [post_processing_option]*] [output_redirecting_option)

Version 2.0.1 Page 256 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

6.7.1 SHOW FILE VALIDITY

Syntax
SHOW FILE VALIDITY file_name [, file_name]*
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) validity of a file named file_name. Multiple files’ validities can be checked at once by separating these
with a comma (,). If file_name was not found or its validity could not be checked (due to unknown/unexpected

reasons), no subsequent files are checked, and an error is raised.

Parameter(s)

file_name — mandatory string that specifies the name of the file whose validity is to be obtained. Multiple files are

separated with a comma (,).

post_processing_option — optional option that transforms the result set according to the programmer’s needs such
as ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post

processing options are separated with a space.

output_redirecting_option — optional option that specifies a (text or binary) file or memory (i.e. user-defined
variable) to write the result set into. If not specified, the cursor in use is populated with the result set instead (please

refer to the chapter CURSOR and subsection INTO for additional information).
Return

The validity of a file as an HDFQL_INT, which can either be HDFQL_YES or HDFQL_NO depending on whether the file

is a valid HDFS5 file or not.

Example(s)

create an HDF5 file named "my file.h5"
CREATE FILE my file.hb

Version 2.0.1 Page 257 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

show (i.e. get) validity of file "my file.h5" (should be 0 - i.e. HDFQL YES)
SHOW FILE VALIDITY myifile.h5

run touch command to create an empty file named "not an hdf file"

RUN '"touch not an hdf file"

show (i.e. get) validity of file "not an hdf file" (should be -1 - i.e. HDFQL NO)
SHOW FILE VALIDITY not_an hdf file

show (i.e. get) validity of both files "my file.h5" and "not an hdf file" at once
(should be 0, -1)
SHOW FILE VALIDITY my file.h5, not _an hdf file

6.7.2 SHOW USE DIRECTORY

Syntax

SHOW USE DIRECTORY
[post_processing_option [post_processing_option]*]
[output_redirecting_option)

Description

Show (i.e. get) working directory currently in use.

Parameter(s)

post_processing_option — optional option that transforms the result set according to the programmer’s needs such
as ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post

processing options are separated with a space.

output_redirecting_option — optional option that specifies a (text or binary) file or memory (i.e. user-defined
variable) to write the result set into. If not specified, the cursor in use is populated with the result set instead (please

refer to the chapter CURSOR and subsection INTO for additional information).

Version 2.0.1 Page 258 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Return

The working directory currently in use as an HDFQL_VARCHAR.

Example(s)

set working directory currently in use to "/"

USE DIRECTORY /

show (i.e. get) current working directory (should be "/")

SHOW USE DIRECTORY

create a directory named "my directory"

CREATE DIRECTORY my directory

set working directory currently in use to "my directory" (more precisely
"/my directory")
USE DIRECTORY my directory

show (i.e. get) current working directory (should be "/my directory")

SHOW USE DIRECTORY

create two directories named "my subdirectory0" and "my subdirectoryl" (both
directories will be created in directory "/my directory")

CREATE DIRECTORY my subdirectory(0, my subdirectoryl

set directory currently in use to "my subdirectory0" (more precisely
"/my directory/my subdirectory0")
USE DIRECTORY my subdirectory(

show (i.e. get) current working directory (should be "/my directory/my subdirectoryO")

SHOW USE DIRECTORY
set directory currently in use to "my subdirectoryl" located one level up (more
precisely "/my directory/my subdirectoryl")

USE DIRECTORY ../my subdirectoryl

show (i.e. get) current working directory (should be "/my directory/my subdirectoryl")

SHOW USE DIRECTORY

set directory currently in use two levels up (should be "/")

Version 2.0.1 Page 259 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

USE DIRECTORY ../..

show (i.e. get) current working directory (should be "/")

SHOW USE DIRECTORY

6.7.3 SHOW USE FILE

Syntax

SHOW USE FILE
[post_processing_option [post_processing_option]*]
[output_redirecting_option)

Description

Show (i.e. get) HDF5 file currently in use.

Parameter(s)

post_processing_option — optional option that transforms the result set according to the programmer’s needs such
as ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post

processing options are separated with a space.

output_redirecting_option — optional option that specifies a (text or binary) file or memory (i.e. user-defined
variable) to write the result set into. If not specified, the cursor in use is populated with the result set instead (please

refer to the chapter CURSOR and subsection INTO for additional information).
Return

The HDF5 file currently in use as an HDFQL_VARCHAR or nothing (in case no file is in use).

Example(s)

show (i.e. get) HDF5 file currently in use (i.e. open) (should be empty)
SHOW USE FILE

Version 2.0.1 Page 260 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

use (i.e. open) four HDF5 files named "my file0O.h5", "my filel.h5", "my file2.h5" and
"my file3.h5"
USE FILE my file(O.h5, my filel.h5, my file2.h5, my file3.hb

show (i.e. get) HDF5 file currently in use (i.e. open) (should be "my file3.h5")
SHOW USE FILE

close HDF5 file currently in use (i.e. file "my file3.h5")
CLOSE FILE

show (i.e. get) HDF5 file currently in use (i.e. open) (should be my "file2.h5")
SHOW USE FILE

close HDF5 file "my filel.h5"
CLOSE FILE my filel.h5

show (i.e. get) HDF5 file currently in use (i.e. open) (should be "my file2.h5")
SHOW USE FILE

close HDF5 file currently in use (i.e. file "my fileZ2.h5")
CLOSE FILE

show (i.e. get) HDF5 file currently in use (i.e. open) (should be "my file0O.h5")
SHOW USE FILE

close HDF5 file currently in use (i.e. file "my file0.h5")
CLOSE FILE

show (i.e. get) HDF5 file currently in use (i.e. open) (should be empty)
SHOW USE FILE

6.7.4 SHOW ALL USE FILE

Syntax

SHOW ALL USE FILE
[post_processing_option [post_processing_option]*]
[output_redirecting_option)

Version 2.0.1 Page 261 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Show (i.e. get) all HDF5 files in use (i.e. open).

