

Hierarchical Data Format query language (HDFql)

Reference Manual

Version 2.3.0

February 2021

Copyright (C) 2016-2021

This document is part of the Hierarchical Data Format query language (HDFql). For more information about HDFql,

please visit the website http://www.hdfql.com.

Disclaimer

Every effort has been made to ensure that this document is as accurate as possible. The information contained in this

document is provided without any express, statutory or implied warranties. The founders of HDFql shall have neither

liability nor responsibility to any person or entity with respect to any loss or damage arising from the information in

this document or the usage of HDFql.

http://www.hdfql.com/

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 ___ i

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. INSTALLATION .. 3

2.1 WINDOWS .. 4

2.2 LINUX ... 4

2.3 MACOS ... 5

3. USAGE .. 6

3.1 C ... 6

3.2 C++ ... 10

3.3 JAVA ... 14

3.4 PYTHON .. 16

3.5 C# ... 18

3.6 FORTRAN .. 21

3.7 R ... 26

3.8 COMMAND-LINE INTERFACE... 28

4. CURSOR ... 32

4.1 DESCRIPTION .. 32

4.2 SUBCURSOR .. 36

4.3 EXAMPLES .. 38

5. APPLICATION PROGRAMMING INTERFACE ... 45

5.1 CONSTANTS .. 45

5.2 FUNCTIONS ... 53

5.2.1 HDFQL_EXECUTE .. 59

5.2.2 HDFQL_EXECUTE_GET_STATUS .. 60

5.2.3 HDFQL_ERROR_GET_LINE .. 61

5.2.4 HDFQL_ERROR_GET_POSITION .. 62

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 ___ ii

5.2.5 HDFQL_ERROR_GET_MESSAGE .. 63

5.2.6 HDFQL_CURSOR_INITIALIZE ... 64

5.2.7 HDFQL_CURSOR_USE ... 65

5.2.8 HDFQL_CURSOR_USE_DEFAULT ... 66

5.2.9 HDFQL_CURSOR_CLEAR ... 67

5.2.10 HDFQL_CURSOR_CLONE .. 68

5.2.11 HDFQL_CURSOR_GET_DATA_TYPE... 69

5.2.12 HDFQL_CURSOR_GET_COUNT ... 71

5.2.13 HDFQL_SUBCURSOR_GET_COUNT ... 72

5.2.14 HDFQL_CURSOR_GET_POSITION .. 73

5.2.15 HDFQL_SUBCURSOR_GET_POSITION ... 74

5.2.16 HDFQL_CURSOR_FIRST .. 75

5.2.17 HDFQL_SUBCURSOR_FIRST .. 76

5.2.18 HDFQL_CURSOR_LAST ... 78

5.2.19 HDFQL_SUBCURSOR_LAST ... 79

5.2.20 HDFQL_CURSOR_NEXT ... 80

5.2.21 HDFQL_SUBCURSOR_NEXT .. 81

5.2.22 HDFQL_CURSOR_PREVIOUS ... 82

5.2.23 HDFQL_SUBCURSOR_PREVIOUS ... 84

5.2.24 HDFQL_CURSOR_ABSOLUTE .. 85

5.2.25 HDFQL_SUBCURSOR_ABSOLUTE .. 86

5.2.26 HDFQL_CURSOR_RELATIVE .. 88

5.2.27 HDFQL_SUBCURSOR_RELATIVE .. 89

5.2.28 HDFQL_CURSOR_GET_TINYINT .. 91

5.2.29 HDFQL_SUBCURSOR_GET_TINYINT .. 92

5.2.30 HDFQL_CURSOR_GET_UNSIGNED_TINYINT.. 93

5.2.31 HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINT ... 94

5.2.32 HDFQL_CURSOR_GET_SMALLINT ... 96

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 ___ iii

5.2.33 HDFQL_SUBCURSOR_GET_SMALLINT ... 97

5.2.34 HDFQL_CURSOR_GET_UNSIGNED_SMALLINT .. 98

5.2.35 HDFQL_SUBCURSOR_GET_UNSIGNED_SMALLINT .. 99

5.2.36 HDFQL_CURSOR_GET_INT ... 101

5.2.37 HDFQL_SUBCURSOR_GET_INT ... 102

5.2.38 HDFQL_CURSOR_GET_UNSIGNED_INT ... 103

5.2.39 HDFQL_SUBCURSOR_GET_UNSIGNED_INT .. 105

5.2.40 HDFQL_CURSOR_GET_BIGINT .. 106

5.2.41 HDFQL_SUBCURSOR_GET_BIGINT .. 107

5.2.42 HDFQL_CURSOR_GET_UNSIGNED_BIGINT ... 108

5.2.43 HDFQL_SUBCURSOR_GET_UNSIGNED_BIGINT ... 110

5.2.44 HDFQL_CURSOR_GET_FLOAT ... 111

5.2.45 HDFQL_SUBCURSOR_GET_FLOAT .. 112

5.2.46 HDFQL_CURSOR_GET_DOUBLE .. 113

5.2.47 HDFQL_SUBCURSOR_GET_DOUBLE ... 114

5.2.48 HDFQL_CURSOR_GET_CHAR .. 116

5.2.49 HDFQL_VARIABLE_REGISTER .. 117

5.2.50 HDFQL_VARIABLE_TRANSIENT_REGISTER .. 120

5.2.51 HDFQL_VARIABLE_UNREGISTER ... 121

5.2.52 HDFQL_VARIABLE_UNREGISTER_ALL ... 122

5.2.53 HDFQL_VARIABLE_GET_NUMBER .. 124

5.2.54 HDFQL_VARIABLE_GET_DATA_TYPE .. 125

5.2.55 HDFQL_VARIABLE_GET_COUNT ... 126

5.2.56 HDFQL_VARIABLE_GET_SIZE .. 127

5.2.57 HDFQL_VARIABLE_GET_DIMENSION_COUNT .. 128

5.2.58 HDFQL_VARIABLE_GET_DIMENSION .. 129

5.2.59 HDFQL_MPI_GET_SIZE ... 131

5.2.60 HDFQL_MPI_GET_RANK ... 132

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 ___ iv

6. LANGUAGE ... 134

6.1 DATA TYPES .. 138

6.1.1 TINYINT .. 139

6.1.2 UNSIGNED TINYINT .. 140

6.1.3 SMALLINT ... 140

6.1.4 UNSIGNED SMALLINT ... 141

6.1.5 INT ... 142

6.1.6 UNSIGNED INT ... 142

6.1.7 BIGINT .. 143

6.1.8 UNSIGNED BIGINT .. 144

6.1.9 FLOAT .. 144

6.1.10 DOUBLE ... 145

6.1.11 CHAR .. 146

6.1.12 VARTINYINT ... 146

6.1.13 UNSIGNED VARTINYINT .. 147

6.1.14 VARSMALLINT .. 148

6.1.15 UNSIGNED VARSMALLINT .. 148

6.1.16 VARINT ... 149

6.1.17 UNSIGNED VARINT ... 150

6.1.18 VARBIGINT ... 151

6.1.19 UNSIGNED VARBIGINT ... 151

6.1.20 VARFLOAT .. 152

6.1.21 VARDOUBLE ... 153

6.1.22 VARCHAR ... 153

6.1.23 OPAQUE ... 154

6.1.24 ENUMERATION .. 155

6.1.25 COMPOUND ... 155

6.2 POST-PROCESSING .. 156

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 ___ v

6.2.1 ORDER ... 156

6.2.2 TOP .. 159

6.2.3 BOTTOM .. 161

6.2.4 FROM TO ... 162

6.2.5 STEP ... 165

6.3 REDIRECTING .. 166

6.3.1 FROM ... 167

6.3.2 INTO ... 175

6.4 DATA DEFINITION LANGUAGE (DDL) ... 182

6.4.1 CREATE DIRECTORY .. 182

6.4.2 CREATE FILE ... 183

6.4.3 CREATE GROUP .. 185

6.4.4 CREATE DATASET ... 188

6.4.5 CREATE ATTRIBUTE .. 197

6.4.6 CREATE [SOFT | HARD] LINK ... 202

6.4.7 CREATE EXTERNAL LINK .. 204

6.4.8 ALTER DIMENSION ... 206

6.4.9 RENAME DIRECTORY .. 208

6.4.10 RENAME FILE.. 209

6.4.11 RENAME [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK] 210

6.4.12 COPY FILE ... 212

6.4.13 COPY [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK] 213

6.4.14 DROP DIRECTORY ... 215

6.4.15 DROP FILE .. 216

6.4.16 DROP [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK] 217

6.5 DATA MANIPULATION LANGUAGE (DML) ... 219

6.5.1 INSERT ... 220

6.6 DATA QUERY LANGUAGE (DQL) .. 233

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 ___ vi

6.6.1 SELECT ... 233

6.7 DATA INTROSPECTION LANGUAGE (DIL) ... 247

6.7.1 SHOW FILE VALIDITY .. 247

6.7.2 SHOW USE DIRECTORY ... 249

6.7.3 SHOW USE FILE .. 250

6.7.4 SHOW ALL USE FILE .. 252

6.7.5 SHOW USE GROUP ... 253

6.7.6 SHOW [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK] 255

6.7.7 SHOW TYPE .. 262

6.7.8 SHOW DATA TYPE .. 264

6.7.9 SHOW MEMBER ... 267

6.7.10 SHOW MASK .. 269

6.7.11 SHOW ENDIANNESS ... 271

6.7.12 SHOW CHARSET ... 273

6.7.13 SHOW STORAGE TYPE .. 275

6.7.14 SHOW STORAGE ALLOCATION .. 277

6.7.15 SHOW STORAGE DIMENSION ... 279

6.7.16 SHOW DIMENSION ... 280

6.7.17 SHOW ORDER .. 283

6.7.18 SHOW TAG ... 285

6.7.19 SHOW OFFSET .. 287

6.7.20 SHOW FILL TYPE ... 289

6.7.21 SHOW FILL VALUE .. 291

6.7.22 SHOW FILE SIZE .. 293

6.7.23 SHOW [DATASET | ATTRIBUTE] SIZE ... 295

6.7.24 SHOW HDFQL VERSION .. 296

6.7.25 SHOW HDF5 VERSION .. 297

6.7.26 SHOW MPI VERSION .. 298

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 ___ vii

6.7.27 SHOW DIRECTORY .. 299

6.7.28 SHOW FILE ... 301

6.7.29 SHOW EXECUTE STATUS ... 302

6.7.30 SHOW LIBRARY BOUNDS .. 303

6.7.31 SHOW CACHE ... 305

6.7.32 SHOW ATOMIC... 307

6.7.33 SHOW EXTERNAL LINK PREFIX .. 309

6.7.34 SHOW FLUSH ... 310

6.7.35 SHOW THREAD ... 311

6.7.36 SHOW PLUGIN PATH .. 313

6.7.37 SHOW DEBUG .. 314

6.8 MISCELLANEOUS .. 315

6.8.1 USE DIRECTORY .. 315

6.8.2 USE FILE ... 317

6.8.3 USE GROUP .. 319

6.8.4 FLUSH .. 321

6.8.5 CLOSE FILE.. 322

6.8.6 CLOSE ALL FILE ... 323

6.8.7 CLOSE GROUP .. 324

6.8.8 SET LIBRARY BOUNDS... 326

6.8.9 SET CACHE ... 327

6.8.10 SET ATOMIC ... 330

6.8.11 SET EXTERNAL LINK PREFIX... 332

6.8.12 SET FLUSH .. 333

6.8.13 SET THREAD ... 334

6.8.14 SET PLUGIN PATH ... 335

6.8.15 SET DEBUG ... 337

GLOSSARY .. 338

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 ___ viii

Application Programming Interface (API) ... 338

Attribute .. 338

Cursor . .. 338

Dataset .. 338

Data type ... 339

Endianness .. 339

Group . .. 339

Hierarchical Data Format (HDF) ... 339

Hyperslab .. 339

Member .. 340

Message Passing Interface (MPI) ... 340

Operation .. 340

Parallel HDF5 (PHDF5) ... 340

Post-processing ... 340

Redirecting .. 341

Result set... 341

Result subset ... 341

Subcursor .. 341

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 ___ ix

LIST OF TABLES

Table 5.1 – HDFql constants in C ... 50

Table 5.2 – HDFql constants in C and their corresponding definitions in C++ .. 50

Table 5.3 – HDFql constants in C and their corresponding definitions in Java ... 51

Table 5.4 – HDFql constants in C and their corresponding definitions in Python ... 51

Table 5.5 – HDFql constants in C and their corresponding definitions in C# .. 52

Table 5.6 – HDFql constants in C and their corresponding definitions in Fortran .. 52

Table 5.7 – HDFql constants in C and their corresponding definitions in R .. 53

Table 5.8 – HDFql functions in C ... 56

Table 5.9 – HDFql functions in C and their corresponding definitions in C++ ... 56

Table 5.10 – HDFql functions in C and their corresponding definitions in Java .. 57

Table 5.11 – HDFql functions in C and their corresponding definitions in Python .. 57

Table 5.12 – HDFql functions in C and their corresponding definitions in C# ... 58

Table 5.13 – HDFql functions in C and their corresponding definitions in Fortran ... 58

Table 5.14 – HDFql functions in C and their corresponding definitions in R ... 58

Table 6.1 – HDFql operations text formatting conventions ... 134

Table 6.2 – HDFql operations .. 137

Table 6.3 – HDFql data types .. 139

Table 6.4 – HDFql post-processing options ... 156

Table 6.5 – HDFql redirecting options ... 167

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 ___ x

LIST OF FIGURES

Figure 3.1 – Illustration of the command-line interface “HDFqlCLI” .. 31

Figure 4.1 – Linearization of a two dimensional dataset into a (one dimensional) cursor .. 36

Figure 4.2 – Cursor populated with data from dataset “my_dataset0” ... 38

Figure 4.3 – Cursor populated with data from dataset “my_dataset1” ... 39

Figure 4.4 – Cursor populated with data from dataset “my_dataset2” ... 40

Figure 4.5 – Cursor and its subcursor populated with data from dataset “my_dataset3” .. 41

Figure 4.6 – Cursor and its subcursors populated with data from dataset “my_dataset4” .. 42

Figure 4.7 – Cursor and its subcursors populated with data from dataset “my_dataset5” .. 44

Version 2.3.0 __ Page 1 of 341

1. INTRODUCTION

HDFql stands for “Hierarchical Data Format query language” and is the first tool that enables users to manage HDF51 files

through a high-level language. This language was designed to be simple to use and similar to SQL thus dramatically

reducing the learning effort. HDFql can be seen as an alternative to the C API (which contains more than 400 low-level

functions that are far from easy to use!) and to existing wrappers for C++, Java, Python, C#, Fortran and R for manipulating

HDF5 files. In addition, and whenever possible, it automatically employs parallelism to speed-up operations hiding its

inherent complexity from the user.

As an example, imagine that one needs to create an HDF5 file named “my_file.h5” and, inside it, a group named

“my_group” containing a one dimensional (size 3) dataset named “my_dataset” of data type integer. Additionally, the

dataset is compressed using ZLIB and initialized with values 4, 8 and 6. In HDFql, this can easily be implemented as follows:

create file my_file.h5

use file my_file.h5

create dataset my_group/my_dataset as int(3) enable zlib values(4, 8, 6)

In contrast, using the C API on the same example is quite cumbersome:

hid_t file;

hid_t group;

hid_t dataspace;

hid_t property;

hid_t dataset;

hsize_t dimension;

int value[3];

file = H5Fcreate("my_file.h5", H5F_ACC_EXCL, H5P_DEFAULT, H5P_DEFAULT);

group = H5Gcreate(file, "my_group", H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);

dimension = 3;

dataspace = H5Screate_simple(1, &dimension, NULL);

1 Hierarchical Data Format is the name of a set of file formats and libraries designed to store large amounts of numerical data. It is supported by The HDF

Group, whose mission is to ensure continued development of HDF technologies and the continued accessibility of data currently stored in HDF. Please

refer to the website http://www.hdfgroup.org for additional information.

http://www.hdfgroup.org/

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 2 of 341

property = H5Pcreate(H5P_DATASET_CREATE);

H5Pset_chunk(property, 1, &dimension);

H5Pset_deflate(property, 9);

dataset = H5Dcreate(group, "my_dataset", H5T_NATIVE_INT, dataspace, H5P_DEFAULT, property,

H5P_DEFAULT);

value[0] = 4;

value[1] = 8;

value[2] = 6;

H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, &value);

Version 2.3.0 __ Page 3 of 341

2. INSTALLATION

The official website of the Hierarchical Data Format query language (HDFql) is http://www.hdfql.com. Here, the most

recent documentation and examples that illustrate how to solve disparate use-cases using HDFql can be found. In

addition, in the download area (http://www.hdfql.com/#download) all versions of HDFql ever publicly released are

available. These versions are packaged as ZIP files, with each one meant for a particular platform (i.e. Windows, Linux or

macOS), architecture (i.e. 32 bit or 64 bit), compiler (Microsoft Visual Studio or Gnu Compiler Collection (GCC)) and –

optionally – MPI library (i.e. MPICH or Open MPI). When decompressed, such ZIP files typically have the following

organization in terms of directories and files contained within:

HDFql-x.y.z

 │

 + example (directory that contains C, C++, Java, Python, C#, Fortran and R examples)

 │

 + include (directory that contains HDFql C and C++ header files)

 │

 + lib (directory that contains HDFql C static and shared libraries)

 │

 + bin (directory that contains HDFql command-line interface and a proper launcher)

 │

 + plugin (directory that contains plugins used by HDFql)

 │

 + wrapper (directory that contains HDFql wrappers)

 │ │

 │ + cpp (directory that contains HDFql C++ wrapper)

 │ │

 │ + java (directory that contains HDFql Java wrapper)

 │ │

 │ + python (directory that contains HDFql Python wrapper)

 │ │

 │ + csharp (directory that contains HDFql C# wrapper)

 │ │

 │ + fortran (directory that contains HDFql Fortran wrapper)

 │ │

 │ + R (directory that contains HDFql R wrapper)

 │

 + doc (directory that contains HDFql reference manual)

http://www.hdfql.com/
http://www.hdfql.com/#download

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 4 of 341

 │

 - LICENSE.txt (file that contains information about HDFql license)

 │

 - RELEASE.txt (file that contains information about HDFql releases)

 │

 - README.txt (file that contains succinct information about HDFql)

The following sections provide concise instructions on how to install HDFql in the different platforms that it currently

supports – namely Windows, Linux and macOS.

2.1 WINDOWS

 Download the appropriate ZIP file according to the HDFql version, architecture and compiler of interest from

http://www.hdfql.com/#download. For instance, if the HDFql version of interest is 1.0.0 and it is to be used in a

machine running Windows 32 bit and, eventually, be linked against C or C++ code using the Microsoft Visual Studio

2010 compiler then the file to download is “HDFql-1.0.0_Windows32_VS-2010.zip”.

 Unzip the downloaded file using Windows Explorer in-build capabilities or a free tool such as 7-Zip (http://www.7-

zip.org).

2.2 LINUX

 Download the appropriate ZIP file according to the HDFql version, architecture, compiler and (optional) MPI library of

interest from http://www.hdfql.com/#download. For instance, if the HDFql version of interest is 1.4.0 and it is to be

used in a machine running Linux 64 bit and, eventually, be linked against C, C++, or Fortran code using the GCC 4.9.x

compiler with no need to work with HDF5 files in parallel (using an MPI library) then the file to download is “HDFql-

1.4.0_Linux64_GCC-4.9.zip”.

 Unzip the downloaded file using the Archive Manager or the KArchive (if in GNOME or KDE respectively), or by

opening a terminal and executing “unzip <downloaded_zip_file>”. If the unzip utility is not installed, it can be done by

executing from a terminal:

 In a Red Hat-based distribution:

http://www.hdfql.com/#download
http://www.7-zip.org/
http://www.7-zip.org/
http://www.hdfql.com/#download

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 5 of 341

sudo yum install unzip

 In a Debian-based distribution:

sudo apt-get install unzip

2.3 MACOS

 Download the appropriate ZIP file according to the HDFql version, architecture, compiler and (optional) MPI library of

interest from http://www.hdfql.com/#download. For instance, if the HDFql version of interest is 2.3.0 and it is to be

used in a machine running macOS 64 bit and, eventually, be linked against C, C++, or Fortran code using the GCC 4.9.x

compiler with the need of working with HDF5 files in parallel using MPICH 3.2.x MPI library then the file to download

is “HDFql-2.3.0_Darwin64_GCC-4.9_MPICH-3.2.zip”.

 Unzip the downloaded file using the Archive Utility or by opening a terminal and executing “unzip

<downloaded_zip_file>”. If the unzip utility is not installed, it can be done by executing from a terminal:

sudo port install unzip

http://www.hdfql.com/#download

Version 2.3.0 __ Page 6 of 341

3. USAGE

After following the instructions provided in the chapter INSTALLATION, HDFql is ready for usage. It can be used

programmatically in C, C++ and Fortran through static and shared libraries; in Java, Python, C# and R through wrappers;

and finally, through a command-line interface named “HDFqlCLI”. Moreover, in Linux and macOS, programs written in

these programming languages may manipulate HDF5 files both in serial and in parallel1, as distributions of HDFql built with

the serial HDF5 library and the parallel HDF5 (PHDF5) library are available for these platforms. The subsequent sections

provide guidance on usage and basic troubleshooting information to solve issues that may arise.

3.1 C

HDFql can be used in the C programming language through static and shared libraries. These libraries are stored in the

directory “lib”. The following short program illustrates how HDFql can be used in such language.