Parameter(s)

post_processing_option — optional option that transforms the result set according to the programmer’s needs such
as ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post

processing options are separated with a space.

output_redirecting_option — optional option that specifies a (text or binary) file or memory (i.e. user-defined
variable) to write the result set into. If not specified, the cursor in use is populated with the result set instead (please

refer to the chapter CURSOR and subsection INTO for additional information).
Return

All HDFS files in use (i.e. open) as an HDFQL_VARCHAR or nothing (in case no files are in use).

Example(s)

show (i.e. get) all HDF5 files in use (i.e. open) (should be empty)
SHOW ALL USE FILE

use (i.e. open) three HDF5 files named "my file(0.h5", "my filel.h5" and "my file2.h5"
USE FILE my file0.h5, my filel.h5, my file2.hb

show (i.e. get) all HDF5 files in use (i.e. open) (should be "my file2.h5",
"my filel.h5", "my file0.h5")
SHOW ALL USE FILE

close all HDF5 files in use (i.e. open)

CLOSE ALL FILE

show (i.e. get) all HDF5 files in use (i.e. open) (should be empty)
SHOW ALL USE FILE

Version 2.0.1 Page 262 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

6.7.5 SHOW USE GROUP

Syntax

SHOW USE GROUP
[post_processing_option [post_processing_option]*]
[output_redirecting_option]

Description

Show (i.e. get) HDF5 group currently in use.

Parameter(s)

post_processing_option — optional option that transforms the result set according to the programmer’s needs such
as ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post

processing options are separated with a space.

output_redirecting_option — optional option that specifies a (text or binary) file or memory (i.e. user-defined
variable) to write the result set into. If not specified, the cursor in use is populated with the result set instead (please

refer to the chapter CURSOR and subsection INTO for additional information).
Return

The HDF5 group currently in use as an HDFQL_VARCHAR or nothing (in case no file is in use).

Example(s)

use (i.e. open) an HDF5 file named ”my_file.h5"
USE FILE my file.hb

show (i.e. get) current working group (should be "/")

SHOW USE GROUP

create an HDF5 group named "my group"

CREATE GROUP my group

set group currently in use to "my group" (more precisely "/my group")

Version 2.0.1 Page 263 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

USE GROUP my group

show (i.e. get) current working group (should be "/my group")
SHOW USE GROUP

create two HDF5 groups named "my subgroup0" and "my subgroupl" (both groups will be
created in group "/my group")

CREATE GROUP my subgroup(O, my subgroupl

set group currently in use to "my subgroupO" (more precisely "/my group/my subgroup0")

USE GROUP my subgroup0

show (i.e. get) current working group (should be "/my group/my subgroup0")
SHOW USE GROUP

set group currently in use to "." (the group currently in use will not change as "."
refers to the current working group itself)

USE GROUP .

show (i.e. get) current working group (should be "/my group/my subgroupO")
SHOW USE GROUP

set group currently in use to "my subgroupl" located one level up (more precisely
"/my group/my subgroupl")
USE GROUP ../my subgroupl

set group currently in use two levels up (should be "/")

USE GROUP ../..

6.7.6 SHOW [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK]

Syntax

SHOW [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK] [object_name] [LIKE

regular_expression [DEEP deep_value [, deep_value]*]]
[WHERE condition]

[ORDER CREATION]

Version 2.0.1 Page 264 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) HDF5 objects (i.e. groups, datasets, attributes, (soft) links or external links) within an HDF5 group or
dataset named object name or check the existence of an object named object name. If object name is not
specified, all objects are returned — to return only objects of type group, dataset, attribute, (soft) link or external
link, specify the keyword GROUP, DATASET, ATTRIBUTE, [SOFT] LINK or EXTERNAL LINK respectively. Otherwise, if

object_name is specified and the keyword LIKE is not specified, one of the following behaviors applies:

e |If it ends with “/”, object_name will be treated as a group or dataset, and all groups, datasets or attributes

stored in object_name are returned.

e |If it does not end with “/”, object name will be checked for its existence. If it does exist, object_name is

returned; otherwise, if it does not exist, an error is raised.

If the keyword LIKE is specified, only objects with names complying with a regular expression named
regular_expression will be returned (in HDFql, regular expressions are the ones specified by PCRE which closely
follow PERL5 syntax — please refer to http://www.pcre.org and http://perldoc.perl.org/perlre.html| for additional
information). If regular_expression includes “**”, recursive search is performed (i.e. HDFqgl will search in all existing
groups and subgroups). To limit the recursiveness, the keyword DEEP may be specified along with a value

deep_value representing the maximum recursiveness limit.

A special type of ordering can be performed using the keyword ORDER CREATION allowing HDF5 objects (i.e. groups,
datasets and attributes) to be returned according to their time of creation — in contrast to the default behavior

which returns objects in an ascending order.

Parameter(s)

object_name — optional string that specifies the name of the HDF5 group or dataset to show (i.e. get) existing
objects (i.e. groups, datasets, attributes, (soft) links or external links) within object_name or check the existence of

an object named object_name.

regular_expression — optional string that specifies the regular expression which only names of objects that comply

with it are returned. If regular_expression includes “**”, recursive search is performed.

Version 2.0.1 Page 265 of 336

http://www.pcre.org/
http://perldoc.perl.org/perlre.html

Hierarchical Data Format query language (HDFql) Reference Manual

deep_value — optional integer that specifies the maximum recursiveness limit.
condition — to be defined.

post_processing_option — optional option that transforms the result set according to the programmer’s needs such
as ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post

processing options are separated with a space.

output_redirecting_option — optional option that specifies a (text or binary) file or memory (i.e. user-defined
variable) to write the result set into. If not specified, the cursor in use is populated with the result set instead (please

refer to the chapter CURSOR and subsection INTO for additional information).
Return

The HDF5 objects (i.e. groups, datasets, attributes, (soft) links or external links) within an HDF5 group or dataset or

the existence of an object as an HDFQL_VARCHAR.

Example(s)

set group currently in use to "/" (i.e. the root of the HDF5 file)
USE GROUP /

create two HDF5 groups named "my group0" and "my groupl" (both groups will be created
in group "/")
CREATE GROUP my group(O, my groupl

create one HDF5 dataset named "my dataset(0" of data type unsigned short (it will be
created in group "/")

CREATE DATASET my dataset(O AS UNSIGNED SMALLINT

create one HDF5 dataset named "my datasetl" of data type short (it will be created in
group "/my group0")
CREATE DATASET my group0O/my datasetl AS SMALLINT

create two HDF5 attributes named "my attributeO" and "my attributel" of data type long
long (both attributes will be created in group "/")
CREATE ATTRIBUTE my attributeO, my attributel AS BIGINT

create one HDF5 attribute named "my attributel2" of data type char (it will be created

in group "/my group0")

Version 2.0.1 Page 266 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE ATTRIBUTE my groupO/my attribute2 AS TINYINT

create one HDF5 attribute named "my attribute3" of data type unsigned char (it will be
created in dataset "/my_datasetO”)

CREATE ATTRIBUTE my datasetO/my attribute3 AS UNSIGNED TINYINT

show (i.e. get) all HDF5 objects existing in group "/" (should be "my group0",
"my groupl", "my dataset0", "my attributeO", "my attributel")
SHOW

show (i.e. get) all HDF5 groups existing in group "/" (should be "my group0",
"my groupl")
SHOW GROUP

show (i.e. get) all HDF5 datasets existing in group "/" (should be "my dataset0")
SHOW DATASET

check if HDF5 object "my groupX" exists (should raise an error)

SHOW my groupX

check if HDF5 object "my group0" exists (should be "my group0")
SHOW my group0

show (i.e. get) all HDF5 objects existing within group "my groupO" (should be
"my datasetl"”", "my attribute2")
SHOW my group0/

show (i.e. get) all HDF5 attributes existing within group "my group0" (should be
"my attribute2")
SHOW ATTRIBUTE my group0/

show (i.e. get) all HDF5 objects existing within dataset "my dataset(0" (should be
"my attribute3")
SHOW my dataset0/

create an HDF5 group named "my groupl" that tracks the objects’ (i.e. groups and
datasets) creation order within the group

CREATE GROUP my groupl ORDER TRACKED

Version 2.0.1 Page 267 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

create two HDF5 groups named "my subgroupl" and "my subgroup0" (both groups will be
created in group "/my groupl")

CREATE GROUP my groupl/my subgroupl, my groupl/my subgroup0

create two HDF5 datasets named "my datasetl" and "my datasetO" of data type float (both
datasets will be created in group "/my groupl")

CREATE DATASET my groupl/my datasetl, my groupl/my dataset(0 AS FLOAT

show (i.e. get) all HDF5 objects existing within group "my groupl" (should be
"my dataset0", "my datasetl", "my subgroup0", "my subgroupl")
SHOW my groupl/

show (i.e. get) all HDF5 objects existing within group "my groupl" ordered by their
time of creation (should be "my subgroupl", "my subgroupO", "my datasetl", "my dataset(")

SHOW my groupl/ ORDER CREATION

create an HDF5 dataset named "my datasetl" of data type double that tracks the
attributes’ creation order within the dataset

CREATE DATASET my datasetl AS DOUBLE ATTRIBUTE ORDER TRACKED

create two HDF5 attributes named "my attribute2" and "my attribute(O" of data type int
(both attributes will be created 1in dataset ”/my_datasetl")
CREATE ATTRIBUTE my datasetl/my attribute2, my datasetl/my attribute(AS INT

create an HDF5 attribute named "my attributel" of data type short (it will be created
in dataset "/my datasetl")
CREATE ATTRIBUTE my datasetl/my attributel AS SMALLINT

show (i.e. get) all HDF5 objects existing within dataset "my datasetl" (should be
"my attributeO", "my attributel", "my attribute2")
SHOW my datasetl/

show (i.e. get) all HDF5 objects existing within dataset "my datasetl" ordered by their
time of creation (should be" my attribute2", "my attributel", "my attributel")

SHOW my datasetl/ ORDER CREATION

create an HDF5 group named "my group2"
CREATE GROUP my groupZ2

Version 2.0.1 Page 268 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

create two HDF5 groups named "my subgroup0" and "my subgroupl" (both groups will be
created in group "/my group2")
CREATE GROUP my group2/my subgroupO, my group2/my subgroupl

create three HDF5 groups in one go named "my group3" (in root group "/"),
"my subgroup0" (in group "my group3") and "my subsubgroupO" (in group

"my group3/my subgroup0")