// include HDFql C header file (make sure it can be found by the C compiler)

#include <stdlib.h>

#include <stdio.h>

#include "HDFql.h"

int main(int argc, char *argv[])

{

 // display HDFql version in use

 printf("HDFql version: %s\n", HDFQL_VERSION);

 // create an HDF5 file named "my_file.h5" and use (i.e. open) it

 hdfql_execute("CREATE AND USE FILE my_file.h5");

 // create an HDF5 dataset named "my_dataset" of data type int

 hdfql_execute("CREATE DATASET my_dataset AS INT VALUES(10)");

1 Through MPICH (or, alternativately, one of its ABI compatible derivative libraries such as Intel MPI, Cray MPT, MVAPICH2, Parastation MPI) or Open

MPI. Both MPICH and Open MPI are freely available, high performance and widely portable implementations of the Message Passing Interface (MPI), a

standard for message-passing for distributed memory applications used in parallel computing. Please refer to the website https://www.mpich.org and

https://www.open-mpi.org for additional information.

https://www.mpich.org/
https://www.open-mpi.org/

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 7 of 341

 // select (i.e. read) data from dataset "my_dataset" and populate cursor with it

 hdfql_execute("SELECT FROM my_dataset");

 // move cursor to the first position within the result set

 hdfql_cursor_first(NULL);

 // display content of cursor

 printf("Dataset value: %d\n", *hdfql_cursor_get_int(NULL));

 return EXIT_SUCCESS;

}

Assuming that the program is stored in a file named “example.c”, it must first be compiled before it can be launched from

a terminal. To compile the program against the HDFql C static library:

 In Windows2 using Microsoft Visual Studio, by executing from a terminal:

cl.exe example.c /I<hdfql_include_directory> <hdfql_lib_directory>\HDFql.lib /link /LTCG

/NODEFAULTLIB:libcmt.lib

 In Linux and macOS using Gnu Compiler Collection (GCC), by executing from a terminal:

 With an HDFql non MPI-based distribution:

gcc example.c -fopenmp -I<hdfql_include_directory> <hdfql_lib_directory>/libHDFql.a

-lm –ldl

 With an HDFql MPI-based distribution:

gcc example.c -fopenmp -I<hdfql_include_directory> <hdfql_lib_directory>/libHDFql.a

-L<mpi_lib_directory> -lmpi -lm -ldl

2 When compiling a program against the HDFql C static library in Windows, the functions “hdfql_initialize” and “hdfql_finalize” must be explicitly called

by the program when starting and finishing respectively (otherwise an error may occur such as a segmentation fault). Of note, these functions do not

need to be called when compiling the program against the HDFql C shared library as this is automatically done by the library itself.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 8 of 341

To compile the same program against the HDFql C shared library:

 In Windows using Microsoft Visual Studio, by executing from a terminal:

cl.exe example.c /I<hdfql_include_directory> <hdfql_lib_directory>\HDFql_dll.lib

 In Linux and macOS using GCC, by executing from a terminal:

 With an HDFql non MPI-based distribution:

gcc example.c -I<hdfql_include_directory> -L<hdfql_lib_directory> -lHDFql -lm -ldl

 With an HDFql MPI-based distribution:

gcc example.c -I<hdfql_include_directory> -L<hdfql_lib_directory> -

L<mpi_lib_directory> -lHDFql -lmpi -lm -ldl

In case the program does not compile, most likely a C compiler is not installed. If a C compiler is missing, the solution is:

 In Windows, download and install a free version of Microsoft Visual Studio from the website

https://www.visualstudio.com/downloads.

 In Linux, install the GCC C compiler by executing from a terminal:

 In a Red Hat-based distribution:

sudo yum install gcc

 In a Debian-based distribution:

sudo apt-get install gcc

https://www.visualstudio.com/downloads

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 9 of 341

 In macOS, install the GCC C compiler by executing from a terminal (if xcode-select does not support the parameter “--

install” (due to being outdated), download and install the Command-Line Tools package from the website

http://developer.apple.com/downloads which includes GCC instead):

xcode-select --install

In case the compiled program does not launch, most likely the HDFql C shared library and/or the MPI shared library was

not found (these are needed to launch the program). The solution is:

 In Windows, add the directory where the file “HDFql_dll.dll” is located to the environment variable “PATH” by

executing from a terminal:

set PATH=<hdfql_lib_directory>;%PATH%

 In Linux, add the directories where the files “libHDFql.so” and (optionally) “libmpi.so” are located to the environment

variable “LD_LIBRARY_PATH” by executing from a terminal:

 With an HDFql non MPI-based distribution:

export LD_LIBRARY_PATH=<hdfql_lib_directory>:$LD_LIBRARY_PATH

 With an HDFql MPI-based distribution:

export LD_LIBRARY_PATH=<hdfql_lib_directory>:<mpi_lib_directory>:$LD_LIBRARY_PATH

 In macOS, add the directories where the files “libHDFql.dylib” and (optionally) “libmpi.dylib” are located to the

environment variable “DYLD_LIBRARY_PATH”3 by executing from a terminal:

 With an HDFql non MPI-based distribution:

3 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the

environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProte

ction/ConfiguringSystemIntegrityProtection.html for additional information).

http://developer.apple.com/downloads
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 10 of 341

export DYLD_LIBRARY_PATH=<hdfql_lib_directory>:$DYLD_LIBRARY_PATH

 With an HDFql MPI-based distribution:

export

DYLD_LIBRARY_PATH=<hdfql_lib_directory>:<mpi_lib_directory>:$DYLD_LIBRARY_PATH

3.2 C++

HDFql can be used in the C++ programming language through static and shared libraries. These libraries are stored in the

directory “cpp” found under the directory “wrapper”. The following short program illustrates how HDFql can be used in

such language.

// include HDFql C++ header file (make sure it can be found by the C++ compiler)

#include <cstdlib>

#include <cstdio>

#include <iostream>

#include "HDFql.hpp"

int main(int argc, char *argv[])

{

 // display HDFql version in use

 std::cout << "HDFql version: " << HDFql::Version << std::endl;

 // create an HDF5 file named "my_file.h5" and use (i.e. open) it

 HDFql::execute("CREATE AND USE FILE my_file.h5");

 // create an HDF5 dataset named "my_dataset" of data type int

 HDFql::execute("CREATE DATASET my_dataset AS INT VALUES(10)");

 // select (i.e. read) data from dataset "my_dataset" and populate cursor with it

 HDFql::execute("SELECT FROM my_dataset");

 // move cursor to the first position within the result set

 HDFql::cursorFirst();

 // display content of cursor

 std::cout << "Dataset value: " << *HDFql::cursorGetInt() << std::endl;

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 11 of 341

 return EXIT_SUCCESS;

}

Assuming that the program is stored in a file named “example.cpp”, it must first be compiled before it can be launched

from a terminal. To compile the program against the HDFql C++ static library:

 In Windows4 using Microsoft Visual Studio, by executing from a terminal:

cl.exe example.cpp /EHsc /I<hdfql_include_directory>

<hdfql_cpp_wrapper_directory>\HDFql.lib /link /LTCG /NODEFAULTLIB:libcmt.lib

 In Linux and macOS using Gnu Compiler Collection (GCC), by executing from a terminal:

 With an HDFql non MPI-based distribution:

g++ example.cpp -fopenmp -I<hdfql_include_directory>

<hdfql_cpp_wrapper_directory>/libHDFql.a -ldl

 With an HDFql MPI-based distribution:

g++ example.cpp -fopenmp -I<hdfql_include_directory>

<hdfql_cpp_wrapper_directory>/libHDFql.a -L<mpi_lib_directory> -lmpi -ldl

To compile the same program against the HDFql C++ shared library:

 In Windows using Microsoft Visual Studio, by executing from a terminal:

cl.exe example.cpp /EHsc /I<hdfql_include_directory>

<hdfql_cpp_wrapper_directory>\HDFql_dll.lib

 In Linux and macOS using GCC, by executing from a terminal:

4 When compiling a program against the HDFql C++ static library in Windows, the functions “HDFql::initialize” and “HDFql::finalize” must be explicitly

called by the program when starting and finishing respectively (otherwise an error may occur such as a segmentation fault). Of note, these functions do

not need to be called when compiling the program against the HDFql C++ shared library as this is automatically done by the library itself.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 12 of 341

 With an HDFql non MPI-based distribution:

g++ example.cpp -I<hdfql_include_directory> -L<hdfql_cpp_wrapper_directory> -lHDFql

-ldl

 With an HDFql MPI-based distribution:

g++ example.cpp -I<hdfql_include_directory> -L<hdfql_cpp_wrapper_directory> -

L<mpi_lib_directory> -lHDFql -lmpi -ldl

In case the program does not compile, most likely a C++ compiler is not installed. If a C++ compiler is missing, the solution

is:

 In Windows, download and install a free version of Microsoft Visual Studio from the website

https://www.visualstudio.com/downloads.

 In Linux, install the GCC C++ compiler by executing from a terminal:

 In a Red Hat-based distribution:

sudo yum install gcc-c++

 In a Debian-based distribution:

sudo apt-get install g++

 In macOS, install the GCC C++ compiler by executing from a terminal (if xcode-select does not support the parameter

“--install” (due to being outdated), download and install the Command-Line Tools package from the website

http://developer.apple.com/downloads which includes GCC instead):

xcode-select --install

In case the compiled program does not launch, most likely the HDFql C++ shared library and/or the MPI shared library was

not found (these are needed to launch the program). The solution is:

https://www.visualstudio.com/downloads
http://developer.apple.com/downloads

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 13 of 341

 In Windows, add the directory where the file “HDFql_dll.dll” is located to the environment variable “PATH” by

executing from a terminal:

set PATH=<hdfql_cpp_wrapper_directory>;%PATH%

 In Linux, add the directories where the files “libHDFql.so” and (optionally) “libmpi.so” are located to the environment

variable “LD_LIBRARY_PATH” by executing from a terminal:

 With an HDFql non MPI-based distribution:

export LD_LIBRARY_PATH=<hdfql_cpp_wrapper_directory>:$LD_LIBRARY_PATH

 With an HDFql MPI-based distribution:

export

LD_LIBRARY_PATH=<hdfql_cpp_wrapper_directory>:<mpi_lib_directory>:$LD_LIBRARY_PATH

 In macOS, add the directories where the files “libHDFql.dylib” and (optionally) “libmpi.dylib” are located to the

environment variable “DYLD_LIBRARY_PATH”5 by executing from a terminal:

 With an HDFql non MPI-based distribution:

export DYLD_LIBRARY_PATH=<hdfql_cpp_wrapper_directory>:$DYLD_LIBRARY_PATH

 With an HDFql MPI-based distribution:

export

DYLD_LIBRARY_PATH=<hdfql_cpp_wrapper_directory>:<mpi_lib_directory>:$DYLD_LIBRARY_PA

5 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the

environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProte

ction/ConfiguringSystemIntegrityProtection.html for additional information).

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 14 of 341

TH

3.3 JAVA

HDFql can be used in the Java programming language through a wrapper named “HDFql.java”. This wrapper is stored in

the directory “java” found under the directory “wrapper”. The following short program illustrates how HDFql can be used

in such language.

// import HDFql package (make sure it can be found by the Java compiler/JVM)

import as.hdfql.*;

public class Example

{

 public static void main(String args[])

 {

 // display HDFql version in use

 System.out.println("HDFql version: " + HDFql.VERSION);

 // create an HDF5 file named "my_file.h5" and use (i.e. open) it

 HDFql.execute("CREATE AND USE FILE my_file.h5");

 // create an HDF5 dataset named "my_dataset" of data type int

 HDFql.execute("CREATE DATASET my_dataset AS INT VALUES(10)");

 // select (i.e. read) data from dataset "my_dataset" and populate cursor with it

 HDFql.execute("SELECT FROM my_dataset");

 // move cursor to the first position within the result set

 HDFql.cursorFirst();

 // display content of cursor

 System.out.println("Dataset value: " + HDFql.cursorGetInt());

 }

}

Assuming that the program is stored in a file named “Example.java”, it must first be compiled before it can be launched

from a terminal. The program can be compiled as follows:

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 15 of 341

javac -classpath <hdfql_java_wrapper_directory> Example.java

In case the program does not compile, most likely the Java Development Kit (JDK) is not installed. If the JDK is missing, the

solution is to download and install it from the website http://www.oracle.com/technetwork/java/javase/downloads.

The compiled program may be launched as follows:

java Example

In case the compiled program does not launch, most likely the HDFql Java wrapper and/or the MPI shared library was not

found (these are needed to launch the program). The solution is:

 In Windows, add the directories where the files “HDFql.java” (i.e. the wrapper) and “HDFql.dll" are located to the

environment variables “CLASSPATH” and “PATH” by executing from a terminal:

set CLASSPATH=<hdfql_java_wrapper_directory>;.;%CLASSPATH%

set PATH=<hdfql_java_wrapper_directory>\as\hdfql;%PATH%

 In Linux, add the directories where the files “HDFql.java”, “libHDFql.so” and (optionally) “libmpi.so” are located to the

environment variables “CLASSPATH” and “LD_LIBRARY_PATH” by executing from a terminal:

 With an HDFql non MPI-based distribution:

export CLASSPATH=<hdfql_java_wrapper_directory>:.:$CLASSPATH

export LD_LIBRARY_PATH=<hdfql_java_wrapper_directory>/as/hdfql:$LD_LIBRARY_PATH

 With an HDFql MPI-based distribution:

export CLASSPATH=<hdfql_java_wrapper_directory>:.:$CLASSPATH

export

LD_LIBRARY_PATH=<hdfql_java_wrapper_directory>/as/hdfql:<mpi_lib_directory>:$LD_LIBR

ARY_PATH

http://www.oracle.com/technetwork/java/javase/downloads

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 16 of 341

 In macOS, add the directories where the files “HDFql.java”, “libHDFql.dylib” and (optionally) “libmpi.dylib” are located

to the environment variables “CLASSPATH” and “DYLD_LIBRARY_PATH”6 by executing from a terminal:

 With an HDFql non MPI-based distribution:

export CLASSPATH=<hdfql_java_wrapper_directory>:.:$CLASSPATH

export DYLD_LIBRARY_PATH=<hdfql_java_wrapper_directory>/as/hdfql:$DYLD_LIBRARY_PATH

 With an HDFql MPI-based distribution:

export CLASSPATH=<hdfql_java_wrapper_directory>:.:$CLASSPATH

export

DYLD_LIBRARY_PATH=<hdfql_java_wrapper_directory>/as/hdfql:<mpi_lib_directory>:$DYLD_

LIBRARY_PATH

3.4 PYTHON

HDFql can be used in the Python programming language through a wrapper named “HDFql.py”. This wrapper is stored in

the directory “python” found under the directory “wrapper”. The following short script illustrates how HDFql can be used

in such language.

import HDFql module (make sure it can be found by the Python interpreter)

import HDFql

display HDFql version in use

print("HDFql version: %s" % HDFql.VERSION)

create an HDF5 file named "my_file.h5" and use (i.e. open) it

HDFql.execute("CREATE AND USE FILE my_file.h5")

create an HDF5 dataset named "my_dataset" of data type int

HDFql.execute("CREATE DATASET my_dataset AS INT VALUES(10)")

6 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the

environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProte

ction/ConfiguringSystemIntegrityProtection.html for additional information). Alternatively, the Java library path property “java.library.path” should be

set with the path where the HDFql shared library “libHDFql.dylib” is located when launching the program (e.g. java -

Djava.library.path=<hdfql_java_wrapper_directory>/as/hdfql my_program).

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 17 of 341

select (i.e. read) data from dataset "my_dataset" and populate cursor with it

HDFql.execute("SELECT FROM my_dataset")

move cursor to the first position within the result set

HDFql.cursor_first()

display content of cursor

print("Dataset value: %d" % HDFql.cursor_get_int())

Assuming that the script is stored in a file named “example.py” it can be launched by executing the following from a

terminal:

python example.py

In case the script does not launch, most likely (1) the Python interpreter is not installed or (2) the HDFql Python wrapper

and/or the MPI shared library was not found (these are needed to launch the script). To fix the former issue, download

and install the Python interpreter from the website http://www.python.org/download. To fix the latter issue:

 In Windows, add the directory where the file “HDFql.py” (i.e. the wrapper) is located to the environment variable

“PYTHONPATH” by executing from a terminal:

set PYTHONPATH=<hdfql_python_wrapper_directory>;%PYTHONPATH%

 In Linux, add the directories where the files “HDFql.py” and (optionally) “libmpi.so” are located to the environment

variables “PYTHONPATH” and “LD_LIBRARY_PATH” by executing from a terminal:

 With an HDFql non MPI-based distribution:

export PYTHONPATH=<hdfql_python_wrapper_directory>:$PYTHONPATH

 With an HDFql MPI-based distribution:

export PYTHONPATH=<hdfql_python_wrapper_directory>:$PYTHONPATH

export LD_LIBRARY_PATH=<mpi_lib_directory>:$LD_LIBRARY_PATH

http://www.python.org/download

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 18 of 341

 In macOS, add the directories where the files “HDFql.py” and (optionally) “libmpi.dylib” are located to the

environment variables “PYTHONPATH” and “DYLD_LIBRARY_PATH”7 by executing from a terminal:

 With an HDFql non MPI-based distribution:

export PYTHONPATH=<hdfql_python_wrapper_directory>:$PYTHONPATH

 With an HDFql MPI-based distribution:

export PYTHONPATH=<hdfql_python_wrapper_directory>:$PYTHONPATH

export DYLD_LIBRARY_PATH=<mpi_lib_directory>:$DYLD_LIBRARY_PATH

Besides these steps, a scientific computing package named NumPy for Python must be installed when working with user-

defined variables (please refer to the function hdfql_variable_register for additional information). This package can be

found at http://www.scipy.org/scipylib/download.html along with instructions on how to install and use it.

3.5 C#

HDFql can be used in the C# programming language through a wrapper named “HDFql.cs”. This wrapper is stored in the

directory “csharp” found under the directory “wrapper”. The following short program illustrates how HDFql can be used in

such language.

// use HDFql namespace (make sure it can be found by the C# compiler)

using AS.HDFql;

public class Example

{

 public static void Main(string []args)

 {

7 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the

environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProte

ction/ConfiguringSystemIntegrityProtection.html for additional information).

http://www.scipy.org/scipylib/download.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 19 of 341

 // display HDFql version in use

 System.Console.WriteLine("HDFql version: {0}", HDFql.Version);

 // create an HDF5 file named "my_file.h5" and use (i.e. open) it

 HDFql.Execute("CREATE AND USE FILE my_file.h5");

 // create an HDF5 dataset named "my_dataset" of data type int

 HDFql.Execute("CREATE DATASET my_dataset AS INT VALUES(10)");

 // select (i.e. read) data from dataset "my_dataset" and populate cursor with it

 HDFql.Execute("SELECT FROM my_dataset");

 // move cursor to the first position within the result set

 HDFql.CursorFirst();

 // display content of cursor

 System.Console.WriteLine("Dataset value: {0}", HDFql.CursorGetInt());

 }

}

Assuming that the program is stored in a file named “Example.cs”, it must first be compiled before it can be launched from

a terminal. In Windows, the program can be compiled as follows:

 Using Microsoft .NET Framework, by executing from a terminal:

csc.exe Example.cs <hdfql_csharp_wrapper_directory>*.cs

 Using Mono, by executing from a terminal:

mcs.bat Example.cs <hdfql_csharp_wrapper_directory>*.cs

In Linux and macOS, the program can be compiled using Mono by executing from a terminal (of note, Microsoft .NET

Framework does not support these platforms):

mcs Example.cs <hdfql_csharp_wrapper_directory>/*.cs

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 20 of 341

In case the program does not compile, most likely a C# compiler is not installed. If a C# compiler is missing, the solution is:

 In Windows, download and install either Microsoft .NET Framework or Mono from the websites

https://www.microsoft.com/net/download/framework or http://www.mono-project.com/download, respectively.

 In Linux and macOS, download and install Mono from the website http://www.mono-project.com/download.

Depending on the platform, the compiled program may be launched as follows:

 In Windows, by executing from a terminal:

Example.exe

 In Linux and macOS, by executing from a terminal:

mono Example.exe

In case the compiled program does not launch, most likely the HDFql C# wrapper and/or the MPI shared library was not

found (these are needed to launch the program). The solution is:

 In Windows, add the directory where the file “HDFql.cs” (i.e. the wrapper) is located to the environment variable

“PATH” by executing from a terminal:

set PATH=<hdfql_csharp_wrapper_directory>;%PATH%

 In Linux, add the directories where the files “HDFql.cs” and (optionally) “libmpi.so” are located to the environment

variable “LD_LIBRARY_PATH” by executing from a terminal:

 With an HDFql non MPI-based distribution:

export LD_LIBRARY_PATH=<hdfql_csharp_wrapper_directory>:$LD_LIBRARY_PATH

 With an HDFql MPI-based distribution:

https://www.microsoft.com/net/download/framework
http://www.mono-project.com/download
http://www.mono-project.com/download

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 21 of 341

export

LD_LIBRARY_PATH=<hdfql_csharp_wrapper_directory>:<mpi_lib_directory>:$LD_LIBRARY_PAT

H

 In macOS, add the directories where the files “HDFql.cs” and (optionally) “libmpi.dylib” are located to the

environment variable “DYLD_LIBRARY_PATH”8 by executing from a terminal:

 With an HDFql non MPI-based distribution:

export DYLD_LIBRARY_PATH=<hdfql_csharp_wrapper_directory>:$DYLD_LIBRARY_PATH

 With an HDFql MPI-based distribution:

export

DYLD_LIBRARY_PATH=<hdfql_csharp_wrapper_directory>:<mpi_lib_directory>:$DYLD_LIBRARY

_PATH

3.6 FORTRAN

HDFql can be used in the Fortran programming language through static and shared libraries. These libraries are stored in

the directory “fortran” found under the directory “wrapper”. The following short program illustrates how HDFql can be

used in such language.

PROGRAM Example

 ! use HDFql module (make sure it can be found by the Fortran compiler)

 USE HDFql

 ! declare variable

 INTEGER :: state

 ! display HDFql version in use

 WRITE(*, *) "HDFql version: ", HDFQL_VERSION

8 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the

environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProte

ction/ConfiguringSystemIntegrityProtection.html for additional information).