CREATE GROUP my group3/my subgroupO/my subsubgroup0

create an HDF5 dataset named "my dataset2" (in root group "/") of data type double
CREATE DATASET my_dataset2 AS DOUBLE

create an HDF5 dataset named "my dataset(0" (in group "my group2") of data type int
CREATE DATASET my group2/my dataset(O AS INT

create an HDF5 dataset named "my datasetl"” (in group "my group2") of data type short
CREATE DATASET my group2/my datasetl AS SMALLINT

create an HDF5 dataset named "my dataset0" (in group "my group3") of data type float
CREATE DATASET my group3/my dataset(0 AS FLOAT

create an HDF5 dataset named "my datasetO0" (in group "my group3/my subgroupO") of data
type char
CREATE DATASET my group3/my subgroup0/my dataset0 AS TINYINT

create an HDF5 attribute named "my attribute3" (in group "/") of data type long long
CREATE ATTRIBUTE my attribute3 AS BIGINT

create an HDF5 attribute named "my attribute4" (in group "/") of data type unsigned int
CREATE ATTRIBUTE my attribute4 AS UNSIGNED INT

create two HDF5 attributes in one go that are both named "my attribute(" (one in group
"my group2" and the other in "my group3") of data type variable float
CREATE ATTRIBUTE my group2/my attribute(O, my group3/my attribute(l AS VARFLOAT

create an HDF5 attribute named "my attribute(O" (in dataset "my dataset2'") of data type
variable char

CREATE ATTRIBUTE my dataset2/my attribute(O AS VARCHAR

show (i.e. get) all HDF5 objects from group "/" that has "3" in their names (should be
"my attribute3", "my group3")

Version 2.0.1 Page 269 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

SHOW LIKE 3

show (i.e. get) all HDF5 attributes from group "/" that has "3" in their names (should
be "my attribute3")
SHOW ATTRIBUTE LIKE 3

show (i.e. get) all HDF5 objects recursively starting from group "/" (should be

"my attribute3", "my attribute4", "my dataset2", "my dataset2/my attributel",

"my group2", "my group2/my attribute0", "my group2/my dataset0", "my group2/my datasetl",
"my groupZ2/my subgroup0", "my group2/my subgroupl", "my group3",

"my group3/my attribute(0", "my group3/my dataset0", "my group3/my subgroup0",

"my group3/my subgroup0/my dataset0", "my group3/my subgroup0/my subsubgroup0")

SHOW LIKE **

show (i.e. get) all HDF5 datasets recursively starting from group "/" (should be

"my dataset2", "my group2/my dataset0", "my group2/my datasetl", "my group3/my datasetO",
"my group3/my subgroup0/my dataset0")

SHOW DATASET LIKE **

show (i.e. get) all HDF5 datasets recursively starting from group "/" and one level
deep at most (should be "my dataset2", "my group2/my dataset0", "my group2/my datasetl”,
"my group3/my dataset0")

SHOW DATASET LIKE ** DEEP |

show (i.e. get) all HDF5 objects recursively starting from group "my group3" (should be
"my attributeO", "my dataset0", "my subgroup0", "my subgroup(O/my dataset0",

"my subgroup0/my subsubgroup0")

SHOW my group3 LIKE **

show (i.e. get) all HDF5 groups recursively starting from group "my group3" (should be
"my subgroup0", "my subgroupO/my subsubgroup0")
SHOW GROUP my group3 LIKE **

show (i.e. get) all HDF5 objects recursively starting from group "/" that has "2" in
their names (should be "my dataset2", "my group2")
SHOW LIKE **/2

show (i.e. get) all HDF5 groups recursively starting from group "/" that has "1" or "2"
in their names (should be "my group2", "my group2/my subgroupl")
SHOW GROUP LIKE **/1|2

Version 2.0.1 Page 270 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

show (i.e. get) all HDF5 objects recursively starting from group "/" that starts with
"sub" in their names (should be "my group2/my subgroup0", "my group2/my subgroupl”,

"my group3/my subgroup0", "my group3/my subgroup0/my subsubgroup0")

SHOW LIKE **/“my sub

6.7.7 SHOW TYPE

Syntax
SHOW TYPE object_name [, object_name]*
[post_processing_option [post_processing_option]*]

[output_redirecting_option)

Description

Show (i.e. get) type of an object named object_name. Multiple objects’ types can be obtained at once by separating
these with a comma (,). If object name was not found or its type could not be checked (due to

unknown/unexpected reasons), no subsequent objects are checked, and an error is raised.

Parameter!s)

object_name — name of the object whose type is to be obtained. Multiple objects are separated with a comma (,).

post_processing_option — optional option that transforms the result set according to the programmer’s needs such
as ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post

processing options are separated with a space.

output_redirecting_option — optional option that specifies a (text or binary) file or memory (i.e. user-defined
variable) to write the result set into. If not specified, the cursor in use is populated with the result set instead (please

refer to the chapter CURSOR and subsection INTO for additional information).
Return

The type of an object as an HDFQL_INT, which can either be HDFQL_GROUP, HDFQL_DATASET, HDFQL_ATTRIBUTE,
HDFQL_GROUP | HDFQL_SOFT_LINK, HDFQL_DATASET | HDFQL_SOFT_LINK, HDFQL_GROUP |
HDFQL_EXTERNAL_LINK, or HDFQL_DATASET | HDFQL_EXTERNAL_LINK depending on whether the object is a group,

Version 2.0.1 Page 271 of 336

Hierarchical Data Format query language (HDFql)

Reference Manual

dataset, attribute, group and (soft) link at the same time, dataset and (soft) link at the same time, group and

external link at the same time, or dataset and external link at the same time, respectively.

Example(s)

create an HDF5 group named "my object0"

CREATE GROUP my object(

create an HDF5 dataset named "my objectl" of data type double

CREATE DATASET my objectl AS DOUBLE

create an HDF5
CREATE ATTRIBUTE

create an HDF5
CREATE SOFT LINK

create an HDF5

dataset) 1in file

my object2 AS FLOAT

my object3 TO my objectO

"my file.h5"

CREATE EXTERNAL LINK my object4 TO my file.hb

show (1.