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 22 of 341

 ! create an HDF5 file named "my_file.h5" and use (i.e. open) it

 state = hdfql_execute("CREATE AND USE FILE my_file.h5")

 ! create an HDF5 dataset named "my_dataset" of data type int

 state = hdfql_execute("CREATE DATASET my_dataset AS INT VALUES(10)")

 ! select (i.e. read) data from dataset "my_dataset" and populate cursor with it

 state = hdfql_execute("SELECT FROM my_dataset")

 ! move cursor to the first position within the result set

 state = hdfql_cursor_first()

 ! display content of cursor

 WRITE(*, *) "Dataset value: ", hdfql_cursor_get_int()

END PROGRAM

Assuming that the program is stored in a file named “example.f90”, it must first be compiled before it can be launched

from a terminal. To compile the program against the HDFql Fortran static library:

 In Windows9 using Intel Fortran Compiler (IFORT), by executing from a terminal:

ifort.exe example.f90 /module:<hdfql_fortran_wrapper_directory>\static

<hdfql_fortran_wrapper_directory>\HDFql.lib /link /LTCG /NODEFAULTLIB:libcmt.lib

 In Linux using IFORT, by executing from a terminal:

 With an HDFql non MPI-based distribution:

ifort example.f90 -fopenmp -module <hdfql_fortran_wrapper_directory>

<hdfql_fortran_wrapper_directory>/libHDFql.a

 With an HDFql MPI-based distribution:

9 When compiling a program against the HDFql Fortran static library in Windows, the subroutines “hdfql_initialize” and “hdfql_finalize” must be explicitly

called by the program when starting and finishing respectively (otherwise an error may occur such as a segmentation fault). Of note, these functions do

not need to be called when compiling the program against the HDFql Fortran shared library as this is automatically done by the library itself.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 23 of 341

ifort example.f90 -fopenmp -module <hdfql_fortran_wrapper_directory>

<hdfql_fortran_wrapper_directory>/libHDFql.a -L<mpi_lib_directory> -lmpi

 In Linux and macOS using Gnu Compiler Collection (GCC)10, by executing from a terminal:

 With an HDFql non MPI-based distribution:

gfortran example.f90 -fopenmp -I<hdfql_fortran_wrapper_directory>

<hdfql_fortran_wrapper_directory>/libHDFql.a -ldl

 With an HDFql MPI-based distribution:

gfortran example.f90 -fopenmp -I<hdfql_fortran_wrapper_directory>

<hdfql_fortran_wrapper_directory>/libHDFql.a -L<mpi_lib_directory> -lmpi -ldl

To compile the same program against the HDFql Fortran shared library:

 In Windows using IFORT, by executing from a terminal:

ifort.exe example.f90 /module:<hdfql_fortran_wrapper_directory>

<hdfql_fortran_wrapper_directory>\HDFql_dll.lib

 In Linux using IFORT, by executing from a terminal:

 With an HDFql non MPI-based distribution:

ifort example.f90 -module <hdfql_fortran_wrapper_directory> -

L<hdfql_fortran_wrapper_directory> -lHDFql

 With an HDFql MPI-based distribution:

10 An incorrect warning is raised by the GCC Fortran compiler when using the HDFql module (“Warning: Only array FINAL procedures declared for derived

type 'hdfql_cursor' defined at (1), suggest also scalar one”). This warning does not interfere with the final compilation result, though, and it has been

solved in the GCC Fortran compiler version 7.0.0 (please refer to https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58175 for additional information).

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58175

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 24 of 341

ifort example.f90 -module <hdfql_fortran_wrapper_directory> -

L<hdfql_fortran_wrapper_directory> -L<mpi_lib_directory> -lHDFql -lmpi

 In Linux and macOS using GCC11, by executing from a terminal:

 With an HDFql non MPI-based distribution:

gfortran example.f90 -I<hdfql_fortran_wrapper_directory> -

L<hdfql_fortran_wrapper_directory> -lHDFql -ldl

 With an HDFql MPI-based distribution:

gfortran example.f90 -I<hdfql_fortran_wrapper_directory> -

L<hdfql_fortran_wrapper_directory> -L<mpi_lib_directory> -lHDFql -lmpi -ldl

In case the program does not compile, most likely a Fortran compiler is not installed. If a Fortran compiler is missing, the

solution is:

 In Windows, download and install IFORT from the website https://software.intel.com/en-us/parallel-studio-

xe/choose-download/free-trial-cluster-windows-c-fortran.

 In Linux, download and install IFORT from the website https://software.intel.com/en-us/parallel-studio-xe/choose-

download/free-trial-cluster-linux-fortran.

 In Linux, install the GCC Fortran compiler by executing from a terminal:

 In a Red Hat-based distribution:

sudo yum install gcc-gfortran

 In a Debian-based distribution:

11 An incorrect warning is raised by the GCC Fortran compiler when using the HDFql module (“Warning: Only array FINAL procedures declared for derived

type 'hdfql_cursor' defined at (1), suggest also scalar one”). This warning does not interfere with the final compilation result, though, and it has been

solved in the GCC Fortran compiler version 7.0.0 (please refer to https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58175 for additional information).

https://software.intel.com/en-us/parallel-studio-xe/choose-download/free-trial-cluster-windows-c-fortran
https://software.intel.com/en-us/parallel-studio-xe/choose-download/free-trial-cluster-windows-c-fortran
https://software.intel.com/en-us/parallel-studio-xe/choose-download/free-trial-cluster-linux-fortran
https://software.intel.com/en-us/parallel-studio-xe/choose-download/free-trial-cluster-linux-fortran
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58175

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 25 of 341

sudo apt-get install gfortran

 In macOS, install the GCC Fortran compiler by executing from a terminal (if xcode-select does not support the

parameter “--install” (due to being outdated), download and install the Command-Line Tools package from the

website http://developer.apple.com/downloads which includes GCC instead):

xcode-select --install

In case the compiled program does not launch, most likely the HDFql Fortran shared library and/or the MPI shared library

was not found (these are needed to launch the program). The solution is:

 In Windows, add the directory where the file “HDFql_dll.dll” is located to the environment variable “PATH” by

executing from a terminal:

set PATH=<hdfql_fortran_wrapper_directory>;%PATH%

 In Linux, add the directories where the files “libHDFql.so” and (optionally) “libmpi.so” are located to the environment

variable “LD_LIBRARY_PATH” by executing from a terminal:

 With an HDFql non MPI-based distribution:

export LD_LIBRARY_PATH=<hdfql_fortran_wrapper_directory>:$LD_LIBRARY_PATH

 With an HDFql MPI-based distribution:

export

LD_LIBRARY_PATH=<hdfql_fortran_wrapper_directory>:<mpi_lib_directory>:$LD_LIBRARY_PA

TH

http://developer.apple.com/downloads

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 26 of 341

 In macOS, add the directories where the files “libHDFql.dylib” and (optionally) “libmpi.dylib” are located to the

environment variable “DYLD_LIBRARY_PATH”12 by executing from a terminal:

 With an HDFql non MPI-based distribution:

export DYLD_LIBRARY_PATH=<hdfql_fortran_wrapper_directory>:$DYLD_LIBRARY_PATH

 With an HDFql MPI-based distribution:

export

DYLD_LIBRARY_PATH=<hdfql_fortran_wrapper_directory>:<mpi_lib_directory>:$DYLD_LIBRAR

Y_PATH

3.7 R

HDFql can be used in the R programming language through a wrapper named “HDFql.R”. This wrapper is stored in the

directory “R” found under the directory “wrapper”. The following short script illustrates how HDFql can be used in such

language.

load HDFql R wrapper (make sure it can be found by the R interpreter)

source("HDFql.R")

display HDFql version in use

print(paste("HDFql version:", HDFQL_VERSION))

create an HDF5 file named "my_file.h5" and use (i.e. open) it

hdfql_execute("CREATE AND USE FILE my_file.h5")

create an HDF5 dataset named "my_dataset" of data type int

hdfql_execute("CREATE DATASET my_dataset AS INT VALUES(10)")

select (i.e. read) data from dataset "my_dataset" and populate cursor with it

hdfql_execute("SELECT FROM my_dataset")

12 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the

environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProte

ction/ConfiguringSystemIntegrityProtection.html for additional information).

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 27 of 341

move cursor to the first position within the result set

hdfql_cursor_first()

display content of cursor

print(paste("Dataset value:", hdfql_cursor_get_int()))

Assuming that the script is stored in a file named “example.R” it can be launched by executing the following from a

terminal:

R -f example.R

In case the script does not launch, most likely (1) the R interpreter is not installed or (2) the HDFql R wrapper and/or the

HDFql C shared library and/or the MPI shared library was not found (these are needed to launch the script). To fix the

former issue, download and install the R interpreter from the website https://cloud.r-project.org. To fix the latter issue:

 In Windows, add the directories where the files “HDFql.R” (i.e. the wrapper) and “HDFql_dll.dll” are located to the

environment variable “PATH” by executing from a terminal:

set PATH=<hdfql_r_wrapper_directory>;<hdfql_lib_directory>;%PATH%

 In Linux, add the directories where the files “HDFql.R”, “libHDFql.so” and (optionally) “libmpi.so” are located to the

environment variable “LD_LIBRARY_PATH” by executing from a terminal:

 With an HDFql non MPI-based distribution:

export

LD_LIBRARY_PATH=<hdfql_r_wrapper_directory>:<hdfql_lib_directory>:$LD_LIBRARY_PATH

 With an HDFql MPI-based distribution:

export

LD_LIBRARY_PATH=<hdfql_r_wrapper_directory>:<hdfql_lib_directory>:<mpi_lib_directory

>:$LD_LIBRARY_PATH

https://cloud.r-project.org/

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 28 of 341

 In macOS, add the directories where the files “HDFql.R”, “libHDFql.dylib” and (optionally) “libmpi.dylib” are located to

the environment variable “DYLD_LIBRARY_PATH”13 by executing from a terminal:

 With an HDFql non MPI-based distribution:

export

DYLD_LIBRARY_PATH=<hdfql_r_wrapper_directory>:<hdfql_lib_directory>:$DYLD_LIBRARY_PA

TH

 With an HDFql MPI-based distribution:

export

DYLD_LIBRARY_PATH=<hdfql_r_wrapper_directory>:<hdfql_lib_directory>:<mpi_lib_directo

ry>:$DYLD_LIBRARY_PATH

Besides these steps, a package named bit64 for R must be installed when working with user-defined variables to store 64

bit integers as these are not natively supported by R (please refer to the function hdfql_variable_register for additional

information). This package can be found at https://cran.r-project.org/web/packages/bit64 along with instructions on how

to install and use it.

3.8 COMMAND-LINE INTERFACE

A command-line interface named “HDFqlCLI” is available and can be used for manipulating HDF5 files from a terminal. It is

stored in the directory “bin”. To launch the command-line interface, open a terminal (“cmd” if in Windows, “xterm” if in

Linux, or “Terminal” if in macOS), go to the directory “bin”, and type:

 In Windows:

HDFqlCLI.exe

13 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the

environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProte

ction/ConfiguringSystemIntegrityProtection.html for additional information).

https://cran.r-project.org/web/packages/bit64
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 29 of 341

 In Linux and macOS:

./HDFqlCLI

The list of parameters accepted by the command-line interface can be viewed by launching it with the parameter “--help”.

At the time of writing, this list includes the following parameters:

 --help (show the list of parameters accepted by HDFqlCLI and exit)

 --version (show the version of HDFqlCLI and exit)

 --debug (show debug information when executing HDFql operations)

 --no-path (do not show group path currently in use in HDFqlCLI prompt)

 --no-status (do not show status after executing HDFql operations)

 --execute=X (execute HDFql operation(s) “X" and exit)

 --execute-file=X (execute HDFql operation(s) stored in file “X” and exit)

 --save-file=X (save executed HDFql operation(s) to file “X”)

In case the command-line interface does not launch, most likely the HDFql shared library (which is needed to launch the

interface) was not found. Depending on the platform, the solution is:

 In Windows, to either:

 Add the directory where the file “HDFql_dll.dll” is located to the environment variable “PATH” by executing

from a terminal:

set PATH=<hdfql_lib_directory>;%PATH%

 Execute the batch file named “launch.bat” which properly sets up the environment variable “PATH” and

launches the command-line interface from a terminal.

 In Linux, to either:

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 30 of 341

 Add the directory where the file “libHDFql.so” is located to the environment variable “LD_LIBRARY_PATH” by

executing from a terminal:

export LD_LIBRARY_PATH=<hdfql_lib_directory>:$LD_LIBRARY_PATH

 Execute the bash script file named “launch.sh” which properly sets up the environment variable

“LD_LIBRARY_PATH” and launches the command-line interface from a terminal.

 In macOS, to either:

 Add the directory where the file “libHDFql.dylib” is located to the environment variable

“DYLD_LIBRARY_PATH”14 by executing from a terminal:

export DYLD_LIBRARY_PATH=<hdfql_lib_directory>:$DYLD_LIBRARY_PATH

 Execute the bash script file named “launch.sh” which properly sets up the environment variable

“DYLD_LIBRARY_PATH” and launches the command-line interface from a terminal.

14 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the

environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProte

ction/ConfiguringSystemIntegrityProtection.html for additional information).

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 31 of 341

Figure 3.1 – Illustration of the command-line interface “HDFqlCLI”

Version 2.3.0 __ Page 32 of 341

4. CURSOR

Generally speaking, a cursor is a control structure that is used to iterate through the results returned by a query (that was

previously executed). It can be seen as an effective means to abstract the programmer from low-level implementation

details of accessing data stored in specific structures. This chapter provides a description of cursors and subcursors in

HDFql, as well as examples and illustrations to demonstrate these two concepts in practice.

4.1 DESCRIPTION

HDFql provides cursors which offer several ways to traverse result sets according to specific needs. The following list

enumerates these ways or functionalities (please refer to their links for further information):

 First (moves cursor to the first position within the result set – hdfql_cursor_first)

 Last (moves cursor to the last position within the result set – hdfql_cursor_last)

 Next (moves cursor to the next position within the result set – hdfql_cursor_next)

 Previous (moves cursor to the previous position within the result set – hdfql_cursor_previous)

 Absolute (moves cursor to an absolute position within the result set – hdfql_cursor_absolute)

 Relative (moves cursor to a relative position within the result set – hdfql_cursor_relative)

Besides their traversal functionalities, a particular feature of cursors in HDFql is that they store result sets returned by

DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION LANGUAGE (DIL) operations. To retrieve values from result

sets, the functions starting with “hdfql_cursor_get” can be used. These and remaining functions offered by cursors can be

found in Table 5.8 (each of these begins with the prefix “hdfql_cursor”).

When a certain operation is executed, HDFql stores the result set returned by this operation in its default cursor. This

cursor is available to the programmer and is automatically created and initialized upon loading the HDFql library by a

program. If additional (i.e. user-defined) cursors are needed, they can be created like this (in C):

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 33 of 341

// create a cursor named "my_cursor"

HDFQL_CURSOR my_cursor;

As a side note, additional cursors are created in C++, Java, Python, C#, Fortran and R as follows:

// create a cursor named "myCursor" in C++

HDFql::Cursor myCursor;

// create a cursor named "myCursor" in Java

HDFqlCursor myCursor = new HDFqlCursor();

create a cursor named "my_cursor" in Python

my_cursor = HDFql.Cursor()

// create a cursor named "myCursor" in C#

HDFqlCursor myCursor = new HDFqlCursor();

! create a cursor named "my_cursor" in Fortran

TYPE(HDFQL_CURSOR) :: my_cursor

create a cursor named "my_cursor" in R

my_cursor <- hdfql_cursor()

Before an additional cursor is used to store and eventually traverse a result set, it must be properly initialized (refer to the

function hdfql_cursor_initialize for further information). The initialization of a cursor is only required in C and performed

once, while in C++, Java, Python, C#, Fortran and R such initialization is redundant (i.e. not required) as it is done

automatically when creating a cursor. Initializing a cursor can be done like this (in C):

// initialize a cursor named "my_cursor"

hdfql_cursor_initialize(&my_cursor);

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 34 of 341

Complementarly, when a cursor is no more needed and it is about to be freed/finalized, it must be properly cleared (refer

to the function hdfql_cursor_clear for further information). The clearing of a cursor is only required in C and performed

once before freeing the pointer representing the cursor (otherwise memory leak may occur), while in C++, Java, Python,

C#, Fortran and R such step is redundant (i.e. not required) as it is done automatically when finalizing the object

representing the cursor. Clearing a cursor can be done like this (in C):

// clear a cursor named "my_cursor"

hdfql_cursor_clear(&my_cursor);

To switch between different cursors (to be used for separate needs), the function hdfql_cursor_use may be employed (in

C):

// use a cursor named "my_cursor"

hdfql_cursor_use(&my_cursor);

The following C snippet illustrates usage of the HDFql default cursor and a user-defined cursor, as well as some typical

operations performed on/by these.

// create a cursor named "my_cursor"

HDFQL_CURSOR my_cursor;

// create an HDF5 dataset named "my_dataset0" of data type int with an initial value of 8

hdfql_execute("CREATE DATASET my_dataset0 AS INT VALUES(8)");

// create an HDF5 dataset named "my_dataset1" of data type float with initial values of 3.2,

5.3, 7.4 and 9.5

hdfql_execute("CREATE DATASET my_dataset1 AS FLOAT(4) VALUES(3.2, 5.3, 7.4, 9.5)");

// select (i.e. read) data from dataset "my_dataset0" and populate HDFql default cursor with it

hdfql_execute("SELECT FROM my_dataset0");

// initialize cursor "my_cursor"

hdfql_cursor_initialize(&my_cursor);

// use cursor "my_cursor"

hdfql_cursor_use(&my_cursor);

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 35 of 341

// select (i.e. read) data from dataset "my_dataset1" and populate cursor "my_cursor" with it

hdfql_execute("SELECT FROM my_dataset1");

// use HDFql default cursor

hdfql_cursor_use(NULL);

// display number of elements in HDFql default cursor

printf("Number of elements in HDFql default cursor is %d\n", hdfql_cursor_get_count(NULL));

// move HDFql default cursor to the next position within the result set

hdfql_cursor_next(NULL);

// display element of HDFql default cursor

printf("Current element of HDFql default cursor is %d\n", *hdfql_cursor_get_int(NULL));

// display number of elements in cursor "my_cursor"

printf("Number of elements in cursor \"my_cursor\" is %d\n",

hdfql_cursor_get_count(&my_cursor));

// use cursor "my_cursor"

hdfql_cursor_use(&my_cursor);

// display elements of cursor "my_cursor"

while(hdfql_cursor_next(NULL) == HDFQL_SUCCESS)

{

 printf("Current element of cursor \"my_cursor\" is %f\n", *hdfql_cursor_get_float(NULL));

}

The output of executing the snippet would be similar to this:

Number of elements in HDFql default cursor is 1

Current element of HDFql default cursor is 8

Number of elements in cursor "my_cursor" is 4

Current element of cursor "my_cursor" is 3.2

Current element of cursor "my_cursor" is 5.3

Current element of cursor "my_cursor" is 7.4

Current element of cursor "my_cursor" is 9.5

When populating a cursor with data from a dataset or attribute with two or more dimensions, the data is always linearized

into a single dimension. The linearization process is depicted in Figure 4.1. Subsequently, if need be, it is up to the

programmer to access the data (stored in the cursor) according to its original dimensions. In this case, the SHOW

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 36 of 341

DIMENSION operation – which returns the original dimensions of a dataset or attribute – may be useful to help in the task

of going from one dimension to the original dimensions.

Figure 4.1 – Linearization of a two dimensional dataset into a (one dimensional) cursor

4.2 SUBCURSOR

HDFql also provides subcursors – they are meant to complement (i.e. help) cursors in the task of storing data of type

HDFQL_CHAR, HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT,

HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT,

HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE and HDFQL_OPAQUE. In practice, when a result

set is of one of these data types, only the first element of the result set is stored in the cursor (as expected), while all

elements of the result set are stored in the subcursor. In other words, each position of the cursor stores the first element

of the result set and also points to a subcursor that in turn stores all the elements of the result set. The values stored in a

subcursor (which are also known as a result subset) can be accessed with the functions starting with

“hdfql_subcursor_get” (enumerated in Table 5.8). Similar to cursors, HDFql subcursors offer several ways or functionalities

to traverse result subsets, namely:

 First (moves subcursor to the first position within the result subset – hdfql_subcursor_first)

 Last (moves subcursor to the last position within the result subset – hdfql_subcursor_last)

 Next (moves subcursor to the next position within the result subset – hdfql_subcursor_next)

 Previous (moves subcursor to the previous position within the result subset – hdfql_subcursor_previous)

 Absolute (moves subcursor to an absolute position within the result subset – hdfql_subcursor_absolute)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 37 of 341

 Relative (moves subcursor to a relative position within the result subset – hdfql_subcursor_relative)

The following C snippet illustrates usage of the HDFql subcursors, as well as some typical operations performed on/by

these.

// create an HDF5 dataset named "my_dataset" of data type variable-length int of one dimension

(size 4)

hdfql_execute("CREATE DATASET my_dataset AS VARINT(4)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES((7, 8, 5), (9), (6, 1, 2), (4, 0))");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to the next position within the result set

while(hdfql_cursor_next(NULL) == HDFQL_SUCCESS)

{

 // display element of the cursor in use

 printf("Current element of cursor is %d\n", *hdfql_cursor_get_int(NULL));

 // move the subcursor in use to the next position within the result subset

 while(hdfql_subcursor_next(NULL) == HDFQL_SUCCESS)

 {

 // display element of the subcursor in use

 printf(" Current element of subcursor is %d\n", *hdfql_subcursor_get_int(NULL));

 }

}

The output of executing the snippet would be similar to this:

Current element of cursor is 7

 Current element of subcursor is 7

 Current element of subcursor is 8

 Current element of subcursor is 5

Current element of cursor is 9

 Current element of subcursor is 9

Current element of cursor is 6

 Current element of subcursor is 6

 Current element of subcursor is 1

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 38 of 341

 Current element of subcursor is 2

Current element of cursor is 4

 Current element of subcursor is 4

 Current element of subcursor is 0

4.3 EXAMPLES

The following C snippets demonstrate how HDFql cursors and subcursors are populated with (variable) data stored in

HDF5 datasets or attributes, along with illustrations to facilitate understanding of the populating process and its final

result.

// create an HDF5 dataset named "my_dataset0" of data type short

hdfql_execute("CREATE DATASET my_dataset0 AS SMALLINT");

// insert (i.e. write) a value into dataset "my_dataset0"

hdfql_execute("INSERT INTO my_dataset0 VALUES(7)");

// select (i.e. read) data from dataset "my_dataset0" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset0");

Figure 4.2 – Cursor populated with data from dataset “my_dataset0”

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 39 of 341

// create an HDF5 dataset named "my_dataset1" of data type float of one dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset1 AS FLOAT(3)");

// insert (i.e. write) values into dataset "my_dataset1"

hdfql_execute("INSERT INTO my_dataset1 VALUES(5.5, 8.1, 4.9)");

// select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset1");

Figure 4.3 – Cursor populated with data from dataset “my_dataset1”

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 40 of 341

// create an HDF5 dataset named "my_dataset2" of data type double of two dimensions (size 3x2)

hdfql_execute("CREATE DATASET my_dataset2 AS DOUBLE(3, 2)");

// insert (i.e. write) values into dataset "my_dataset2"

hdfql_execute("INSERT INTO my_dataset2 VALUES((3.2, 1.3), (0, 0.2), (9.1, 6.5))");

// select (i.e. read) data from dataset "my_dataset2" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset2");

Figure 4.4 – Cursor populated with data from dataset “my_dataset2”

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 41 of 341

// create an HDF5 dataset named "my_dataset3" of data type variable-length short

hdfql_execute("CREATE DATASET my_dataset3 AS VARSMALLINT");

// insert (i.e. write) values into dataset "my_dataset3"

hdfql_execute("INSERT INTO my_dataset3 VALUES(7, 9, 3)");

// select (i.e. read) data from dataset "my_dataset3" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset3");

Figure 4.5 – Cursor and its subcursor populated with data from dataset “my_dataset3”

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 42 of 341

// create an HDF5 dataset named "my_dataset4" of data type variable-length float of one

dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset4 AS VARFLOAT(3)");

// insert (i.e. write) values into dataset "my_dataset4"

hdfql_execute("INSERT INTO my_dataset4 VALUES((5.5), (8.1, 2.2), (4.9, 3.4, 5.6))");

// select (i.e. read) data from dataset "my_dataset4" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset4");

Figure 4.6 – Cursor and its subcursors populated with data from dataset “my_dataset4”

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 43 of 341

// create an HDF5 dataset named "my_dataset5" of data type variable-length double of two

dimensions (size 3x2)

hdfql_execute("CREATE DATASET my_dataset5 AS VARDOUBLE(3, 2)");

// insert (i.e. write) values into dataset "my_dataset5"

hdfql_execute("INSERT INTO my_dataset5 VALUES(((3.2, 8, 6.7), (1.3, 0.2)), ((0), (0.2, 1.5)),

((9.1, 2, 4, 7), (6.5)))");

// select (i.e. read) data from dataset "my_dataset5" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset5");

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 44 of 341

Figure 4.7 – Cursor and its subcursors populated with data from dataset “my_dataset5”

Version 2.3.0 __ Page 45 of 341

5. APPLICATION PROGRAMMING INTERFACE

An application programming interface (API) specifies how software components should interact with each other. In

practice, an API comes in the form of a library that includes specifications for functions, data structures, object classes,

constants and variables. A good API makes it easier to develop a program by providing all the building blocks. This chapter

is devoted to describing HDFql API and how to use it through practical examples in C, C++, Java, Python, C#, Fortran and R.

5.1 CONSTANTS

A constant is an identifier whose associated value cannot typically be altered by the program during its execution. Using a

constant instead of specifying a value multiple times in the program not only simplifies code maintenance, but can also

supply a meaningful name for it. Constants in the C programming languages follow a naming convention of writing all

words in uppercase and separating each word with an underscore (_). The following table summarizes all existing HDFql

constants in C.

HDFql Constant in C Description Data Type Value

HDFQL_VERSION Represents the HDFql version in use char * 2.3.0

HDFQL_YES Represents the concept “Yes” int 0

HDFQL_NO Represents the concept “No” int -1

HDFQL_ENABLED Represents the concept “Enabled” int 0

HDFQL_DISABLED Represents the concept “Disabled” int -1

HDFQL_UNLIMITED Represents the concept “Unlimited” int -1

HDFQL_UNDEFINED Represents the concept “Undefined” int -1

HDFQL_GLOBAL Represents the concept “Global” int 1

HDFQL_LOCAL Represents the concept “Local” int 2

HDFQL_TRACKED Represents the HDF5 tracked creation order int 1

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 46 of 341

strategy

HDFQL_INDEXED
Represents the HDF5 indexed creation order

strategy
int 2

HDFQL_CONTIGUOUS
Represents the HDF5 contiguous storage type

(layout)
int 1

HDFQL_COMPACT
Represents the HDF5 compact storage type

(layout)
int 2

HDFQL_CHUNKED
Represents the HDF5 chunked storage type

(layout)
int 4

HDFQL_EARLY Represents the HDF5 early storage allocation int 1

HDFQL_INCREMENTAL
Represents the HDF5 incremental storage

allocation
int 2

HDFQL_LATE Represents the HDF5 late storage allocation int 4

HDFQL_DIRECTORY Represents a directory int 1

HDFQL_FILE Represents a file int 2

HDFQL_GROUP Represents the HDF5 group object type int 4

HDFQL_DATASET Represents the HDF5 dataset object type int 8

HDFQL_ATTRIBUTE Represents the HDF5 attribute object type int 16

HDFQL_SOFT_LINK Represents the HDF5 soft link object type int 32

HDFQL_EXTERNAL_LINK Represents the HDF5 external link object type int 64

HDFQL_TINYINT Represents the tiny integer data type (TINYINT) int 1

HDFQL_UNSIGNED_TINYINT
Represents the unsigned tiny integer data type

(UNSIGNED TINYINT)
int 2

HDFQL_SMALLINT
Represents the small integer data type

(SMALLINT)
int 4

HDFQL_UNSIGNED_SMALLINT
Represents the unsigned small integer data type

(UNSIGNED SMALLINT)
int 8

HDFQL_INT Represents the integer data type (INT) int 16

HDFQL_UNSIGNED_INT
Represents the unsigned integer data type

(UNSIGNED INT)
int 32

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 47 of 341

HDFQL_BIGINT Represents the big integer data type (BIGINT) int 64

HDFQL_UNSIGNED_BIGINT
Represents the unsigned big integer data type

(UNSIGNED BIGINT)
int 128

HDFQL_FLOAT Represents the float data type (FLOAT) int 256

HDFQL_DOUBLE Represents the double data type (DOUBLE) int 512

HDFQL_CHAR Represents the char data type (CHAR) int 1024

HDFQL_VARTINYINT
Represents the variable-length tiny integer data

type (VARTINYINT)
int 2048

HDFQL_UNSIGNED_VARTINYINT
Represents the unsigned variable-length tiny

integer data type (UNSIGNED VARTINYINT)
int 4096

HDFQL_VARSMALLINT
Represents the variable-length small integer

data type (VARSMALLINT)
int 8192

HDFQL_UNSIGNED_VARSMALLINT
Represents the unsigned variable-length small

integer data type (UNSIGNED VARSMALLINT)
int 16384

HDFQL_VARINT
Represents the variable-length integer data type

(VARINT)
int 32768

HDFQL_UNSIGNED_VARINT
Represents the unsigned variable-length integer

data type (UNSIGNED VARINT)
int 65536

HDFQL_VARBIGINT
Represents the variable-length big integer data

type (VARBIGINT)
int 131072

HDFQL_UNSIGNED_VARBIGINT
Represents the unsigned variable-length big

integer data type (UNSIGNED VARBIGINT)
int 262144

HDFQL_VARFLOAT
Represents the variable-length float data type

(VARFLOAT)
int 524288

HDFQL_VARDOUBLE
Represents the variable-length double data type

(VARDOUBLE)
int 1048576

HDFQL_VARCHAR
Represents the variable-length char data type

(VARCHAR)
int 2097152

HDFQL_OPAQUE Represents the opaque data type (OPAQUE) int 4194304

HDFQL_BITFIELD Represents the bitfield data type int 8388608

HDFQL_ENUMERATION
Represents the enumeration data type

(ENUMERATION)
int 16777216

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 48 of 341

HDFQL_COMPOUND
Represents the compound data type

(COMPOUND)
int 33554432

HDFQL_REFERENCE Represents the reference data type int 67108864

HDFQL_LITTLE_ENDIAN Represents the little endian byte ordering int 1

HDFQL_BIG_ENDIAN Represents the big endian byte ordering int 2

HDFQL_MIXED_ENDIAN
Represents the compound endian byte ordering

(if endiannesses of its members are mixed)
int 4

HDFQL_ASCII Represents the ASCII character encoding int 1

HDFQL_UTF8 Represents the UTF8 character encoding int 2

HDFQL_FILL_DEFAULT Represents the default fill type int 1

HDFQL_FILL_USER_DEFINED Represents the user defined fill type int 2

HDFQL_FILL_UNDEFINED Represents the undefined fill type int 4

HDFQL_EARLIEST Represents the HDF5 library bound earliest int 1

HDFQL_LATEST Represents the HDF5 library bound latest int 2

HDFQL_VERSION_18 Represents the HDF5 library bound version 18 int 4

HDFQL_SUCCESS Represents an operation that succeeded int 0

HDFQL_ERROR_PARSE
Represents an operation that failed due to a

parsing error
int -1

HDFQL_ERROR_NOT_SPECIFIED
Represents an operation that failed due to

information not being specified (i.e. missing)
int -2

HDFQL_ERROR_NOT_FOUND

Represents an operation that failed due to an

object (e.g. directory, file, group, dataset) not

being found

int -3

HDFQL_ERROR_NO_ACCESS

Represents an operation that failed due to an

object (e.g. directory, file, group, dataset) not

being accessible

int -4

HDFQL_ERROR_NOT_OPEN
Represents an operation that failed due to an

object (e.g. file) not being opened
int -5

HDFQL_ERROR_INVALID_NAME
Represents an operation that failed due to the

name of an object (e.g. directory, file, group,
int -6

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 49 of 341

dataset) being invalid

HDFQL_ERROR_INVALID_FILE
Represents an operation that failed due to a file

being invalid (e.g. not a valid HDF5 file)
int -7

HDFQL_ERROR_NOT_SUPPORTED
Represents an operation that failed due to not

being supported
int -8

HDFQL_ERROR_NOT_ENOUGH_SPACE
Represents an operation that failed due to the

machine not having enough (storage) space
int -9

HDFQL_ERROR_NOT_ENOUGH_MEMORY
Represents an operation that failed due to the

machine not having enough (RAM) memory
int -10

HDFQL_ERROR_ALREADY_EXISTS

Represents an operation that failed due to an

object (e.g. directory, file, group, dataset)

already existing

int -11

HDFQL_ERROR_EMPTY
Represents an operation that failed due to its

internal structure being empty
int -12

HDFQL_ERROR_FULL
Represents an operation that failed due to its

internal structure being full
int -13

HDFQL_ERROR_BEFORE_FIRST

Represents an operation that failed due to

trying to position/access an element before the

first one

int -14

HDFQL_ERROR_AFTER_LAST

Represents an operation that failed due to

trying to position/access an element after the

last one

int -15

HDFQL_ERROR_OUTSIDE_LIMIT
Represents an operation that failed due to being

outside the limit
int -16

HDFQL_ERROR_NO_ADDRESS

Represents an operation that failed due to a

user-defined variable having no address (i.e. is

NULL)

int -17

HDFQL_ERROR_UNEXPECTED_TYPE

Represents an operation that failed due to an

object (e.g. group, dataset) being of an

unexpected type

int -18

HDFQL_ERROR_UNEXPECTED_DATA_TYPE

Represents an operation that failed due to a

user-defined variable being of an unexpected

data type

int -19

HDFQL_ERROR_UNEXPECTED_STORAGE_TYPE
Represents an operation that failed due to a

dataset being of an unexpected storage type
int -20

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 50 of 341

(layout)

HDFQL_ERROR_DANGLING_LINK
Represents an operation that failed due to an

object being a dangling (soft or external) link
int -21

HDFQL_ERROR_NOT_REGISTERED
Represents an operation that failed due to a

user-defined variable not being registered
int -22

HDFQL_ERROR_INVALID_REGULAR_EXPRESSION
Represents an operation that failed due to a

regular expression being invalid
int -23

HDFQL_ERROR_INVALID_SELECTION
Represents an operation that failed due to a

(hyperslab or point) selection being invalid
int -24

HDFQL_ERROR_UNKNOWN
Represents an operation that failed due to an

unknown/unexpected error
int -99

Table 5.1 – HDFql constants in C

HDFql also supports other programming languages namely C++, Java, Python, C#, Fortran and R through wrappers. The

below tables provide examples on how HDFql constants are defined in these programming languages.

In C++, the prefix “HDFQL_” of the name of constants (defined in C) is replaced by the namespace “HDFql” and its

underscores (_) are discarded. The remainder of the name of constants follows the upper camel-case convention. The

following table lists a subset of HDFql constants as defined in C and details how these are defined/can be used in C++.

HDFql Constant in C Corresponding Definition in C++

HDFQL_VERSION HDFql::Version

HDFQL_SUCCESS HDFql::Success

HDFQL_ERROR_PARSE HDFql::ErrorParse

HDFQL_TINYINT HDFql::Tinyint

HDFQL_UNSIGNED_BIGINT HDFql::UnsignedBigint

HDFQL_UTF8 HDFql::Utf8

Table 5.2 – HDFql constants in C and their corresponding definitions in C++

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 51 of 341

In Java, the prefix “HDFQL_” of the name of constants (defined in C) is replaced by the class “HDFql”. The remainder of the

name of constants remains exactly the same. The following table lists a subset of HDFql constants as defined in C and

details how these are defined/can be used in Java.

HDFql Constant in C Corresponding Definition in Java

HDFQL_VERSION HDFql.VERSION

HDFQL_SUCCESS HDFql.SUCCESS

HDFQL_ERROR_PARSE HDFql.ERROR_PARSE

HDFQL_TINYINT HDFql.TINYINT

HDFQL_UNSIGNED_BIGINT HDFql.UNSIGNED_BIGINT

HDFQL_UTF8 HDFql.UTF8

Table 5.3 – HDFql constants in C and their corresponding definitions in Java

In Python, the prefix “HDFQL_” of the name of constants (defined in C) is replaced by the class “HDFql”. The remainder of

the name of constants remains exactly the same. The following table lists a subset of HDFql constants as defined in C and

details how these are defined/can be used in Python.

HDFql Constant in C Corresponding Definition in Python

HDFQL_VERSION HDFql.VERSION

HDFQL_SUCCESS HDFql.SUCCESS

HDFQL_ERROR_PARSE HDFql.ERROR_PARSE

HDFQL_TINYINT HDFql.TINYINT

HDFQL_UNSIGNED_BIGINT HDFql.UNSIGNED_BIGINT

HDFQL_UTF8 HDFql.UTF8

Table 5.4 – HDFql constants in C and their corresponding definitions in Python

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 52 of 341

In C#, the prefix “HDFQL_” of the name of constants (defined in C) is replaced by the class “HDFql” and its underscores (_)

are discarded. The remainder of the name of constants follows the upper camel-case convention. The following table lists

a subset of HDFql constants as defined in C and details how these are defined/can be used in C#.

HDFql Constant in C Corresponding Definition in C#

HDFQL_VERSION HDFql.Version

HDFQL_SUCCESS HDFql.Success

HDFQL_ERROR_PARSE HDFql.ErrorParse

HDFQL_TINYINT HDFql.Tinyint

HDFQL_UNSIGNED_BIGINT HDFql.UnsignedBigint

HDFQL_UTF8 HDFql.Utf8

Table 5.5 – HDFql constants in C and their corresponding definitions in C#

In Fortran, the name of constants is the same as in C and can be written in any case. The following table lists a subset of

HDFql constants as defined in C and details how these are defined/can be used in Fortran.

HDFql Constant in C Corresponding Definition in Fortran

HDFQL_VERSION HDFQL_VERSION

HDFQL_SUCCESS HDFQL_SUCCESS

HDFQL_ERROR_PARSE HDFQL_ERROR_PARSE

HDFQL_TINYINT HDFQL_TINYINT

HDFQL_UNSIGNED_BIGINT HDFQL_UNSIGNED_BIGINT

HDFQL_UTF8 HDFQL_UTF8

Table 5.6 – HDFql constants in C and their corresponding definitions in Fortran

In R, the name of constants is the same as in C. The following table lists a subset of HDFql constants as defined in C and

details how these are defined/can be used in R.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 53 of 341

HDFql Constant in C Corresponding Definition in R

HDFQL_VERSION HDFQL_VERSION

HDFQL_SUCCESS HDFQL_SUCCESS

HDFQL_ERROR_PARSE HDFQL_ERROR_PARSE

HDFQL_TINYINT HDFQL_TINYINT

HDFQL_UNSIGNED_BIGINT HDFQL_UNSIGNED_BIGINT

HDFQL_UTF8 HDFQL_UTF8

Table 5.7 – HDFql constants in C and their corresponding definitions in R

5.2 FUNCTIONS

A function is a group of instructions that together perform a specific task, requiring direction back to the caller on

completion of the task. Any given function might be called at any point during a program's execution, including by other

functions or itself. It provides better modularity of a program and a high degree of code reusing. The following table

summarizes all existing HDFql functions in C.

HDFql Function in C Description

hdfql_execute Execute a script (composed of one or more operations)

hdfql_execute_get_status Get status of the last executed operation

hdfql_error_get_line Get error line of the last executed operation

hdfql_error_get_position Get error position of the last executed operation

hdfql_error_get_message Get error message of the last executed operation

hdfql_cursor_initialize Initialize a cursor for subsequent use

hdfql_cursor_use Set the cursor to be used for storing the result of operations

hdfql_cursor_use_default Set HDFql default cursor as the one to be used for storing the result of operations

hdfql_cursor_clear Clear (i.e. empty) the cursor in use

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 54 of 341

hdfql_cursor_clone Clone (i.e. duplicate) a cursor into another one

hdfql_cursor_get_data_type Get data type of the cursor in use

hdfql_cursor_get_count Get number of elements (i.e. result set size) stored in the cursor in use

hdfql_subcursor_get_count Get number of elements (i.e. result subset size) stored in the subcursor in use

hdfql_cursor_get_position Get current position of cursor in use within result set

hdfql_subcursor_get_position Get current position of subcursor in use within result subset

hdfql_cursor_first Move the cursor in use to the first position within result set

hdfql_subcursor_first Move the subcursor in use to the first position within result subset

hdfql_cursor_last Move the cursor in use to the last position within result set

hdfql_subcursor_last Move the subcursor in use to the last position within result subset

hdfql_cursor_next Move the cursor in use one position forward from its current position

hdfql_subcursor_next Move the subcursor in use one position forward from its current position

hdfql_cursor_previous Move the cursor in use one position backward from its current position

hdfql_subcursor_previous Move the subcursor in use one position backward from its current position

hdfql_cursor_absolute Move the cursor in use to an absolute position within the result set

hdfql_subcursor_absolute Move the subcursor in use to an absolute position within the result subset

hdfql_cursor_relative Move the cursor in use to a relative position within result set

hdfql_subcursor_relative Move the subcursor in use to a relative position within result subset

hdfql_cursor_get_tinyint Get current element of the cursor in use as a TINYINT

hdfql_subcursor_get_tinyint Get current element of the subcursor in use as a TINYINT

hdfql_cursor_get_unsigned_tinyint Get current element of the cursor in use as an UNSIGNED TINYINT

hdfql_subcursor_get_unsigned_tinyint Get current element of the subcursor in use as an UNSIGNED TINYINT

hdfql_cursor_get_smallint Get current element of the cursor in use as a SMALLINT

hdfql_subcursor_get_smallint Get current element of the subcursor in use as a SMALLINT

hdfql_cursor_get_unsigned_smallint Get current element of the cursor in use as an UNSIGNED SMALLINT

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 55 of 341

hdfql_subcursor_get_unsigned_smallint Get current element of the subcursor in use as an UNSIGNED SMALLINT

hdfql_cursor_get_int Get current element of the cursor in use as an INT

hdfql_subcursor_get_int Get current element of the subcursor in use as an INT

hdfql_cursor_get_unsigned_int Get current element of the cursor in use as an UNSIGNED INT

hdfql_subcursor_get_unsigned_int Get current element of the subcursor in use as an UNSIGNED INT

hdfql_cursor_get_bigint Get current element of the cursor in use as a BIGINT

hdfql_subcursor_get_bigint Get current element of the subcursor in use as a BIGINT

hdfql_cursor_get_unsigned_bigint Get current element of the cursor in use as an UNSIGNED BIGINT

hdfql_subcursor_get_unsigned_bigint Get current element of the subcursor in use as an UNSIGNED BIGINT

hdfql_cursor_get_float Get current element of the cursor in use as a FLOAT

hdfql_subcursor_get_float Get current element of the subcursor in use as a FLOAT

hdfql_cursor_get_double Get current element of the cursor in use as a DOUBLE

hdfql_subcursor_get_double Get current element of the subcursor in use as a DOUBLE

hdfql_cursor_get_char Get current element of the cursor in use as a VARCHAR

hdfql_variable_register Register a variable for subsequent use

hdfql_variable_transient_register Register a variable in a transient way for subsequent use

hdfql_variable_unregister Unregister a variable

hdfql_variable_unregister_all Unregister all variables

hdfql_variable_get_number Get number of a variable

hdfql_variable_get_data_type Get data type of a variable

hdfql_variable_get_count Get number of elements (i.e. result set size) stored in a variable

hdfql_variable_get_size Get size (in bytes) of a variable

hdfql_variable_get_dimension_count Get number of dimensions of a variable

hdfql_variable_get_dimension Get size of a certain dimension of a variable

hdfql_mpi_get_size Get number (i.e. size) of processes associated to the MPI communicator

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 56 of 341

hdfql_mpi_get_rank Get number (i.e. rank) of the calling process associated to the MPI communicator

Table 5.8 – HDFql functions in C

In C++, the prefix “hdfql_” of the name of functions (defined in C) is replaced by the namespace “HDFql” and its

underscores (_) are discarded. The remainder of the name of functions follows the lower camel-case convention. The

following table lists a subset of HDFql functions as defined in C and details how these are defined/can be used in C++.