SHOW TYPE

show (1.

SHOW TYPE

show (1.

SHOW TYPE

show (1.

4, 16)
SHOW TYPE

e. get) type
my objectO

e. get) type
my objectl

e. get) type
my object2

e. get) type

of object "my object0"

of object "my objectl"”

of object "my object2"

attribute named "my object2" of data type float

soft link named "my object3" to object "my object0"

external link named "my object4" to object "my object" (assumed to be a

my object

(should be 4 — i.e. HDFQL GROUP)

(should be 8 - i.e. HDFQL DATASET)

(should be 16 - i.e. HDFQL ATTRIBUTE)

of both objects "my object0" and "my object2" at once (should be

my object0, my object2

show (i.e. get) type of object "my object3" (should be 36 — i.e. HDFQL GROUP |

HDFQL SOFT_LINK)

SHOW TYPE

my object3

show (i.e. get) type of object "my object4" (should be 136 - i.e. HDFQL DATASET |

HDFQIL EXTERNAL LINK)

SHOW TYPE

my object4

Version 2.0.1

Page 272 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

6.7.8 SHOW DATA TYPE

Syntax
SHOW [DATASET | ATTRIBUTE] DATA TYPE object_ name [, object_name]*
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) data type of an HDF5 dataset or attribute named object_name. Multiple objects’ data types can be
obtained at once by separating these with a comma (,). If object_name was not found or its data type could not be
checked (due to unknown/unexpected reasons), no subsequent objects are checked, and an error is raised. In case a
dataset and an attribute with identical names (object_name) are stored in the same location (i.e. group) and neither
the keyword DATASET nor ATTRIBUTE is specified, the data type returned belongs to the dataset. To explicitly get

the data type of object_name according to its type, the keyword DATASET or ATTRIBUTE must be specified.

Parameter(s)

object_name — mandatory string that specifies the name of the HDF5 dataset or attribute whose data type is to be

obtained. Multiple datasets or attributes are separated with a comma (,).

post_processing_option — optional option that transforms the result set according to the programmer’s needs such
as ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post

processing options are separated with a space.

output_redirecting_option — optional option that specifies a (text or binary) file or memory (i.e. user-defined
variable) to write the result set into. If not specified, the cursor in use is populated with the result set instead (please

refer to the chapter CURSOR and subsection INTO for additional information).
Return

The data type of an HDF5 dataset or attribute as an HDFQL _INT, which can either be HDFQL TINYINT,
HDFQL_UNSIGNED_TINYINT, HDFQL_SMALLINT, HDFQL_UNSIGNED_SMALLINT, HDFQL_INT,
HDFQL_UNSIGNED_INT, HDFQL_BIGINT, HDFQL_UNSIGNED_BIGINT, HDFQL_FLOAT, HDFQL_DOUBLE, HDFQL_CHAR,

Version 2.0.1 Page 273 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT,
HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT,
HDFQL_VARFLOAT, HDFQL_VARDOUBLE, HDFQL_VARCHAR, HDFQL_OPAQUIE, HDFQL_BITFIELD,
HDFQL_ENUMERATION, HDFQL_COMPOUND or HDFQL_UNDEFINED (please refer to Table 6.3 for additional

information about data types).

Example(s)

create an HDF5 dataset named "my dataset(0" of data type double
CREATE DATASET my_datasetO AS DOUBLE

show (i.e. get) data type of dataset "my dataset(0" (should be 512 - i.e. HDFQL DOUBLE)
SHOW DATA TYPE my dataset(

create an HDF5 dataset named "my datasetl" of data type float
CREATE DATASET my datasetl AS FLOAT

show (i.e. get) data type of dataset "my datasetl" (should be 256 - i.e. HDFQL FLOAT)
SHOW DATA TYPE my datasetl

create an HDF5 dataset named "my common" of data type short

CREATE DATASET my common AS SMALLINT

create an HDF5 attribute named "my common" of data type int

CREATE ATTRIBUTE my common AS INT

show (i.e. get) data type of dataset "my common" (should be 4 - i.e. HDFQL SMALLINT)
SHOW DATA TYPE my common

show (i.e. get) data type of dataset "my common" (should be 4 - i.e. HDFQL SMALLINT)
SHOW DATASET DATA TYPE my common

show (i.e. get) data type of attribute "my common" (should be 16 — i.e. HDFQL INT)
SHOW ATTRIBUTE DATA TYPE my common

Version 2.0.1 Page 274 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

6.7.9 SHOW ENDIANNESS

Syntax
SHOW [DATASET | ATTRIBUTE] ENDIANNESS object name [, object name]*
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) endianness of an HDF5 dataset or attribute named object_name. Multiple objects’ endiannesses can
be obtained at once by separating these with a comma (,). If object_name was not found or its endianness could not
be checked (due to unknown/unexpected reasons), no subsequent objects are checked, and an error is raised. In
case a dataset and an attribute with identical names (object_name) are stored in the same location (i.e. group) and
neither the keyword DATASET nor ATTRIBUTE is specified, the endianness returned belongs to the dataset. To
explicitly get the endianness of object_name according to its type, the keyword DATASET or ATTRIBUTE must be

specified.

Parameter(s)

object_name — mandatory string that specifies the name of the HDF5 dataset or attribute whose endianness is to be

obtained. Multiple datasets or attributes are separated with a comma (,).

post_processing_option — optional option that transforms the result set according to the programmer’s needs such
as ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post

processing options are separated with a space.

output_redirecting_option — optional option that specifies a (text or binary) file or memory (i.e. user-defined
variable) to write the result set into. If not specified, the cursor in use is populated with the result set instead (please

refer to the chapter CURSOR and subsection INTO for additional information).
Return

The endianness of an HDF5 dataset or attribute as an HDFQL_INT, which can either be HDFQL_LITTLE_ENDIAN,
HDFQL_BIG_ENDIAN or HDFQL_UNDEFINED depending on whether the endianness is little, big or undefined (i.e.

endianness is not applicable to object_name) respectively.

Version 2.0.1 Page 275 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

create an HDF5 dataset named "my dataset(0" of data type int using the native endian
representation (of the machine)

CREATE DATASET my dataset(O AS INT

show (i.e. get) endianness of dataset "my dataset(0" (should be 1 or 2 - i.e.
HDFQL LITTLE ENDIAN or HDFQL BIG ENDIAN - depending on whether the dataset was created in
a little or big endian machine respectively)

SHOW ENDIANNESS my datasetO

create an HDF5 dataset named "my datasetl" of data type long long using the little
endian representation

CREATE DATASET my datasetl AS LITTLE ENDIAN BIGINT

show (i.e. get) endianness of dataset "my datasetl" (should be 1 - i.e.
HDFQL_LITTLE_ENDIAN)
SHOW ENDIANNESS my datasetl

create an HDF5 dataset named "my common'" of data type short using the big endian
representation

CREATE DATASET my common AS BIG ENDIAN SMALLINT

create an HDF5 attribute named "my common" of data type int using the little endian
representation

CREATE ATTRIBUTE my common AS LITTLE ENDIAN INT

show (i.e. get) endianness of dataset "my common" (should be 2 - i.e. HDFQL BIG ENDIAN)
SHOW ENDIANNESS my common

show (i.e. get) endianness of dataset "my common" (should be 2 - i.e. HDFQL BIG ENDIAN)
SHOW DATASET ENDIANNESS my common

show (i.e. get) endianness of attribute "my common" (should be 1 - i.e.
HDFQL_LITTLE_ENDIAN)
SHOW ATTRIBUTE ENDIANNESS my common

Version 2.0.1 Page 276 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

6.7.10 SHOW CHARSET

Syntax
SHOW [DATASET | ATTRIBUTE] CHARSET object name [, object name]*
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) charset of an HDF5 dataset or attribute named object_name. Multiple objects’ charsets can be
obtained at once by separating these with a comma (,). If object_name was not found or its charset could not be
checked (due to unknown/unexpected reasons), no subsequent objects are checked, and an error is raised. In case a
dataset and an attribute with identical names (object_name) are stored in the same location (i.e. group) and neither
the keyword DATASET nor ATTRIBUTE is specified, the charset returned belongs to the dataset. To explicitly get the

charset of object_name according to its type, the keyword DATASET or ATTRIBUTE must be specified.

Parameter(s)

object_name — mandatory string that specifies the name of the HDF5 dataset or attribute whose charset is to be

obtained. Multiple datasets or attributes are separated with a comma (,).

post_processing_option — optional option that transforms the result set according to the programmer’s needs such
as ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post

processing options are separated with a space.

output_redirecting_option — optional option that specifies a (text or binary) file or memory (i.e. user-defined
variable) to write the result set into. If not specified, the cursor in use is populated with the result set instead (please

refer to the chapter CURSOR and subsection INTO for additional information).
Return

The charset of an HDF5 dataset or attribute as an HDFQL_INT, which can either be HDFQL_ASCII, HDFQL_UTF8 or
HDFQL_UNDEFINED depending on whether the charset is ASCIl, UTF8 or undefined (i.e. object_name is neither of

data type HDFQL_CHAR nor HDFQL_VARCHAR) respectively.

Version 2.0.1 Page 277 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

create an HDF5 dataset named "my dataset(0" of data type char
CREATE DATASET my dataset(O AS CHAR

show (i.e. get) charset of dataset "my dataset0" (should be 1 - i.e. HDFQL ASCII)
SHOW CHARSET my dataset(

create an HDF5 dataset named "my datasetl" of data type char of one dimension (size 20)

CREATE DATASET my datasetl AS UTF8 CHAR(20)

show (i.e. get) charset of dataset "my datasetl" (should be 2 - i.e. HDFQL UTFS8)
SHOW CHARSET my datasetl

create an HDF5 dataset named "my common'" of data type short

CREATE DATASET my common AS UTF8 CHAR

create an HDF5 attribute named "my common" of data type variable-length char

CREATE ATTRIBUTE my common AS ASCII VARCHAR

show (i.e. get) charset of dataset "my common" (should be 2 - i.e. HDFQL UTF8)
SHOW CHARSET my common

show (i.e. get) data type of dataset "my common" (should be 2 - i.e. HDFQL UTF8)
SHOW DATASET CHARSET my common

show (i.e. get) charset of attribute "my common" (should be 1 - i.e. HDFQL ASCII)
SHOW ATTRIBUTE CHARSET my common

6.7.11 SHOW STORAGE TYPE

Syntax
SHOW STORAGE TYPE dataset_name [, dataset_name]*
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Version 2.0.1 Page 278 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Show (i.e. get) storage type (layout) of an HDF5 dataset named dataset_name. Multiple datasets’ storage types can
be obtained at once by separating these with a comma (,). If dataset_name was not found or its storage type could

not be checked (due to unknown/unexpected reasons), no subsequent datasets are checked, and an error is raised.

Parameter(s)

dataset_name — mandatory string that specifies the name of the HDF5 dataset whose storage type is to be obtained.