HDFql Function in C Corresponding Definition in C++

hdfql_execute HDFql::execute

hdfql_cursor_next HDFql::cursorNext

hdfql_cursor_get_tinyint HDFql::cursorGetTinyint

hdfql_cursor_get_unsigned_int HDFql::cursorGetUnsignedInt

hdfql_subcursor_get_bigint HDFql::subcursorGetBigint

hdfql_variable_get_number HDFql::variableGetNumber

Table 5.9 – HDFql functions in C and their corresponding definitions in C++

In Java, the prefix “hdfql_” of the name of functions (defined in C) is replaced by the class “HDFql” and its underscores (_)

are discarded. The remainder of the name of functions follows the lower camel-case convention. The following table lists a

subset of HDFql functions as defined in C and details how these are defined/can be used in Java.

HDFql Function in C Corresponding Definition in Java

hdfql_execute HDFql.execute

hdfql_cursor_next HDFql.cursorNext

hdfql_cursor_get_tinyint HDFql.cursorGetTinyint

hdfql_cursor_get_unsigned_int HDFql.cursorGetUnsignedInt

hdfql_subcursor_get_bigint HDFql.subcursorGetBigint

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 57 of 341

hdfql_variable_get_number HDFql.variableGetNumber

Table 5.10 – HDFql functions in C and their corresponding definitions in Java

In Python, the prefix “hdfql_” of the name of functions (defined in C) is replaced by the class “HDFql”. The remainder of

the name of functions remains exactly the same. The following table lists a subset of HDFql functions as defined in C and

details how these are defined/can be used in Python.

HDFql Function in C Corresponding Definition in Python

hdfql_execute HDFql.execute

hdfql_cursor_next HDFql.cursor_next

hdfql_cursor_get_tinyint HDFql.cursor_get_tinyint

hdfql_cursor_get_unsigned_int HDFql.cursor_get_unsigned_int

hdfql_subcursor_get_bigint HDFql.subcursor_get_bigint

hdfql_variable_get_number HDFql.variable_get_number

Table 5.11 – HDFql functions in C and their corresponding definitions in Python

In C#, the prefix “hdfql_” of the name of functions (defined in C) is replaced by the class “HDFql” and its underscores (_)

are discarded. The remainder of the name of functions follows the upper camel-case convention. The following table lists

a subset of HDFql functions as defined in C and details how these are defined/can be used in C#.

HDFql Function in C Corresponding Definition in C#

hdfql_execute HDFql.Execute

hdfql_cursor_next HDFql.CursorNext

hdfql_cursor_get_tinyint HDFql.CursorGetTinyint

hdfql_cursor_get_unsigned_int HDFql.CursorGetUnsignedInt

hdfql_subcursor_get_bigint HDFql.SubcursorGetBigint

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 58 of 341

hdfql_variable_get_number HDFql.VariableGetNumber

Table 5.12 – HDFql functions in C and their corresponding definitions in C#

In Fortran, the name of functions is the same as in C and can be written using any case. The following table lists a subset of

HDFql functions as defined in C and details how these are defined/can be used in Fortran.

HDFql Function in C Corresponding Definition in Fortran

hdfql_execute hdfql_execute

hdfql_cursor_next hdfql_cursor_next

hdfql_cursor_get_tinyint hdfql_cursor_get_tinyint

hdfql_cursor_get_unsigned_int hdfql_cursor_get_unsigned_int

hdfql_subcursor_get_bigint hdfql_subcursor_get_bigint

hdfql_variable_get_number hdfql_variable_get_number

Table 5.13 – HDFql functions in C and their corresponding definitions in Fortran

In R, the name of functions is the same as in C. The following table lists a subset of HDFql functions as defined in C and

details how these are defined/can be used in R.

HDFql Function in C Corresponding Definition in R

hdfql_execute hdfql_execute

hdfql_cursor_next hdfql_cursor_next

hdfql_cursor_get_tinyint hdfql_cursor_get_tinyint

hdfql_cursor_get_unsigned_int hdfql_cursor_get_unsigned_int

hdfql_subcursor_get_bigint hdfql_subcursor_get_bigint

hdfql_variable_get_number hdfql_variable_get_number

Table 5.14 – HDFql functions in C and their corresponding definitions in R

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 59 of 341

5.2.1 HDFQL_EXECUTE

Syntax

int hdfql_execute(const char *script)

Description

Execute a script named script. A script can be composed of one or more operations – in case of multiple operations these

can either be separated with a semicolon (;) or an end of line (EOL) terminator. In HDFql, operations are case insensitive

meaning that, for example, operation “SHOW DATASET” is equivalent to “show dataset” or any other case variation. If a

certain operation raises an error, any subsequent operations within script are not executed. Please refer to Table 6.2 for a

complete enumeration of HDFql operations.

Parameter(s)

script – string containing one or more operations to execute. Multiple operations are either separated with a semicolon (;)

or an end of line (EOL) terminator.

Return

int – depending on the success in executing script, it can either be HDFQL_SUCCESS, HDFQL_ERROR_PARSE,

HDFQL_ERROR_NOT_SPECIFIED, HDFQL_ERROR_NOT_FOUND, HDFQL_ERROR_NO_ACCESS, HDFQL_ERROR_NOT_OPEN,

HDFQL_ERROR_INVALID_NAME, HDFQL_ERROR_INVALID_FILE, HDFQL_ERROR_NOT_SUPPORTED,

HDFQL_ERROR_NOT_ENOUGH_SPACE, HDFQL_ERROR_NOT_ENOUGH_MEMORY, HDFQL_ERROR_ALREADY_EXISTS,

HDFQL_ERROR_EMPTY, HDFQL_ERROR_FULL, HDFQL_ERROR_BEFORE_FIRST, HDFQL_ERROR_AFTER_LAST,

HDFQL_ERROR_OUTSIDE_LIMIT, HDFQL_ERROR_NO_ADDRESS, HDFQL_ERROR_UNEXPECTED_TYPE,

HDFQL_ERROR_UNEXPECTED_DATA_TYPE, HDFQL_ERROR_UNEXPECTED_STORAGE_TYPE,

HDFQL_ERROR_DANGLING_LINK, HDFQL_ERROR_NOT_REGISTERED, HDFQL_ERROR_INVALID_REGULAR_EXPRESSION,

HDFQL_ERROR_INVALID_SELECTION or HDFQL_ERROR_UNKNOWN.

Example(s)

// declare variable

int status;

// execute script (composed of only one operation - i.e. SHOW USE FILE)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 60 of 341

status = hdfql_execute("SHOW USE FILE");

// display message about the status of executed script (i.e. successful or not)

if (status == HDFQL_SUCCESS)

 printf("Execution was successful\n");

else

 printf("Execution was not successful and returned status is %d\n", status);

// execute script (composed of two operations – i.e. USE FILE my_file.h5 and SHOW)

hdfql_execute("USE FILE my_file.h5 ; SHOW");

5.2.2 HDFQL_EXECUTE_GET_STATUS

Syntax

int hdfql_execute_get_status(void)

Description

Get status of the last executed operation. In other words, this function returns the status of the last call of hdfql_execute.

Parameter(s)

None

Return

int – depending on the success of the last executed operation, it can either be HDFQL_SUCCESS, HDFQL_ERROR_PARSE,

HDFQL_ERROR_NOT_SPECIFIED, HDFQL_ERROR_NOT_FOUND, HDFQL_ERROR_NO_ACCESS, HDFQL_ERROR_NOT_OPEN,

HDFQL_ERROR_INVALID_NAME, HDFQL_ERROR_INVALID_FILE, HDFQL_ERROR_NOT_SUPPORTED,

HDFQL_ERROR_NOT_ENOUGH_SPACE, HDFQL_ERROR_NOT_ENOUGH_MEMORY, HDFQL_ERROR_ALREADY_EXISTS,

HDFQL_ERROR_EMPTY, HDFQL_ERROR_FULL, HDFQL_ERROR_BEFORE_FIRST, HDFQL_ERROR_AFTER_LAST,

HDFQL_ERROR_OUTSIDE_LIMIT, HDFQL_ERROR_NO_ADDRESS, HDFQL_ERROR_UNEXPECTED_TYPE,

HDFQL_ERROR_UNEXPECTED_DATA_TYPE, HDFQL_ERROR_UNEXPECTED_STORAGE_TYPE,

HDFQL_ERROR_DANGLING_LINK, HDFQL_ERROR_NOT_REGISTERED, HDFQL_ERROR_INVALID_REGULAR_EXPRESSION,

HDFQL_ERROR_INVALID_SELECTION or HDFQL_ERROR_UNKNOWN.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 61 of 341

Example(s)

// declare variable

int status;

// execute script (composed of only one operation - i.e. SHOW USE DIRECTORY)

hdfql_execute("SHOW USE DIRECTORY");

// get status of last executed script (i.e. SHOW USE DIRECTORY)

status = hdfql_execute_get_status();

// display message about the status of last executed script (i.e. successful or not)

if (status == HDFQL_SUCCESS)

 printf("Execution was successful\n");

else

 printf("Execution was not successful and returned status is %d\n", status);

5.2.3 HDFQL_ERROR_GET_LINE

Syntax

int hdfql_error_get_line(void)

Description

Get error line of the last executed operation. In other words, this function returns the number of the line (in the script)

where an error was raised during the last call of hdfql_execute. The first line in the script is designated as number one (1).

Parameter(s)

None

Return

int – number of the line (in the script) where an error has occurred during the last executed operation. If the last executed

operation was sucessful, the number of the line will be HDFQL_UNDEFINED.

Example(s)

// execute script (composed of only one operation - i.e. CREATE FILE my_file.h5 – which is

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 62 of 341

syntactically correct)

hdfql_execute("CREATE FILE my_file.h5");

// display number of the line where an error occurred during the last executed operation

(should be "Error line number is -1")

printf("Error line number is %d\n", hdfql_error_get_line());

// execute script (composed of only one operation - i.e. CREATE FILEX my_file.h5 – which is

syntactically incorrect due to a typo in "FILEX")

hdfql_execute("CREATE FILEX my_file.h5");

// display number of the line where an error occurred during the last executed operation

(should be "Error line number is 1")

printf("Error line number is %d\n", hdfql_error_get_line());

5.2.4 HDFQL_ERROR_GET_POSITION

Syntax

int hdfql_error_get_position(void)

Description

Get error position of the last executed operation. In other words, this function returns the position in the line where an

error was raised during the last call of hdfql_execute. The first position in the line is designated as number one (1).

Parameter(s)

None

Return

int – position in the line where an error has occurred during the last executed operation. If the last executed operation

was sucessful, the position in the line will be HDFQL_UNDEFINED.

Example(s)

// execute script (composed of only one operation - i.e. CREATE FILE my_file.h5 – which is

syntactically correct)

hdfql_execute("CREATE FILE my_file.h5");

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 63 of 341

// display position in the line where an error occurred during the last executed operation

(should be "Error position is -1")

printf("Error position is %d\n", hdfql_error_get_position());

// execute script (composed of only one operation - i.e. CREATE FILEX my_file.h5 – which is

syntactically incorrect due to a typo in "FILEX")

hdfql_execute("CREATE FILEX my_file.h5");

// display position in the line where an error occurred during the last executed operation

(should be "Error position is 8")

printf("Error position is %d\n", hdfql_error_get_position());

5.2.5 HDFQL_ERROR_GET_MESSAGE

Syntax

char *hdfql_error_get_message(void)

Description

Get error message of the last executed operation. In other words, this function returns the message of the error that was

raised during the last call of hdfql_execute.

Parameter(s)

None

Return

char * – pointer to the message of an error that has occurred during the last executed operation. If the last executed

operation was sucessful, the pointer will be NULL.

Example(s)

// execute script (composed of only one operation - i.e. CREATE FILE my_file.h5 – which is

syntactically correct)

hdfql_execute("CREATE FILE my_file.h5");

// display message of an error that occurred during the last executed operation (should be

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 64 of 341

"NULL")

printf("%s\n", hdfql_error_get_message());

// execute script (composed of only one operation - i.e. CREATE FILEX my_file.h5 – which is

syntactically incorrect due to a typo in "FILEX")

hdfql_execute("CREATE FILEX my_file.h5");

// display message of an error that occurred during the last executed operation (should be

"Unknown token “FILEX”")

printf("%s\n", hdfql_error_get_message());

5.2.6 HDFQL_CURSOR_INITIALIZE

Syntax

int hdfql_cursor_initialize(HDFQL_CURSOR *cursor)

Description

Initialize a cursor named cursor for subsequent use. Before a new cursor is used for the first time, it should always be

initialized (otherwise unexpected errors may arise such as a segmentation fault). The initialization of a cursor sets its data

type attribute to undefined (HDFQL_UNDEFINED), its current element to NULL, and resets its count and position attributes

to zero and minus one respectively, making it ready for usage. Of note, the process of initializing a cursor is only required

in C and performed once, while in other programming languages supported by HDFql – namely C++, Java, Python, C#,

Fortran and R – such initialization is redundant (in other words, it is not needed) as it is done automatically when creating

a cursor.

Parameter(s)

cursor – pointer to a cursor (previously declared) to initialize with default values. If the pointer is NULL (in C), the cursor in

use is initialized instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL,

null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is

optional (when not provided, the cursor in use is initialized instead).

Return

int – depending on the success in initializing cursor, it can either be HDFQL_SUCCESS or HDFQL_ERROR_UNKNOWN.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 65 of 341

Example(s)

// create a cursor named "my_cursor"

HDFQL_CURSOR my_cursor;

// initialize cursor "my_cursor"

hdfql_cursor_initialize(&my_cursor);

// use cursor "my_cursor"

hdfql_cursor_use(&my_cursor);

// display number of elements in cursor "my_cursor" (should be "Number of elements in cursor is

0")

printf("Number of elements in cursor is %d\n", hdfql_cursor_get_count(NULL));

5.2.7 HDFQL_CURSOR_USE

Syntax

int hdfql_cursor_use(const HDFQL_CURSOR *cursor)

Description

Set the cursor named cursor as the one to be used for storing results of operations.

Parameter(s)

cursor – pointer to a cursor to use for storing the result of operations. If the pointer is NULL (in C), the HDFql default cursor

is used instead (i.e. equivalent of calling the function hdfql_cursor_use_default). The equivalent of a NULL pointer in C++,

Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively.

Return

int – depending on the success in using cursor, it can either be HDFQL_SUCCESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// create a cursor named "my_cursor"

HDFQL_CURSOR my_cursor;

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 66 of 341

// use cursor "my_cursor"

hdfql_cursor_use(&my_cursor);

// initialize cursor "my_cursor"

hdfql_cursor_initialize(NULL);

// display data type of cursor "my_cursor" (should be "Data type of cursor -1")

printf("Data type of cursor is %d\n", hdfql_cursor_get_data_type(NULL));

// show (i.e. get) current working directory

hdfql_execute("SHOW USE DIRECTORY");

// display (again) data type of cursor "my_cursor" (should be "Data type of cursor is 2097152")

printf("Data type of cursor is %d\n", hdfql_cursor_get_data_type(NULL));

// use HDFql default cursor

hdfql_cursor_use(NULL);

// display data type of HDFql default cursor (should be "Data type of cursor is -1")

printf("Data type of cursor is %d\n", hdfql_cursor_get_data_type(NULL));

5.2.8 HDFQL_CURSOR_USE_DEFAULT

Syntax

int hdfql_cursor_use_default(void)

Description

Set HDFql default cursor as the one to be used for storing results of operations.

Parameter(s)

None

Return

int – depending on the success in using HDFql default cursor, it can either be HDFQL_SUCCESS or

HDFQL_ERROR_UNKNOWN.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 67 of 341

Example(s)

// create a cursor named "my_cursor"

HDFQL_CURSOR my_cursor;

// initialize cursor "my_cursor"

hdfql_cursor_initialize(&my_cursor);

// use cursor "my_cursor"

hdfql_cursor_use(&my_cursor);

// display data type of cursor "my_cursor" (should be "Data type of cursor is -1")

printf("Data type of cursor is %d\n", hdfql_cursor_get_data_type(NULL));

// show (i.e. get) current working directory

hdfql_execute("SHOW USE DIRECTORY");

// display (again) data type of cursor "my_cursor" (should be "Data type of cursor is 2097152")

printf("Data type of cursor is %d\n", hdfql_cursor_get_data_type(NULL));

// use HDFql default cursor

hdfql_cursor_use_default();

// display data type of HDFql default cursor (should be "Data type of cursor is -1")

printf("Data type of cursor is %d\n", hdfql_cursor_get_data_type(NULL));

5.2.9 HDFQL_CURSOR_CLEAR

Syntax

int hdfql_cursor_clear(HDFQL_CURSOR *cursor)

Description

Clear (i.e. empty) a cursor named cursor. Specifically, this function removes all elements (i.e. result set) stored in the

cursor, specifies its data type attribute to undefined (HDFQL_UNDEFINED), changes its current element to NULL, and

resets its count and position attributes to zero and minus one respectively.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 68 of 341

Parameter(s)

cursor – pointer to a cursor to clear (i.e. empty). If the pointer is NULL (in C), the cursor in use is cleared instead. The

equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL,

respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the

cursor in use is cleared instead).

Return

int – depending on the success in clearing cursor, it can either be HDFQL_SUCCESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// show (i.e. get) current working directory

hdfql_execute("SHOW USE DIRECTORY");

// display number of elements in the cursor in use (should be "Number of elements in cursor is

1")

printf("Number of elements in cursor is %d\n", hdfql_cursor_get_count(NULL));

// clear the cursor in use

hdfql_cursor_clear(NULL);

// display (again) number of elements in the cursor in use (should be "Number of elements in

cursor is 0")

printf("Number of elements in cursor is %d\n", hdfql_cursor_get_count(NULL));

5.2.10 HDFQL_CURSOR_CLONE

Syntax

int hdfql_cursor_clone(const HDFQL_CURSOR *cursor_original, HDFQL_CURSOR *cursor_clone)

Description

Clone (i.e. duplicate) a cursor named cursor_original into another one named cursor_clone. In other words, cursor_clone

will be an exact (deep) copy of cursor_original, meaning that it will have the same data type, count and position values,

store the same result set, and have the same current element as the original cursor.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 69 of 341

Parameter(s)

cursor_original – pointer to a cursor to clone. If the pointer is NULL (in C), the cursor in use is the one to be cloned instead.

The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and

NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not

provided, the cursor in use is the one to be cloned instead).

cursor_clone – pointer to the cursor that will be a clone (i.e. duplicate) of the original cursor.

Return

int – depending on the success in cloning cursor_original into cursor_clone, it can either be HDFQL_SUCCESS,

HDFQL_ERROR_NOT_ENOUGH_MEMORY or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// create a cursor named "my_cursor"

HDFQL_CURSOR my_cursor;

// initialize cursor "my_cursor"

hdfql_cursor_initialize(&my_cursor);

// show (i.e. get) current working directory and populate cursor in use (i.e. HDFql default

cursor) with it

hdfql_execute("SHOW USE DIRECTORY");

// clone the cursor in use (i.e. HDFql default cursor) into the cursor "my_cursor"

hdfql_cursor_clone(NULL, &my_cursor);

// use cursor "my_cursor"

hdfql_cursor_use(&my_cursor);

// display number of elements in the cursor in use (should be "Number of elements in cursor is

1")

printf("Number of elements in cursor is %d\n", hdfql_cursor_get_count(NULL));

5.2.11 HDFQL_CURSOR_GET_DATA_TYPE

Syntax

int hdfql_cursor_get_data_type(const HDFQL_CURSOR *cursor)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 70 of 341

Description

Get the data type of a cursor named cursor. If the cursor has never been populated or has been initialized or cleared, the

returned data type is undefined (HDFQL_UNDEFINED). Please refer to Table 6.3 for a complete enumeration of HDFql data

types.

Parameter(s)

cursor – pointer to a cursor to get its data type. If the pointer is NULL (in C), the data type of the cursor in use is returned

instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null,

0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not

provided, the data type of the cursor in use is returned instead).

Return

int – depending on the data type of the cursor or its state (i.e. whether it has never been populated or has been initialized

or cleared), it can either be HDFQL_TINYINT, HDFQL_UNSIGNED_TINYINT, HDFQL_SMALLINT,

HDFQL_UNSIGNED_SMALLINT, HDFQL_INT, HDFQL_UNSIGNED_INT, HDFQL_BIGINT, HDFQL_UNSIGNED_BIGINT,

HDFQL_FLOAT, HDFQL_DOUBLE, HDFQL_CHAR, HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT,

HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT, HDFQL_UNSIGNED_VARINT,

HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE, HDFQL_VARCHAR,

HDFQL_OPAQUE, HDFQL_BITFIELD, HDFQL_ENUMERATION, HDFQL_COMPOUND, HDFQL_REFERENCE or

HDFQL_UNDEFINED.