Multiple datasets are separated with a comma (,).

post_processing_option — optional option that transforms the result set according to the programmer’s needs such
as ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post

processing options are separated with a space.

output_redirecting_option — optional option that specifies a (text or binary) file or memory (i.e. user-defined
variable) to write the result set into. If not specified, the cursor in use is populated with the result set instead (please

refer to the chapter CURSOR and subsection INTO for additional information).
Return

The storage type (layout) of an HDF5 dataset as an HDFQL_INT, which can either be HDFQL CONTIGUOUS,
HDFQL_COMPACT or HDFQL_CHUNKED depending on whether the storage is contiguous, compact or chunked

respectively.

Example(s)

create an HDF5 dataset named "my dataset0" of data type unsigned int
CREATE DATASET my dataset(O AS UNSIGNED INT

show (i.e. get) storage type (layout) of dataset "my dataset0" (should be 1 - i.e.
HDFQL CONTIGUOUS)
SHOW STORAGE TYPE my dataset(

create an HDF5 dataset named "my datasetl" of data type int of two dimensions (size
5x7)

CREATE CONTIGUOUS DATASET my datasetl AS INT (5, 7)

show (i.e. get) storage type (layout) of dataset "my datasetl" (should be 1 - i.e.

Version 2.0.1 Page 279 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

HDFQL CONTIGUOUS)
SHOW STORAGE TYPE my datasetl

create an HDF5 dataset named "my dataset2" of data type double of one dimension (size
8)
CREATE COMPACT DATASET my dataset2 AS DOUBLE (8)

show (i.e. get) storage type (layout) of dataset "my dataset2" (should be 2 - i.e.
HDFQL COMPACT)
SHOW STORAGE TYPE my dataset?2

create an HDF5 dataset named "my dataset3" of data type float of three dimensions (size
3x5x20)
CREATE CHUNKED DATASET my dataset3 AS FLOAT (3, 5,)

show (i.e. get) storage type (layout) of dataset "my dataset3" (should be 4 - i.e.
HDFQL CHUNKED)
SHOW STORAGE TYPE my dataset3

6.7.12 SHOW STORAGE ALLOCATION

Syntax

SHOW STORAGE ALLOCATION dataset_name [, dataset_name]*
[post_processing_option [post_processing_option]*]
[output_redirecting_option)

Description

Show (i.e. get) storage allocation of an HDF5 dataset named dataset_name. Multiple datasets’ storage allocation can
be obtained at once by separating these with a comma (,). If dataset_name was not found or its storage allocation
could not be checked (due to unknown/unexpected reasons), no subsequent datasets are checked, and an error is

raised.

Version 2.0.1 Page 280 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

dataset_name — mandatory string that specifies the name of the HDF5 dataset whose storage allocation is to be

obtained. Multiple datasets are separated with a comma (,).

post_processing_option — optional option that transforms the result set according to the programmer’s needs such
as ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post

processing options are separated with a space.

output_redirecting_option — optional option that specifies a (text or binary) file or memory (i.e. user-defined
variable) to write the result set into. If not specified, the cursor in use is populated with the result set instead (please

refer to the chapter CURSOR and subsection INTO for additional information).
Return

The storage allocation of an HDF5 dataset as an HDFQL_INT, which can either be HDFQL_EARLY,
HDFQL_INCREMENTAL or HDFQL_LATE depending on whether the storage allocation is early, incremental or late

respectively.

Example(s)

create an HDF5 dataset named "my dataset(" of data type unsigned int
CREATE DATASET my dataset(O AS UNSIGNED INT

show (i.e. get) storage allocation of dataset "my datasetO" (should be 4 - i.e.
HDFQL LATE)
SHOW STORAGE ALLOCATION my dataset(

create an HDF5 dataset named "my datasetl" of data type int of two dimensions (size
5x7)
CREATE CONTIGUOUS DATASET my datasetl AS INT (5,)

show (i.e. get) storage allocation of dataset "my datasetl" (should be 4 - i.e.
HDFQL LATE)
SHOW STORAGE ALLOCATION my datasetl

create an HDF5 dataset named "my dataset2" of data type double of one dimension (size
8)
CREATE COMPACT DATASET my datasetZ AS DOUBLE (&)

Version 2.0.1 Page 281 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

show (i.e. get) storage allocation of dataset "my dataset2" (should be 1 - i.e.
HDFQLfEARLY)
SHOW STORAGE ALLOCATION my dataset?Z

create an HDF5 dataset named "my dataset3" of data type float of three dimensions (size
3x5x20)
CREATE CHUNKED DATASET my dataset3 AS FLOAT (3, ,)

show (i.e. get) storage allocation of dataset "my dataset3" (should be 2 - i.e.
HDFQIL INCREMENTAL)
SHOW STORAGE ALLOCATION my dataset3

6.7.13 SHOW STORAGE DIMENSION

Syntax

SHOW STORAGE DIMENSION dataset_name
[post_processing_option [post_processing_option]*]
[output_redirecting_option)

Description

Show (i.e. get) storage dimensions of an HDF5 dataset named dataset_name.

Parameter(s)

dataset_name — mandatory string that specifies the name of the HDF5 dataset whose storage dimensions are to be

obtained.

post_processing_option — optional option that transforms the result set according to the programmer’s needs such
as ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post

processing options are separated with a space.

output_redirecting_option — optional option that specifies a (text or binary) file or memory (i.e. user-defined
variable) to write the result set into. If not specified, the cursor in use is populated with the result set instead (please

refer to the chapter CURSOR and subsection INTO for additional information).

Version 2.0.1 Page 282 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Return

The storage dimensions of an HDF5 dataset as an HDFQL_BIGINT or nothing (in case the dataset is not chunked —i.e.

its storage type is not HDFQL_CHUNKED).