Example(s)

// show (i.e. get) current working directory

hdfql_execute("SHOW USE DIRECTORY");

// display data type of the cursor in use (should be "Data type of cursor is 2097152")

printf("Data type of cursor is %d\n", hdfql_cursor_get_data_type(NULL));

// clear the cursor in use

hdfql_cursor_clear(NULL);

// display (again) data type of the cursor in use (should be "Data type of cursor is -1")

printf("Data type of cursor is %d\n", hdfql_cursor_get_data_type(NULL));

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 71 of 341

5.2.12 HDFQL_CURSOR_GET_COUNT

Syntax

int hdfql_cursor_get_count(const HDFQL_CURSOR *cursor)

Description

Get the number of elements (i.e. result set size) stored in a cursor named cursor. If the result set stores data from a

dataset or attribute that does not have a dimension (i.e. if it is scalar), the returned number of elements is one. Otherwise,

if the result set stores data from a dataset or attribute that has dimensions, the returned number of elements equals the

multiplication of all its dimensions’ sizes (e.g. if a cursor stores a result set of two dimensions of size 10x3, the number of

elements is 30). If the cursor has never been populated or has been initialized or cleared, the returned number of

elements is zero.

Parameter(s)

cursor – pointer to a cursor to get its number of elements (i.e. result set size). If the pointer is NULL (in C), the number of

elements of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R

HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python,

C#, Fortran and R it is optional (when not provided, the number of elements of the cursor in use is returned instead).

Return

int – number of elements (i.e. result set size) stored in the cursor.

Example(s)

// show (i.e. get) current working directory

hdfql_execute("SHOW USE DIRECTORY");

// display number of elements in the cursor in use (should be "Number of elements in cursor is

1")

printf("Number of elements in cursor is %d\n", hdfql_cursor_get_count(NULL));

// clear the cursor in use

hdfql_cursor_clear(NULL);

// display (again) number of elements in the cursor in use (should be "Number of elements in

cursor is 0")

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 72 of 341

printf("Number of elements in cursor is %d\n", hdfql_cursor_get_count(NULL));

5.2.13 HDFQL_SUBCURSOR_GET_COUNT

Syntax

int hdfql_subcursor_get_count(const HDFQL_CURSOR *cursor)

Description

Get the number of elements (i.e. result subset size) stored in the subcursor in use. If the cursor that the subcursor belongs

to has never been populated or has been initialized or cleared, the returned number of elements is zero.

Parameter(s)

cursor – pointer to a cursor to get the number of elements (i.e. result subset size) stored in the subcursor in use. If the

pointer is NULL (in C), the number of elements of the subcursor of the cursor in use is returned instead. The equivalent of

a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively.

While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the number of

elements of the subcursor of the cursor in use is returned instead).

Return

int – number of elements (i.e. result subset size) stored in the subcursor.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type variable-length int of two dimensions

(size 2x2)

hdfql_execute("CREATE DATASET my_dataset AS VARINT(2, 2)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// display number of elements in the cursor in use (should be "Number of elements in cursor is

4")

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 73 of 341

printf("Number of elements in cursor is %d\n", hdfql_cursor_get_count(NULL));

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display number of elements in the subcursor in use (should be "Number of elements in

subcursor is 3")

printf("Number of elements in subcursor is %d\n", hdfql_subcursor_get_count(NULL));

// move the cursor in use to next position within the result set (i.e. second position)

hdfql_cursor_next(NULL);

// display number of elements in the subcursor in use (should be "Number of elements in

subcursor is 1")

printf("Number of elements in subcursor is %d\n", hdfql_subcursor_get_count(NULL));

5.2.14 HDFQL_CURSOR_GET_POSITION

Syntax

int hdfql_cursor_get_position(const HDFQL_CURSOR *cursor)

Description

Get current position of a cursor named cursor within the result set. The first element of the result set is at position zero,

while the last element is located at the position returned by hdfql_cursor_get_count - 1. If the cursor has never been

populated or has been initialized or cleared, or in case the result set is empty, the returned current position is minus one.

If the cursor was moved before the first element or after the last element, the returned current position is minus one or

the number of elements in the result set, respectively.

Parameter(s)

cursor – pointer to a cursor to get its current position within the result set. If the pointer is NULL (in C), the current

position of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R

HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python,

C#, Fortran and R it is optional (when not provided, the current position of the cursor in use is returned instead).

Return

int – current position of the cursor within the result set.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 74 of 341

Example(s)

// show (i.e. get) current working directory

hdfql_execute("SHOW USE DIRECTORY");

// move the cursor in use to the first position within the result set

hdfql_cursor_first(NULL);

// display position of the cursor in use within the result set (should be "Position of cursor

is 0")

printf("Position of cursor is %d\n", hdfql_cursor_get_position(NULL));

// clear the cursor in use

hdfql_cursor_clear(NULL);

// display (again) position of the cursor in use within the result set (should be "Position of

cursor is -1")

printf("Position of cursor is %d\n", hdfql_cursor_get_position(NULL));

5.2.15 HDFQL_SUBCURSOR_GET_POSITION

Syntax

int hdfql_subcursor_get_position(const HDFQL_CURSOR *cursor)

Description

Get current position of the subcursor in use within the result subset. The first element of the result subset is at position

zero, while the last element is located at the position returned by hdfql_subcursor_get_count - 1. If the cursor that the

subcursor belongs to has never been populated or has been initialized or cleared, or in case the result subset is empty, the

returned current position is minus one. If the subcursor was moved before the first element or after the last element, the

returned current position is minus one or the number of elements in the result subset, respectively.

Parameter(s)

cursor – pointer to a cursor to get the current position of the subcursor in use within the result subset. If the pointer is

NULL (in C), the current position of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer

in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 75 of 341

cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current position of the

subcursor of the cursor in use is returned instead).

Return

int – current position of the subcursor within the result subset.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type variable-length int of two dimensions

(size 2x2)

hdfql_execute("CREATE DATASET my_dataset AS VARINT(2, 2)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to the first position within the result set

hdfql_cursor_first(NULL);

// display position of the subcursor in use within the result subset (should be "Position of

subcursor is -1")

printf("Position of subcursor is %d\n", hdfql_subcursor_get_position(NULL));

// move the subcursor in use to the next position within the result subset (two times)

hdfql_subcursor_next(NULL);

hdfql_subcursor_next(NULL);

// display (again) position of the subcursor in use within the result subset (should be

"Position of subcursor is 1")

printf("Position of subcursor is %d\n", hdfql_subcursor_get_position(NULL));

5.2.16 HDFQL_CURSOR_FIRST

Syntax

int hdfql_cursor_first(HDFQL_CURSOR *cursor)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 76 of 341

Description

Move a cursor named cursor to the first position within the result set. In other words, the cursor will point to the first

element of the result set and its position is set to zero. If the result set is empty, an error is returned and its position

remains unchanged (i.e. remains minus one).

Parameter(s)

cursor – pointer to a cursor to move to the first position within the result set. If the pointer is NULL (in C), the cursor in use

is moved to the first position instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql

wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#,

Fortran and R it is optional (when not provided, the cursor in use is moved to the first position instead).

Return

int – depending on the success in moving the cursor to the first position within the result set, it can either be

HDFQL_SUCCESS or HDFQL_ERROR_EMPTY.

Example(s)

// show (i.e. get) current working directory

hdfql_execute("SHOW USE DIRECTORY");

// display position of the cursor in use within the result set (should be "Position of cursor

is -1")

printf("Position of cursor is %d\n", hdfql_cursor_get_position(NULL));

// move the cursor in use to the first position within the result set

hdfql_cursor_first(NULL);

// display (again) position of the cursor in use within the result set (should be "Position of

cursor is 0")

printf("Position of cursor is %d\n", hdfql_cursor_get_position(NULL));

5.2.17 HDFQL_SUBCURSOR_FIRST

Syntax

int hdfql_subcursor_first(HDFQL_CURSOR *cursor)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 77 of 341

Description

Move the subcursor in use to the first position within the result subset. In other words, the subcursor will point to the first

element of the result subset and its position is set to zero. If the result subset is empty, an error is returned and its

position remains unchanged (i.e. remains minus one).

Parameter(s)

cursor – pointer to a cursor to move the subcursor in use to the first position within the result subset. If the pointer is

NULL (in C), the subcursor of the cursor in use is moved to the first position instead. The equivalent of a NULL pointer in

C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is

mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the subcursor of the cursor in use is

moved to the first position instead).

Return

int – depending on the success in moving the subcursor to the first position within the result subset, it can either be

HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type variable-length int of two dimensions

(size 2x2)

hdfql_execute("CREATE DATASET my_dataset AS VARINT(2, 2)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to the first position within the result set

hdfql_cursor_first(NULL);

// display position of the subcursor in use within the result subset (should be "Position of

subcursor is -1")

printf("Position of subcursor is %d\n", hdfql_subcursor_get_position(NULL));

// move the subcursor in use to the first position within the result subset

hdfql_subcursor_first(NULL);

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 78 of 341

// display (again) position of the subcursor in use within the result subset (should be

"Position of subcursor is 0")

printf("Position of subcursor is %d\n", hdfql_subcursor_get_position(NULL));

5.2.18 HDFQL_CURSOR_LAST

Syntax

int hdfql_cursor_last(HDFQL_CURSOR *cursor)

Description

Move a cursor named cursor to the last position within the result set. In other words, the cursor will point to the last

element of the result set and its position is set to the value returned by hdfql_cursor_get_count - 1. If the result set is

empty, an error is returned and its position remains unchanged (i.e. remains minus one).

Parameter(s)

cursor – pointer to a cursor to move to the last position within the result set. If the pointer is NULL (in C), the cursor in use

is moved to the last position instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql

wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#,

Fortran and R it is optional (when not provided, the cursor in use is moved to the last position instead).

Return

int – depending on the success in moving the cursor to the last position within the result set, it can either be

HDFQL_SUCCESS or HDFQL_ERROR_EMPTY.

Example(s)

// show (i.e. get) current working directory

hdfql_execute("SHOW USE DIRECTORY");

// display position of the cursor in use within the result set (should be "Position of cursor

is -1")

printf("Position of cursor is %d\n", hdfql_cursor_get_position(NULL));

// move the cursor in use to the last position within the result set

hdfql_cursor_last(NULL);

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 79 of 341

// display position of the cursor in use within the result set (should be "Position of cursor

is 0")

printf("Position of cursor is %d\n", hdfql_cursor_get_position(NULL));

5.2.19 HDFQL_SUBCURSOR_LAST

Syntax

int hdfql_subcursor_last(HDFQL_CURSOR *cursor)

Description

Move the subcursor in use to the last position within the result subset. In other words, the subcursor will point to the last

element of the result subset and its position is set to the value returned by hdfql_subcursor_get_count - 1. If the result

subset is empty, an error is returned and its position remains unchanged (i.e. remains minus one).

Parameter(s)

cursor – pointer to a cursor to move the subcursor in use to the last position within the result subset. If the pointer is NULL

(in C), the subcursor of the cursor in use is moved to the last position instead. The equivalent of a NULL pointer in C++,

Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is

mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the subcursor of the cursor in use is

moved to the last position instead).

Return

int – depending on the success in moving the subcursor to the last position within the result subset, it can either be

HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type variable-length int of two dimensions

(size 2x2)

hdfql_execute("CREATE DATASET my_dataset AS VARINT(2, 2)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 80 of 341

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to the first position within the result set

hdfql_cursor_first(NULL);

// display position of subcursor in use within the result subset (should be "Position of

subcursor is -1")

printf("Position of subcursor is %d\n", hdfql_subcursor_get_position(NULL));

// move the subcursor in use to the last position within the result subset

hdfql_subcursor_last(NULL);

// display (again) position of subcursor in use within the result subset (should be "Position

of subcursor is 2")

printf("Position of subcursor is %d\n", hdfql_subcursor_get_position(NULL));

5.2.20 HDFQL_CURSOR_NEXT

Syntax

int hdfql_cursor_next(HDFQL_CURSOR *cursor)

Description

Move a cursor named cursor one position forward from its current position. In other words, the cursor will point to the

next element of the result set and its position is incremented by one. If the result set is empty or the cursor is in the last

position, an error is returned and its position remains unchanged (i.e. remains minus one) or is set to the value returned

by hdfql_cursor_get_count, respectively.

Parameter(s)

cursor – pointer to a cursor to move one position forward from its current position. If the pointer is NULL (in C), the cursor

in use is moved one position forward from its current position instead. The equivalent of a NULL pointer in C++, Java,

Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is

mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the cursor in use is moved one

position forward from its current position instead).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 81 of 341

Return

int – depending on the success in moving the cursor one position forward from its current position, it can either be

HDFQL_SUCCESS, HDFQL_ERROR_EMPTY or HDFQL_ERROR_AFTER_LAST.

Example(s)

// show (i.e. get) current working directory

hdfql_execute("SHOW USE DIRECTORY");

// move the cursor in use to the next position within the result set

hdfql_cursor_next(NULL);

// display position of cursor within the result set (should be "Position of cursor is 0")

printf("Position of cursor is %d\n", hdfql_cursor_get_position(NULL));

5.2.21 HDFQL_SUBCURSOR_NEXT

Syntax

int hdfql_subcursor_next(HDFQL_CURSOR *cursor)

Description

Move the subcursor in use one position forward from its current position. In other words, the subcursor will point to the

next element of the result subset and its position is incremented by one. If the result subset is empty or the subcursor is in

the last position, an error is returned and its position remains unchanged (i.e. remains minus one) or is set to the value

returned by hdfql_subcursor_get_count, respectively

Parameter(s)

cursor – pointer to a cursor to move the subcursor in use one position forward from its current position. If the pointer is

NULL (in C), the subcursor of the cursor in use is moved one position forward from its current position instead. The

equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL,

respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the

subcursor of the cursor in use is moved one position forward from its current position instead).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 82 of 341

Return

int – depending on the success in moving the subcursor one position forward from its current position, it can either be

HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type variable-length int of two dimensions

(size 2x2)

hdfql_execute("CREATE DATASET my_dataset AS VARINT(2, 2)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to the first position within the result set

hdfql_cursor_first(NULL);

// display position of subcursor in use within the result subset (should be "Position of

subcursor is -1")

printf("Position of subcursor is %d\n", hdfql_subcursor_get_position(NULL));

// move the subcursor in use to the next position within the result subset (two times)

hdfql_subcursor_next(NULL);

hdfql_subcursor_next(NULL);

// display (again) position of subcursor in use within the result subset (should be "Position

of subcursor is 1")

printf("Position of subcursor is %d\n", hdfql_subcursor_get_position(NULL));

5.2.22 HDFQL_CURSOR_PREVIOUS

Syntax

int hdfql_cursor_previous(HDFQL_CURSOR *cursor)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 83 of 341

Description

Move a cursor named cursor one position backward from its current position. In other words, the cursor will point to the

previous element of the result set and its position is decremented by one. If the result set is empty or the cursor is in the

first position, an error is returned and its position remains unchanged (i.e. remains minus one) or is set to minus one,

respectively.

Parameter(s)

cursor – pointer to a cursor to move one position backward from its current position. If the pointer is NULL (in C), the

cursor in use is moved one position backward from its current position instead. The equivalent of a NULL pointer in C++,

Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is

mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the cursor in use is moved one

position backward from its current position instead).

Return

int – depending on the success in moving the cursor one position backward from its current position, it can either be

HDFQL_SUCCESS, HDFQL_ERROR_EMPTY or HDFQL_ERROR_BEFORE_FIRST.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type float of two dimensions (size 2x10)

hdfql_execute("CREATE DATASET my_dataset AS FLOAT(2, 10)");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to the last position within the result set

hdfql_cursor_last(NULL);

// move the cursor in use to the previous position within the result set

hdfql_cursor_previous(NULL);

// display position of cursor in use within the result set (should be "Position of cursor is

18")

printf("Position of cursor is %d\n", hdfql_cursor_get_position(NULL));

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 84 of 341

5.2.23 HDFQL_SUBCURSOR_PREVIOUS

Syntax

int hdfql_subcursor_previous(HDFQL_CURSOR *cursor)

Description

Move the subcursor in use one position backward from its current position. In other words, the subcursor will point to the

previous element of the result subset and its position is decremented by one. If the result subset is empty or the subcursor

is in the first position, an error is returned and its position remains unchanged (i.e. remains minus one) or is set to minus

one, respectively.

Parameter(s)

cursor – pointer to a cursor to move the subcursor in use one position backward from its current position. If the pointer is

NULL (in C), the subcursor of the cursor in use is moved one position backward from its current position instead. The

equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL,

respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the

subcursor of the cursor in use is moved one position backward from its current position instead).

Return

int – depending on the success in moving the subcursor one position backward from its current position, it can either be

HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type variable-length int of two dimensions

(size 2x2)

hdfql_execute("CREATE DATASET my_dataset AS VARINT(2, 2)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to the first position within the result set

hdfql_cursor_first(NULL);

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 85 of 341

// move the subcursor in use to the last position within the result subset

hdfql_subcursor_last(NULL);

// move the subcursor in use to the previous position within the result subset (two times)

hdfql_subcursor_previous(NULL);

hdfql_subcursor_previous(NULL);

// display position of the subcursor within the result subset (should be "Position of subcursor

is 0")

printf("Position of subcursor is %d\n", hdfql_subcursor_get_position(NULL));

5.2.24 HDFQL_CURSOR_ABSOLUTE

Syntax

int hdfql_cursor_absolute(HDFQL_CURSOR *cursor, int position)

Description

Move a cursor named cursor to an absolute position position within the result set. The first element of the result set is at

position zero, while the last element is located at the position returned by hdfql_cursor_get_count - 1. An attempt to

move the cursor before the first element will return an error and set the position of the cursor to minus one, while an

attempt to move the cursor after the last element will return an error and set the position of the cursor to number of

elements in the result set.

Parameter(s)

cursor – pointer to a cursor to move to an absolute position within the result set. If the pointer is NULL (in C), the cursor in

use is moved to an absolute position instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R

HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python,

C#, Fortran and R it is optional (when not provided, the cursor in use is moved to an absolute position instead).

position – absolute position to which to move the cursor. If position is positive, the cursor will position itself with reference

to the beginning of the result set. If position is negative, the cursor will position itself with reference to the end of the

result set.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 86 of 341

Return

int – depending on the success in moving the cursor to an absolute position within the result set, it can either be

HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create five HDF5 groups named "g1", "g2", "g3", "g4" and "g5"

hdfql_execute("CREATE GROUP g1, g2, g3, g4, g5");

// show (i.e. get) all existing groups and populate cursor in use with these (should be "g1",

"g2", "g3", "g4", "g5")

hdfql_execute("SHOW GROUP");

// move the cursor in use to absolute position 2 within the result set

hdfql_cursor_absolute(NULL, 2);

// display current element of the cursor in use within the result set (should be "Current

element of cursor is g3")

printf("Current element of cursor is %s", hdfql_cursor_get_char(NULL));

// move the cursor in use to absolute position -2 within the result set

hdfql_cursor_absolute(NULL, -2);

// display current element of the cursor in use within the result set (should be "Current

element of cursor is g4")

printf("Current element of cursor is %s", hdfql_cursor_get_char(NULL));

5.2.25 HDFQL_SUBCURSOR_ABSOLUTE

Syntax

int hdfql_subcursor_absolute(HDFQL_CURSOR *cursor, int position)

Description

Move the subcursor in use to an absolute position position within the result subset. The first element of the result subset

is at position zero, while the last element is located at the position returned by hdfql_subcursor_get_count - 1. An attempt

to move the subcursor before the first element will return an error and set the position of the subcursor to minus one,

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 87 of 341

while an attempt to move the subcursor after the last element will return an error and set the position of the subcursor to

number of elements in the result subset.

Parameter(s)

cursor – pointer to a cursor to move the subcursor in use to an absolute position within the result subset. If the pointer is

NULL (in C), the subcursor of the cursor in use is moved to an absolute position instead. The equivalent of a NULL pointer

in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C

cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the subcursor of the cursor

in use is moved to an absolute position instead).

position – absolute position to which to move the subcursor. If position is positive, the subcursor will position itself with

reference to the beginning of the result subset. If position is negative, the subcursor will position itself with reference to

the end of the result subset.

Return

int – depending on the success in moving the subcursor to an absolute position within the result subset, it can either be

HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type variable-length int of two dimensions

(size 2x2)

hdfql_execute("CREATE DATASET my_dataset AS VARINT(2, 2)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to the first position within the result set

hdfql_cursor_first(NULL);

// move the subcursor in use to absolute position 2 within the result subset

hdfql_subcursor_absolute(NULL, 2);

// display current element of the subcursor in use within the result subset (should be "Current

element of subcursor is 5")

printf("Current element of subcursor is %d", hdfql_subcursor_get_int(NULL));

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 88 of 341

// move the subcursor in use to absolute position -2 within the result subset

hdfql_subcursor_absolute(NULL, -2);

// display current element of the subcursor in use within the result subset (should be "Current

element of subcursor is 8")

printf("Current element of subcursor is %d", hdfql_subcursor_get_int(NULL));

5.2.26 HDFQL_CURSOR_RELATIVE

Syntax

int hdfql_cursor_relative(HDFQL_CURSOR *cursor, int position)

Description

Move a cursor named cursor to a relative position position with respect to its current position. The first element of the

result set is at position zero, while the last element is located at the position returned by hdfql_cursor_get_count - 1. An

attempt to move the cursor before the first element will return an error and set the position of the cursor to minus one,

while an attempt to move the cursor after the last element will return an error and set the position of the cursor to

number of elements in the result set.

Parameter(s)

cursor – pointer to a cursor to move to a relative position with respect to its current position. If the pointer is NULL (in C),

the cursor in use is moved to a relative position instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran

and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java,

Python, C#, Fortran and R it is optional (when not provided, the cursor in use is moved to a relative position instead).

position – relative position to which to move the cursor. If position is positive, the cursor will go forward in the result set

relative to its current position. If position is negative, the cursor will go backward in the result set relative to its current

position.

Return

int – depending on the success in moving the cursor to a relative position with respect to its current position, it can either

be HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 89 of 341

Example(s)

// create five HDF5 groups named "g1", "g2", "g3", "g4" and "g5"

hdfql_execute("CREATE GROUP g1, g2, g3, g4, g5");

// show (i.e. get) all existing groups and populate cursor in use with these (should be "g1",

"g2", "g3", "g4", "g5")

hdfql_execute("SHOW GROUP");

// move the cursor in use to the first position within the result set

hdfql_cursor_first(NULL);

// move the cursor in use to relative position 2 within the result set

hdfql_cursor_relative(NULL, 2);

// display current element of the cursor within the result set (should be "Current element of

cursor is g3")

printf("Current element of cursor is %s", hdfql_cursor_get_char(NULL));

// move the cursor in use to relative position -2 within the result set

hdfql_cursor_relative(NULL, -2);

// display current element of the cursor within the result set (should be "Current element of

cursor is g1")

printf("Current element of cursor is %s", hdfql_cursor_get_char(NULL));

5.2.27 HDFQL_SUBCURSOR_RELATIVE

Syntax

int hdfql_subcursor_relative(HDFQL_CURSOR *cursor, int position)

Description

Move the subcursor in use to a relative position position with respect to its current position. The first element of the result

subset is at position zero, while the last element is located at the position returned by hdfql_subcursor_get_count - 1. An

attempt to move the subcursor before the first element will return an error and set the position of the subcursor to minus

one, while an attempt to move the subcursor after the last element will return an error and set the position of the

subcursor to number of elements in the result set.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 90 of 341

Parameter(s)

cursor – pointer to a cursor to move the subcursor in use to a relative position with respect to its current position. If the

pointer is NULL (in C), the subcursor of the cursor in use is moved to a relative position instead. The equivalent of a NULL

pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in

C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the subcursor of the

cursor in use is moved to a relative position instead).

position – relative position to which to move the subcursor. If position is positive, the subcursor will go forward in the

result set relative to its current position. If position is negative, the subcursor will go backward in the result set relative to

its current position.

Return

int – depending on the success in moving the subcursor to a relative position with respect to its current position, it can

either be HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type variable-length int of two dimensions

(size 2x2)

hdfql_execute("CREATE DATASET my_dataset AS VARINT(2, 2)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to the first position within the result set

hdfql_cursor_first(NULL);

// move the subcursor in use to the first position within the result subset

hdfql_subcursor_first(NULL);

// move the subcursor in use to relative position 2 within the result subset

hdfql_subcursor_relative(NULL, 2);

// display current element of the subcursor in use within the result subset (should be "Current

element of subcursor is 5")

printf("Current element of subcursor is %d", hdfql_subcursor_get_int(NULL));

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 91 of 341

// move the subcursor in use to relative position -1 within the result subset

hdfql_subcursor_relative(NULL, -1);

// display current element of the subcursor in use within the result subset (should be "Current

element of subcursor is 8")

printf("Current element of subcursor is %d", hdfql_subcursor_get_int(NULL));

5.2.28 HDFQL_CURSOR_GET_TINYINT

Syntax

char *hdfql_cursor_get_tinyint(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as a TINYINT. In other words, the current element is interpreted as a

“char” C data type and returned as a pointer of such type. If the result set is empty or the cursor is located before or after

the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor – pointer to a cursor to get the current element as a TINYINT. If the pointer is NULL (in C), the current element of

the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql

wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#,

Fortran and R it is optional (when not provided, the current element of the cursor in use is returned instead).

Return

char * – pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type char of one dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset AS TINYINT(3)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES(12, 34, 23)");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 92 of 341

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display current element of the cursor in use as a char (should be "Current element of cursor

is 12")

printf("Current element of cursor is %d\n", *hdfql_cursor_get_tinyint(NULL));

5.2.29 HDFQL_SUBCURSOR_GET_TINYINT

Syntax

char *hdfql_subcursor_get_tinyint(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as a TINYINT. In other words, the current element is interpreted as a

“char” C data type and returned as a pointer of such type. If the result subset is empty or the subcursor is located before

or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor – pointer to a cursor to get the current element of the subcursor in use as a TINYINT. If the pointer is NULL (in C),

the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer in C++,

Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is

mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the subcursor

of the cursor in use is returned instead).

Return

char * – pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type variable-length char of one dimension

(size 3)

hdfql_execute("CREATE DATASET my_dataset AS VARTINYINT(3)");

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 93 of 341

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display current element of the cursor in use as a char (should be "Current element of cursor

is 5")

printf("Current element of cursor is %d\n", *hdfql_cursor_get_tinyint(NULL));

// move the subcursor in use to next position within the result subset (i.e. first position)

hdfql_subcursor_next(NULL);

// display current element of the subcursor in use as a char (should be "Current element of

subcursor is 5")

printf("Current element of subcursor is %d\n", *hdfql_subcursor_get_tinyint(NULL));

// move the subcursor in use to next position within the result subset (i.e. second position)

hdfql_subcursor_next(NULL);

// display current element of the subcursor in use as a char (should be "Current element of

subcursor is 2")

printf("Current element of subcursor is %d\n", *hdfql_subcursor_get_tinyint(NULL));

5.2.30 HDFQL_CURSOR_GET_UNSIGNED_TINYINT

Syntax

unsigned char *hdfql_cursor_get_unsigned_tinyint(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as an UNSIGNED TINYINT. In other words, the current element is

interpreted as an “unsigned char” C data type and returned as a pointer of such type. If the result set is empty or the

cursor is located before or after the first or last element of the result set, the returned element is NULL.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 94 of 341

Parameter(s)

cursor – pointer to a cursor to get the current element as a UNSIGNED TINYINT. If the pointer is NULL (in C), the current

element of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R

HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python,

C#, Fortran and R it is optional (when not provided, the current element of the cursor in use is returned instead).

Return

unsigned char * – pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type unsigned char of one dimension (size

3)

hdfql_execute("CREATE DATASET my_dataset AS UNSIGNED TINYINT(3)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES(12, 34, 23)");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display current element of the cursor in use as an unsigned char (should be "Current element

of cursor is 12")

printf("Current element of cursor is %u\n", *hdfql_cursor_get_unsigned_tinyint(NULL));

5.2.31 HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINT

Syntax

unsigned char *hdfql_subcursor_get_unsigned_tinyint(const HDFQL_CURSOR *cursor)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 95 of 341

Description

Get the current element of the subcursor in use as an UNSIGNED TINYINT. In other words, the current element is

interpreted as an “unsigned char” C data type and returned as a pointer of such type. If the result subset is empty or the

subcursor is located before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor – pointer to a cursor to get the current element of the subcursor in use as an UNSIGNED TINYINT. If the pointer is

NULL (in C), the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer

in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C

cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the

subcursor of the cursor in use is returned instead).

Return

unsigned char * – pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type variable-length unsigned char of one

dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset AS UNSIGNED VARTINYINT(3)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display current element of the cursor in use as an unsigned char (should be "Current element

of cursor is 5")

printf("Current element of cursor is %u\n", *hdfql_cursor_get_unsigned_tinyint(NULL));

// move the subcursor in use to next position within the result subset (i.e. first position)

hdfql_subcursor_next(NULL);

// display current element of the subcursor in use as an unsigned char (should be "Current

element of subcursor is 5")

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 96 of 341

printf("Current element of subcursor is %u\n", *hdfql_subcursor_get_unsigned_tinyint(NULL));

// move the subcursor in use to next position within the result subset (i.e. second position)

hdfql_subcursor_next(NULL);

// display current element of the subcursor in use as an unsigned char (should be "Current

element of subcursor is 2")

printf("Current element of subcursor is %u\n", *hdfql_subcursor_get_unsigned_tinyint(NULL));

5.2.32 HDFQL_CURSOR_GET_SMALLINT

Syntax

short *hdfql_cursor_get_smallint(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as a SMALLINT. In other words, the current element is interpreted as a

“short” C data type and returned as a pointer of such type. If the result set is empty or the cursor is located before or after

the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor – pointer to a cursor to get the current element as a SMALLINT. If the pointer is NULL (in C), the current element of

the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql

wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#,

Fortran and R it is optional (when not provided, the current element of the cursor in use is returned instead).

Return

short * – pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type short of one dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset AS SMALLINT(3)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES(12, 34, 23)");

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 97 of 341

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display current element of the cursor in use as a short (should be "Current element of

cursor is 12")

printf("Current element of cursor is %d\n", *hdfql_cursor_get_smallint(NULL));

5.2.33 HDFQL_SUBCURSOR_GET_SMALLINT

Syntax

short *hdfql_subcursor_get_smallint(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as a SMALLINT. In other words, the current element is interpreted as a

“short” C data type and returned as a pointer of such type. If the result subset is empty or the subcursor is located before

or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor – pointer to a cursor to get the current element of the subcursor in use as a SMALLINT. If the pointer is NULL (in C),

the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer in C++,

Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is

mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the subcursor

of the cursor in use is returned instead).

Return

short * – pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type variable-length short of one

dimension (size 3)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 98 of 341

hdfql_execute("CREATE DATASET my_dataset AS VARSMALLINT(3)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display current element of the cursor in use as a short (should be "Current element of

cursor is 5")

printf("Current element of cursor is %d\n", *hdfql_cursor_get_smallint(NULL));

// move the subcursor in use to next position within the result subset (i.e. first position)

hdfql_subcursor_next(NULL);

// display current element of the subcursor in use as a short (should be "Current element of

subcursor is 5")

printf("Current element of subcursor is %d\n", *hdfql_subcursor_get_smallint(NULL));

// move the subcursor in use to next position within the result subset (i.e. second position)

hdfql_subcursor_next(NULL);

// display current element of the subcursor in use as a short (should be "Current element of

subcursor is 2")

printf("Current element of subcursor is %d\n", *hdfql_subcursor_get_smallint(NULL));

5.2.34 HDFQL_CURSOR_GET_UNSIGNED_SMALLINT

Syntax

unsigned short *hdfql_cursor_get_unsigned_smallint(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as an UNSIGNED SMALLINT. In other words, the current element is

interpreted as an “unsigned short” C data type and returned as a pointer of such type. If the result set is empty or the

cursor is located before or after the first or last element of the result set, the returned element is NULL.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 99 of 341

Parameter(s)

cursor – pointer to a cursor to get the current element as an UNSIGNED SMALLINT. If the pointer is NULL (in C), the current

element of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R

HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python,

C#, Fortran and R it is optional (when not provided, the current element of the cursor in use is returned instead).

Return

unsigned short * – pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type unsigned short of one dimension (size

3)

hdfql_execute("CREATE DATASET my_dataset AS UNSIGNED SMALLINT(3)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES(12, 34, 23)");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display current element of the cursor in use as an unsigned short (should be "Current

element of cursor is 12")

printf("Current element of cursor is %u\n", *hdfql_cursor_get_unsigned_smallint(NULL));

5.2.35 HDFQL_SUBCURSOR_GET_UNSIGNED_SMALLINT

Syntax

unsigned short *hdfql_subcursor_get_unsigned_smallint(const HDFQL_CURSOR *cursor)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 100 of 341

Description

Get the current element of the subcursor in use as an UNSIGNED SMALLINT. In other words, the current element is

interpreted as an “unsigned short” C data type and returned as a pointer of such type. If the result subset is empty or the

subcursor is located before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor – pointer to a cursor to get the current element of the subcursor in use as an UNSIGNED SMALLINT. If the pointer is

NULL (in C), the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer

in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C

cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the

subcursor of the cursor in use is returned instead).

Return

unsigned short * – pointer to the current element of the subcursor. If there is no current element, the pointer will be

NULL.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type variable-length unsigned short of one

dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset AS UNSIGNED VARSMALLINT(3)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display current element of the cursor in use as an unsigned short (should be "Current

element of cursor is 5")

printf("Current element of cursor is %u\n", *hdfql_cursor_get_unsigned_smallint(NULL));

// move the subcursor in use to next position within the result subset (i.e. first position)

hdfql_subcursor_next(NULL);

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 101 of 341

// display current element of the subcursor in use as an unsigned short (should be "Current

element of subcursor is 5")

printf("Current element of subcursor is %u\n", *hdfql_subcursor_get_unsigned_smallint(NULL));

// move the subcursor in use to next position within the result subset (i.e. second position)

hdfql_subcursor_next(NULL);

// display current element of the subcursor in use as an unsigned short (should be "Current

element of subcursor is 2")

printf("Current element of subcursor is %u\n", *hdfql_subcursor_get_unsigned_smallint(NULL));

5.2.36 HDFQL_CURSOR_GET_INT

Syntax

int *hdfql_cursor_get_int(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as an INT. In other words, the current element is interpreted as an “int”

C data type and returned as a pointer of such type. If the result set is empty or the cursor is located before or after the

first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor – pointer to a cursor to get the current element as an INT. If the pointer is NULL (in C), the current element of the

cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers

is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it

is optional (when not provided, the current element of the cursor in use is returned instead).

Return

int * – pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type int of one dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset AS INT(3)");

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 102 of 341

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES(12, 34, 23)");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display current element of the cursor in use as an unsigned short (should be "Current

element of cursor is 12")

printf("Current element of cursor is %d\n", *hdfql_cursor_get_int(NULL));

5.2.37 HDFQL_SUBCURSOR_GET_INT

Syntax

int *hdfql_subcursor_get_int(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as an INT. In other words, the current element is interpreted as an “int” C

data type and returned as a pointer of such type. If the result subset is empty or the subcursor is located before or after

the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor – pointer to a cursor to get the current element of the subcursor in use as an INT. If the pointer is NULL (in C), the

current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java,

Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is

mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the subcursor

of the cursor in use is returned instead).

Return

int * – pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 103 of 341

Example(s)

// create an HDF5 dataset named "my_dataset" of data type variable-length int of one dimension

(size 3)

hdfql_execute("CREATE DATASET my_dataset AS VARINT(3)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display current element of the cursor in use as an int (should be "Current element of cursor

is 5")

printf("Current element of cursor is %d\n", *hdfql_cursor_get_int(NULL));

// move the subcursor in use to next position within the result subset (i.e. first position)

hdfql_subcursor_next(NULL);

// display current element of the subcursor in use as an int (should be "Current element of

subcursor is 5")

printf("Current element of subcursor is %d\n", *hdfql_subcursor_get_int(NULL));

// move the subcursor in use to next position within the result subset (i.e. second position)

hdfql_subcursor_next(NULL);

// display current element of the subcursor in use as an int (should be "Current element of

subcursor is 2")

printf("Current element of subcursor is %d\n", *hdfql_subcursor_get_int(NULL));

5.2.38 HDFQL_CURSOR_GET_UNSIGNED_INT

Syntax

unsigned int *hdfql_cursor_get_unsigned_int(const HDFQL_CURSOR *cursor)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 104 of 341

Description

Get the current element of a cursor named cursor as an UNSIGNED INT. In other words, the current element is interpreted

as an “unsigned int” C data type and returned as a pointer of such type. If the result set is empty or the cursor is located

before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor – pointer to a cursor to get the current element as an UNSIGNED INT. If the pointer is NULL (in C), the current

element of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R

HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python,

C#, Fortran and R it is optional (when not provided, the current element of the cursor in use is returned instead).

Return

unsigned int * – pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type unsigned int of one dimension (size

3)

hdfql_execute("CREATE DATASET my_dataset AS UNSIGNED INT(3)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES(12, 34, 23)");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display current element of the cursor in use as an unsigned int(should be "Current element

of cursor is 12")

printf("Current element of cursor is %u\n", *hdfql_cursor_get_unsigned_int(NULL));

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 105 of 341

5.2.39 HDFQL_SUBCURSOR_GET_UNSIGNED_INT

Syntax

unsigned int *hdfql_subcursor_get_unsigned_int(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as an UNSIGNED INT. In other words, the current element is interpreted

as an “unsigned int” C data type and returned as a pointer of such type. If the result subset is empty or the subcursor is

located before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor – pointer to a cursor to get the current element of the subcursor in use as an UNSIGNED INT. If the pointer is NULL

(in C), the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer in

C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is

mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the subcursor

of the cursor in use is returned instead).

Return

unsigned int * – pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type variable-length unsigned int of one

dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset AS UNSIGNED VARINT(3)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display current element of the cursor in use as an unsigned int (should be "Current element

of cursor is 5")

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 106 of 341

printf("Current element of cursor is %u\n", *hdfql_cursor_get_unsigned_int(NULL));

// move the subcursor in use to next position within the result subset (i.e. first position)

hdfql_subcursor_next(NULL);

// display current element of the subcursor in use as an unsigned int (should be "Current

element of subcursor is 5")

printf("Current element of subcursor is %u\n", *hdfql_subcursor_get_unsigned_int(NULL));

// move the subcursor in use to next position within the result subset (i.e. second position)

hdfql_subcursor_next(NULL);

// display current ele'ment of the subcursor in use as an unsigned int (should be "Current

element of subcursor is 2")

printf("Current element of subcursor is %u\n", *hdfql_subcursor_get_unsigned_int(NULL));

5.2.40 HDFQL_CURSOR_GET_BIGINT

Syntax

long long *hdfql_cursor_get_bigint(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as a BIGINT. In other words, the current element is interpreted as a

“long long” C data type and returned as a pointer of such type. If the result set is empty or the cursor is located before or

after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor – pointer to a cursor to get the current element as a BIGINT. If the pointer is NULL (in C), the current element of the

cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers

is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it

is optional (when not provided, the current element of the cursor in use is returned instead).

Return

long long * – pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 107 of 341

Example(s)

// create an HDF5 dataset named "my_dataset" of data type long long of one dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset AS BIGINT(3)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES(12, 34, 23)");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display current element of the cursor in use as a long long (should be "Current element of

cursor is 12")

printf("Current element of cursor is %lld\n", *hdfql_cursor_get_bigint(NULL));

5.2.41 HDFQL_SUBCURSOR_GET_BIGINT

Syntax

long long *hdfql_subcursor_get_bigint(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as a BIGINT. In other words, the current element is interpreted as a “long

long” C data type and returned as a pointer of such type. If the result subset is empty or the subcursor is located before or

after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor – pointer to a cursor to get the current element of the subcursor in use as a BIGINT. If the pointer is NULL (in C), the

current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java,

Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is

mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the subcursor

of the cursor in use is returned instead).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 108 of 341

Return

long long * – pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type variable-length long long of one

dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset AS VARBIGINT(3)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display current element of the cursor in use as a long long (should be "Current element of

cursor is 5")

printf("Current element of cursor is %lld\n", *hdfql_cursor_get_bigint(NULL));

// move the subcursor in use to next position within the result subset (i.e. first position)

hdfql_subcursor_next(NULL);

// display current element of the subcursor in use as a long long (should be "Current element

of subcursor is 5")

printf("Current element of subcursor is %lld\n", *hdfql_subcursor_get_bigint(NULL));

// move the subcursor in use to next position within the result subset (i.e. second position)

hdfql_subcursor_next(NULL);

// display current element of the subcursor in use as a long long (should be "Current element

of subcursor is 2")

printf("Current element of subcursor is %lld\n", *hdfql_subcursor_get_bigint(NULL));

5.2.42 HDFQL_CURSOR_GET_UNSIGNED_BIGINT

Syntax

unsigned long long *hdfql_cursor_get_unsigned_bigint(const HDFQL_CURSOR *cursor)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 109 of 341

Description

Get the current element of a cursor named cursor as an UNSIGNED BIGINT. In other words, the current element is

interpreted as an “unsigned long long” C data type and returned as a pointer of such type. If the result set is empty or the

cursor is located before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor – pointer to a cursor to get the current element as an UNSIGNED BIGINT. If the pointer is NULL (in C), the current

element of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R

HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python,

C#, Fortran and R it is optional (when not provided, the current element of the cursor in use is returned instead).

Return

unsigned long long * – pointer to the current element of the cursor. If there is no current element, the pointer will be

NULL.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type unsigned long long of one dimension

(size 3)

hdfql_execute("CREATE DATASET my_dataset AS UNSIGNED BIGINT(3)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES(12, 34, 23)");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display current element of the cursor in use as an unsigned long long (should be "Current

element of cursor is 12")

printf("Current element of cursor is %llu\n", *hdfql_cursor_get_unsigned_bigint(NULL));

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 110 of 341

5.2.43 HDFQL_SUBCURSOR_GET_UNSIGNED_BIGINT

Syntax

unsigned long long *hdfql_subcursor_get_unsigned_bigint(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as an UNSIGNED BIGINT. In other words, the current element is

interpreted as an “unsigned long long” C data type and returned as a pointer of such type. If the result subset is empty or

the subcursor is located before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor – pointer to a cursor to get the current element of the subcursor in use as an UNSIGNED BIGINT. If the pointer is

NULL (in C), the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer

in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C

cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the

subcursor of the cursor in use is returned instead).

Return

unsigned long long * – pointer to the current element of the subcursor. If there is no current element, the pointer will be

NULL.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type variable-length unsigned long long of

one dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset AS UNSIGNED VARBIGINT(3)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display current element of the cursor in use as an unsigned long long (should be "Current

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 111 of 341

element of cursor is 5")

printf("Current element of cursor is %llu\n", *hdfql_cursor_get_unsigned_bigint(NULL));

// move the subcursor in use to next position within the result subset (i.e. first position)

hdfql_subcursor_next(NULL);

// display current element of the subcursor in use as an unsigned long long (should be "Current

element of subcursor is 5")

printf("Current element of subcursor is %llu\n", *hdfql_subcursor_get_unsigned_bigint(NULL));

// move the subcursor in use to next position within the result subset (i.e. second position)

hdfql_subcursor_next(NULL);

// display current element of the subcursor in use as an unsigned long long (should be "Current

element of subcursor is 2")

printf("Current element of subcursor is %llu\n", *hdfql_subcursor_get_unsigned_bigint(NULL));

5.2.44 HDFQL_CURSOR_GET_FLOAT

Syntax

float *hdfql_cursor_get_float(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as a FLOAT. In other words, the current element is interpreted as a

“float” C data type and returned as a pointer of such type. If the result set is empty or the cursor is located before or after

the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor – pointer to a cursor to get the current element as a FLOAT. If the pointer is NULL (in C), the current element of the

cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers

is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it

is optional (when not provided, the current element of the cursor in use is returned instead).