Example(s)

create an HDF5 dataset named "my dataset(0" of data type unsigned int
CREATE DATASET my dataset(O AS UNSIGNED INT

show (i.e. get) storage dimensions of dataset "my dataset0" (should be empty)

SHOW STORAGE DIMENSION my datasetO

create an HDF5 dataset named "my datasetl" of data type int of two dimensions (size
5x7)
CREATE DATASET my datasetl AS INT (5,)

show (i.e. get) storage dimensions of dataset "my datasetl" (should be empty)

SHOW STORAGE DIMENSION my datasetl

create an HDF5 dataset named "my dataset2" of data type double of one dimension (size
8)
CREATE CHUNKED DATASET my datasetZ AS DOUBLE (&)

show (i.e. get) storage dimensions of dataset "my dataset2" (should be 8)

SHOW STORAGE DIMENSION my datasetZ2

create an HDF5 dataset named "my dataset3" of data type float of three dimensions (size
3x5x20)
CREATE CHUNKED (1, 2, 10) DATASET my dataset3 AS FLOAT (3, 5, 20)

show (i.e. get) storage dimensions of dataset "my dataset3" (should be 1, 2, 10)
SHOW STORAGE DIMENSION my dataset3

6.7.14 SHOW DIMENSION

Syntax

SHOW [DATASET | ATTRIBUTE] DIMENSION object_name

Version 2.0.1 Page 283 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) dimensions of an HDF5 dataset or attribute named object_name. In case a dataset and an attribute
with identical names (object_name) are stored in the same location (i.e. group) and neither the keyword DATASET
nor ATTRIBUTE is specified, the dimensions returned belong to the dataset. To explicitly get the dimensions of
object_name according to its type, the keyword DATASET or ATTRIBUTE must be specified. If object_name does not

have a dimension (i.e. if it is scalar), the returned value is one.

Parameter(s)

object_name — mandatory string that specifies the name of the HDF5 dataset or attribute whose dimensions are to

be obtained.

post_processing_option — optional option that transforms the result set according to the programmer’s needs such
as ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post

processing options are separated with a space.

output_redirecting_option — optional option that specifies a (text or binary) file or memory (i.e. user-defined
variable) to write the result set into. If not specified, the cursor in use is populated with the result set instead (please

refer to the chapter CURSOR and subsection INTO for additional information).
Return

The dimensions of an HDF5 dataset or attribute as an HDFQL_BIGINT.

Example(s)

create an HDF5 dataset named "my dataset(0" of data type unsigned int
CREATE DATASET my dataset(O AS UNSIGNED INT

show (i.e. get) dimensions of dataset "my dataset0" (should be 1)

SHOW DIMENSION my dataset(

create an HDF5 dataset named "my datasetl" of data type double of one dimension (size

15)

Version 2.0.1 Page 284 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE DATASET my datasetl AS DOUBLE (15)

show (i.e. get) dimensions of dataset "my datasetl" (should be 15)
SHOW DIMENSION my datasetl

create an HDF5 attribute named '"my attribute(0" of data type int of one dimension (size
1)
CREATE ATTRIBUTE my attribute(O AS INT(1)

show (i.e. get) dimensions of attribute "my attribute(0" (should be 1)
SHOW DIMENSION my attributel

create an HDF5 attribute named "my attributel" of data type short of two dimensions
(size 2x3)

CREATE ATTRIBUTE my attributel AS SMALLINT(Z, 3)

show (i.e. get) dimensions of attribute "my attributel" (should be 2, 3)
SHOW DIMENSION my attributel

create an HDF5 dataset named "my dataset2" of data type float of three dimensions
(first dimension with size 2 and extendible up to 10; second dimension with size 5; third
dimension with size 20 and extendible to an unlimited size)

CREATE CHUNKED DATASET my datasetZ AS FLOAT (3 TO 10, 5, 20 TO UNLIMITED)

show (i.e. get) dimensions of dataset "my dataset2" (should be 3, 5, 20)
SHOW DIMENSION my dataset?2

6.7.15 SHOW MAX DIMENSION

Syntax
SHOW [DATASET | ATTRIBUTE] MAX DIMENSION object name
[post_processing_option [post_processing_option]*]

[output_redirecting_option)

Version 2.0.1 Page 285 of 336

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Show (i.e. get) maximum dimensions of an HDF5 dataset or attribute named object_name. In case a dataset and an
attribute with identical names (object_name) are stored in the same location (i.e. group) and neither the keyword
DATASET nor ATTRIBUTE is specified, the dimensions returned belong to the dataset. To explicitly get the maximum
dimensions of object_name according to its type, the keyword DATASET or ATTRIBUTE must be specified. If the
maximum dimension is unlimited, the returned value is HDFQL_UNLIMITED. If object name does not have a

dimension (i.e. if it is scalar), the returned value is one.

Parameter(s)

object name — mandatory string that specifies the name of the HDF5 dataset or attribute whose maximum

dimensions are to be obtained.

post_processing_option — optional option that transforms the result set according to the programmer’s needs such
as ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post

processing options are separated with a space.

output_redirecting_option — optional option that specifies a (text or binary) file or memory (i.e. user-defined
variable) to write the result set into. If not specified, the cursor in use is populated with the result set instead (please

refer to the chapter CURSOR and subsection INTO for additional information).
Return

The maximum dimensions of an HDF5 dataset or attribute as an HDFQL_BIGINT.

Example(s)

create an HDF5 dataset named "my dataset0" of data type unsigned int
CREATE DATASET my dataset(O AS UNSIGNED INT

show (i.e. get) maximum dimensions of dataset "my datasetO" (should be 1)

SHOW MAX DIMENSION my datasetO
create an HDF5 dataset named "my datasetl" of data type double of one dimension (size
15)

CRE