Return

float * – pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 112 of 341

Example(s)

// create an HDF5 dataset named "my_dataset" of data type float of one dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset AS FLOAT(3)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES(5.5, 8.1, 4.9)");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display current element of the cursor in use as a float (should be "Current element of

cursor is 5.5")

printf("Current element of cursor is %f\n", *hdfql_cursor_get_float(NULL));

5.2.45 HDFQL_SUBCURSOR_GET_FLOAT

Syntax

float *hdfql_subcursor_get_float(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as a FLOAT. In other words, the current element is interpreted as a “float”

C data type and returned as a pointer of such type. If the result subset is empty or the subcursor is located before or after

the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor – pointer to a cursor to get the current element of the subcursor in use as a FLOAT. If the pointer is NULL (in C), the

current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java,

Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is

mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the subcursor

of the cursor in use is returned instead).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 113 of 341

Return

float * – pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type variable-length float of one

dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset AS VARFLOAT(3)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES((7.5, 3.1), (4.5), (4.9, 3.2, 9.7, 8.8))");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display current element of the cursor in use as a float (should be "Current element of

cursor is 7.5")

printf("Current element of cursor is %f\n", *hdfql_cursor_get_float(NULL));

// move the subcursor in use to next position within the result subset (i.e. first position)

hdfql_subcursor_next(NULL);

// display current element of the subcursor in use as a float (should be "Current element of

subcursor is 7.5")

printf("Current element of subcursor is %f\n", *hdfql_subcursor_get_float(NULL));

// move the subcursor in use to next position within the result subset (i.e. second position)

hdfql_subcursor_next(NULL);

// display current element of the subcursor in use as a float (should be "Current element of

subcursor is 3.1")

printf("Current element of subcursor is %f\n", *hdfql_subcursor_get_float(NULL));

5.2.46 HDFQL_CURSOR_GET_DOUBLE

Syntax

double *hdfql_cursor_get_double(const HDFQL_CURSOR *cursor)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 114 of 341

Description

Get the current element of a cursor named cursor as a DOUBLE. In other words, the current element is interpreted as a

“double” C data type and returned as a pointer of such type. If the result set is empty or the cursor is located before or

after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor – pointer to a cursor to get the current element as a DOUBLE. If the pointer is NULL (in C), the current element of

the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql

wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#,

Fortran and R it is optional (when not provided, the current element of the cursor in use is returned instead).

Return

double * – pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type double of one dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset AS DOUBLE(3)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES(5.5, 8.1, 4.9)");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display current element of the cursor in use as a double (should be "Current element of

cursor is 5.5")

printf("Current element of cursor is %f\n", *hdfql_cursor_get_double(NULL));

5.2.47 HDFQL_SUBCURSOR_GET_DOUBLE

Syntax

double *hdfql_subcursor_get_double(const HDFQL_CURSOR *cursor)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 115 of 341

Description

Get the current element of the subcursor in use as a DOUBLE. In other words, the current element is interpreted as a

“double” C data type and returned as a pointer of such type. If the result subset is empty or the subcursor is located

before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor – pointer to a cursor to get the current element of the subcursor in use as a DOUBLE. If the pointer is NULL (in C),

the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer in C++,

Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is

mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the subcursor

of the cursor in use is returned instead).

Return

double * – pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type variable-length double of one

dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset AS VARDOUBLE(3)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES((7.5, 3.1), (4.5), (4.9, 3.2, 9.7, 8.8))");

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display current element of the cursor in use as a double (should be "Current element of

cursor is 7.5")

printf("Current element of cursor is %f\n", *hdfql_cursor_get_double(NULL));

// move the subcursor in use to next position within the result subset (i.e. first position)

hdfql_subcursor_next(NULL);

// display current element of the subcursor in use as a double (should be "Current element of

subcursor is 7.5")

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 116 of 341

printf("Current element of subcursor is %f\n", *hdfql_subcursor_get_double(NULL));

// move the subcursor in use to next position within the result subset (i.e. second position)

hdfql_subcursor_next(NULL);

// display current element of the subcursor in use as a double (should be "Current element of

subcursor is 3.1")

printf("Current element of subcursor is %f\n", *hdfql_subcursor_get_double(NULL));

5.2.48 HDFQL_CURSOR_GET_CHAR

Syntax

char *hdfql_cursor_get_char(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as a VARCHAR. In other words, the current element is interpreted as a

“char” C data type and returned as a pointer of such type. If the result set is empty or the cursor is located before or after

the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor – pointer to a cursor to get the current element as a VARCHAR. If the pointer is NULL (in C), the current element of

the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql

wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#,

Fortran and R it is optional (when not provided, the current element of the cursor in use is returned instead).

Return

char * – pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my_dataset" of data type char of one dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset AS CHAR(3)");

// insert (i.e. write) values into dataset "my_dataset"

hdfql_execute("INSERT INTO my_dataset VALUES(Red)");

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 117 of 341

// select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql_cursor_next(NULL);

// display current element of the cursor in use as a char (should be "Current element of cursor

is Red")

printf("Current element of cursor is %s\n", hdfql_cursor_get_char(NULL));

5.2.49 HDFQL_VARIABLE_REGISTER

Syntax

int hdfql_variable_register(const void *variable)

Description

Register a variable named variable for subsequent use. In other words, for HDFql to be able to read/write values from/to a

user-defined variable it must first be registered. If the operation was successful, variable is registered and a number is

assigned to it. This number – calculated by HDFql – starts with zero and is incremented by one every time a new variable is

registered. If variable is registered more than once, only one number is assigned to it (namely the number assigned upon

the first registering). Of note, currently up to eight variables can be registered at any given time (trying to register more

than this number will raise an HDFQL_ERROR_FULL). In C, C++ and Fortran any variable may be registered as long HDFql

can properly read/write values from/to it by having direct access to the memory associated with these – otherwise

unexpected errors may arise such as a segmentation fault. The following restrictions apply to other programming

languages (supported by HDFql):

 In Java1, only a variable that is an array of “byte”, “short”, “int”, “long”, “float”, “double" or “String” data type (or

corresponding wrapper class “Byte”, “Short”, “Integer”, “Long”, “Float” or “Double”) may be registered. Any attempt

to register a variable that is not an array of the data type (or corresponding wrapper class) previously enumerated will

return an error (HDFQL_ERROR_UNEXPECTED_DATA_TYPE).

1 Whenever possible, the “byte”, “short”, “int”, “long”, “float” and “double" data types should be used instead of the corresponding wrapper classes

“Byte”, “Short”, “Integer”, “Long”, “Float” and “Double” as the formers are faster to process by HDFql (due to not having to box/unbox values).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 118 of 341

 In Python, only a variable that is a NumPy array of “int8”, “uint8”, “int16”, “uint16”, “int32”, “uint32”, “int64”,

“uint64”, “float32”, “float64”, “Ssize”, “ubyte” or “void” (i.e. compound/structured) data type may be registered. Any

attempt to register a variable that is not a NumPy array of the data type previously enumerated will return an error

(HDFQL_ERROR_UNEXPECTED_DATA_TYPE). Please refer to http://www.numpy.org for additional information.

 In C#, only a variable that is an array of “SByte”, “Byte”, “Int16”, “UInt16”, “Int32”, “UInt32”, “Int64”, “UInt64”,

“Single”, “Double” or “String” data type (or corresponding alias “sbyte”, “byte”, “short”, “ushort”, “int”, “uint”,

“long”, “ulong”, “float”, “double” or “string”) or of a struct may be registered. Any attempt to register a variable that

is not an array of the data type (or corresponding alias) previously enumerated or of a struct will return an error

(HDFQL_ERROR_UNEXPECTED_DATA_TYPE).

 In R, only a variable that is a vector, matrix or array of “integer”, “integer64” (through package bit64), “numeric”,

“double”, “character” or “raw” data type may be registered. Any attempt to register a variable that is not a vector,

matrix or array of the data type previously enumerated will return an error

(HDFQL_ERROR_UNEXPECTED_DATA_TYPE).

An important aspect to remember when working with a variable is that it should not change address from the moment it

has been registered until used in the intented operation (e.g. SELECT) or function (e.g. HDFQL_VARIABLE_GET_NUMBER),

as HDFql will not be able to identify the variable. In this case, the operation or function will raise an error

(HDFQL_ERROR_NOT_REGISTERED). In case a variable needs to change its address (for whatever the reason), first

unregister it via the function hdfql_variable_unregister, change its address, and register it again. In general, it is advisable

to register a variable just before executing the HDFql operation or function which employs it, and to unregister it as soon

as it is no longer used (this is especially relevant in C# where variables are pinned when registered and thus cannot be

moved by the Garbage Collector).

Parameter(s)

variable – variable to register for subsequent use.

Return

int – depending on the success in registering the variable for subsequent use, it can either be ≥ 0 (i.e. the number assigned

to the variable when successfully registered), HDFQL_ERROR_NO_ADDRESS, HDFQL_ERROR_FULL or

HDFQL_ERROR_UNEXPECTED_DATA_TYPE.

Example(s)

// declare variables

http://www.numpy.org/

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 119 of 341

char script[1024];

short data[3];

int number;

// create an HDF5 dataset named "my_dataset" of data type short of one dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset AS SMALLINT(3)");

// populate variable "data" with certain values

data[0] = 21;

data[1] = 18;

data[2] = 75;

// register variable "data" for subsequent use (by HDFql)

number = hdfql_variable_register(data);

// prepare script to insert (i.e. write) values from variable "data" into dataset "my_dataset"

sprintf(script, "INSERT INTO my_dataset VALUES FROM MEMORY %d", number);

// execute script

hdfql_execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)

hdfql_variable_unregister(data);

// declare structure

struct coordinate

{

 double latitude;

 double longitude;

};

// declare variables

char script[1024];

struct coordinate location;

int number;

// create an HDF5 attribute named "my_attribute" of data type compound composed of two members

named "latitude" (of data type double) and "longitude" (of data type double)

hdfql_execute("CREATE ATTRIBUTE my_attribute AS COMPOUND(latitude AS DOUBLE, longitude AS

DOUBLE)");

// populate variable "location" with certain values

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 120 of 341

location.latitude = 15.9803486587;

location.longitude = 48.6352028395;

// register variable "location" for subsequent use (by HDFql)

number = hdfql_variable_register(&location);

// prepare script to insert (i.e. write) values from variable "location" into attribute

"my_attribute"

sprintf(script, "INSERT INTO my_attribute VALUES FROM MEMORY %d", number);

// execute script

hdfql_execute(script);

// unregister variable "location" as it is no longer used/needed (by HDFql)

hdfql_variable_unregister(&location);

5.2.50 HDFQL_VARIABLE_TRANSIENT_REGISTER

Syntax

int hdfql_variable_transient_register(const void *variable)

Description

Register a variable named variable in a transient way for subsequent use. This function is similar to

hdfql_variable_register, except that after the execution of a script (via the function hdfql_execute) which uses variable,

variable is automatically unregistered (by HDFql) thus alleviating the programmer from doing it.

Parameter(s)

variable – variable to register in a transient way for subsequent use.

Return

int – depending on the success in registering the variable in a transient way for subsequent use, it can either be ≥ 0 (i.e.

the number assigned to the variable when successfully registered), HDFQL_ERROR_NO_ADDRESS, HDFQL_ERROR_FULL or

HDFQL_ERROR_UNEXPECTED_DATA_TYPE.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 121 of 341

Example(s)

// declare variables

char script[1024];

short data[3];

int number;

// create an HDF5 dataset named "my_dataset" of data type short of one dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset AS SMALLINT(3)");

// populate variable "data" with certain values

data[0] = 21;

data[1] = 18;

data[2] = 75;

// register variable "data" in a transient way for subsequent use (by HDFql)

number = hdfql_variable_transient_register(data);

// prepare script to insert (i.e. write) values from variable "data" into dataset "my_dataset"

sprintf(script, "INSERT INTO my_dataset VALUES FROM MEMORY %d", number);

// execute script (variable "data" is automatically unregistered immediately after the

execution of the script – i.e. there is no need to explicitly unregister the variable)

hdfql_execute(script);

5.2.51 HDFQL_VARIABLE_UNREGISTER

Syntax

int hdfql_variable_unregister(const void *variable)

Description

Unregister a variable named variable. In other words, HDFql will free up any memory that may have been allocated to

manage the variable as well as the number assigned to it (the number may then be assigned to a new variable registered

subsequently). In general, it is advisable to unregister a variable as soon as it is no longer used by HDFql (this is especially

relevant in C# as variables are unpinned when unregistered and thus may again be moved by the Garbage Collector). If

variable has never been registered or has already been unregistered, an error is returned.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 122 of 341

Parameter(s)

variable – variable to unregister.

Return

int – depending on the success in unregistering the variable, it can either be HDFQL_SUCCESS,

HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables

char script[1024];

short data[3];

int number;

// create an HDF5 dataset named "my_dataset" of data type short of one dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset AS SMALLINT(3)");

// populate variable "data" with certain values

data[0] = 21;

data[1] = 18;

data[2] = 75;

// register variable "data" for subsequent use (by HDFql)

number = hdfql_variable_register(data);

// prepare script to insert (i.e. write) values from variable "data" into dataset "my_dataset"

sprintf(script, "INSERT INTO my_dataset VALUES FROM MEMORY %d", number);

// execute script

hdfql_execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)

hdfql_variable_unregister(data);

5.2.52 HDFQL_VARIABLE_UNREGISTER_ALL

Syntax

int hdfql_variable_unregister_all(void)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 123 of 341

Description

Unregister all the variables that may have been registered previously. In other words, HDFql will free up any memory that

may have been allocated to manage the variables as well as the numbers assigned to them (the numbers may then be

assigned to new variables registered subsequently). In general, it is advisable to unregister variables as soon as they are no

longer used by HDFql (this is especially relevant in C# as variables are unpinned when unregistered and thus may again be

moved by the Garbage Collector).

Parameter(s)

None

Return

int – depending on the success in unregistering all the variables that may have been registered previously, it can either be

HDFQL_SUCCESS or HDFQL_ERROR_UNKNOWN.

Example(s)

// declare variables

short data0[3];

float data1[5];

// register variable "data0" for subsequent use (by HDFql)

hdfql_variable_register(data0);

// register variable "data1" for subsequent use (by HDFql)

hdfql_variable_register(data1);

// display number of variable "data0" (should be "Number of variable is 0")

printf("Number of variable is %d\n", hdfql_variable_get_number(data0));

// display number of variable "data1" (should be "Number of variable is 1")

printf("Number of variable is %d\n", hdfql_variable_get_number(data1));

// unregister all the variables (i.e. variables "data0" and "data1") as they are no longer

used/needed (by HDFql)

hdfql_variable_unregister_all();

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 124 of 341

5.2.53 HDFQL_VARIABLE_GET_NUMBER

Syntax

int hdfql_variable_get_number(const void *variable)

Description

Get the number of a variable named variable. This refers to the number that was calculated by HDFql and assigned to the

variable upon registering it with the function hdfql_variable_register. If variable has never been registered or has been

unregistered, an error is returned.

Parameter(s)

variable – variable to get the number (calculated by HDFql) assigned to it.

Return

int – depending on the success in getting the number assigned to the variable, it can either be ≥ 0 (i.e. the number

assigned to the variable), HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables

short data0[3];

float data1[5];

// register variable "data0" for subsequent use (by HDFql)

hdfql_variable_register(data0);

// register variable "data1" for subsequent use (by HDFql)

hdfql_variable_register(data1);

// display number of variable "data0" (should be "Number of variable is 0")

printf("Number of variable is %d\n", hdfql_variable_get_number(data0));

// display number of variable "data1" (should be "Number of variable is 1")

printf("Number of variable is %d\n", hdfql_variable_get_number(data1));

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 125 of 341

5.2.54 HDFQL_VARIABLE_GET_DATA_TYPE

Syntax

int hdfql_variable_get_data_type(const void *variable)

Description

Get the data type of a variable named variable. This function should help the programmer to better handle the content

stored in variable. The data type refers to the result of a DATA QUERY LANGUAGE (DQL) or DATA INTROSPECTION

LANGUAGE (DIL) operation redirected into memory – and not the data type of variable declared in the program. If variable

has never been registered, populated (through the redirection of the result of a DATA QUERY LANGUAGE (DQL) or DATA

INTROSPECTION LANGUAGE (DIL) operation into memory), or in case it has been unregistered, the returned data type is

undefined (HDFQL_UNDEFINED). Please refer to Table 6.3 for a complete enumeration of HDFql data types.

Parameter(s)

variable – variable to get its data type.

Return

int – depending on the success in getting the data type of the variable, it can either be HDFQL_TINYINT,

HDFQL_UNSIGNED_TINYINT, HDFQL_SMALLINT, HDFQL_UNSIGNED_SMALLINT, HDFQL_INT, HDFQL_UNSIGNED_INT,

HDFQL_BIGINT, HDFQL_UNSIGNED_BIGINT, HDFQL_FLOAT, HDFQL_DOUBLE, HDFQL_CHAR, HDFQL_VARTINYINT,

HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT,

HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE,

HDFQL_VARCHAR, HDFQL_OPAQUE, HDFQL_BITFIELD, HDFQL_ENUMERATION, HDFQL_COMPOUND, HDFQL_REFERENCE,

HDFQL_UNDEFINED, HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables

char script[1024];

char data[1024];

// register variable "data" for subsequent use (by HDFql)

hdfql_variable_register(data);

// prepare script to show (i.e. get) current working directory and populate variable "data"

with it

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 126 of 341

sprintf(script, "SHOW USE DIRECTORY INTO MEMORY %d", hdfql_variable_get_number(data));

// execute script

hdfql_execute(script);

// display data type of variable "data" (should be "Data type of variable is 2097152")

printf("Data type of variable is %d\n", hdfql_variable_get_data_type(data));

5.2.55 HDFQL_VARIABLE_GET_COUNT

Syntax

int hdfql_variable_get_count(const void *variable)

Description

Get the number of elements (i.e. result set size) stored in a variable named variable. This function should help the

programmer to better handle the content stored in variable. If the result set stores data from a dataset or attribute that

does not have a dimension (i.e. if it is scalar), the returned number of elements is one. Otherwise, if the result set stores

data from a dataset or attribute that has dimensions, the returned number of elements equals the multiplication of all its

dimensions’ sizes (e.g. if a variable stores a result set of two dimensions of size 10x3, the number of elements is 30). Of

note, in case a hyperslab or point selection is specified (in a DATA QUERY LANGUAGE (DQL) operation) the number of

elements of the selection will be returned instead. If variable has never been populated (through the redirection of the

result of a DATA QUERY LANGUAGE (DQL) or DATA INTROSPECTION LANGUAGE (DIL) operation into memory), the

returned number of elements is zero.

Parameter(s)

variable – variable to get its number of elements (i.e. resut set size).

Return

int – depending on the success in getting the number of elements of the variable, it can either be ≥ 0 (i.e. the number of

elements), HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 127 of 341

char script[1024];

int data[5][3];

// create an HDF5 dataset named "my_dataset" of data type int of two dimensions (size 5x3)

hdfql_execute("CREATE DATASET my_dataset AS INT(5, 3)");

// register variable "data" for subsequent use (by HDFql)

hdfql_variable_register(data);

// prepare script to select (i.e. read) data from dataset "my_dataset" and populate variable

"data" with it

sprintf(script, "SELECT FROM my_dataset INTO MEMORY %d", hdfql_variable_get_number(data));

// execute script

hdfql_execute(script);

// display number of elements in variable "data" (should be "Number of elements in variable is

15")

printf("Number of elements in variable is %d\n", hdfql_variable_get_count(data));

5.2.56 HDFQL_VARIABLE_GET_SIZE

Syntax

int hdfql_variable_get_size(const void *variable)

Description

Get the size (in bytes) of a variable named variable. This function should help the programmer to better handle the

content stored in variable. The size refers to the result of a DATA QUERY LANGUAGE (DQL) or DATA INTROSPECTION

LANGUAGE (DIL) operation redirected into memory – and not the size that variable has in the program. If variable has

never been registered or has been unregistered, an error is returned. If variable has never been populated (through the

redirection of the result of a DATA QUERY LANGUAGE (DQL) or DATA INTROSPECTION LANGUAGE (DIL) operation into

memory), the returned size is zero. Please refer to Table 6.3 for a complete enumeration of HDFql data types and their

corresponding sizes.

Parameter(s)

variable – variable to get its size (in bytes).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 128 of 341

Return

int – depending on the success in getting the size (in bytes) of the variable, it can either be ≥ 0 (i.e. the size itself),

HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables

char script[1024];

int data[5][3];

// create an HDF5 dataset named "my_dataset" of data type int of two dimensions (size 5x3)

hdfql_execute("CREATE DATASET my_dataset AS INT(5, 3)");

// register variable "data" for subsequent use (by HDFql)

hdfql_variable_register(data);

// prepare script to select (i.e. read) data from dataset "my_dataset" and populate variable

"data" with it

sprintf(script, "SELECT FROM my_dataset INTO MEMORY %d", hdfql_variable_get_number(data));

// execute script

hdfql_execute(script);

// display size (in bytes) of variable "data" (should be "Size (in bytes) of variable is 60")

printf("Size (in bytes) of variable is %d\n", hdfql_variable_get_size(data));

5.2.57 HDFQL_VARIABLE_GET_DIMENSION_COUNT

Syntax

int hdfql_variable_get_dimension_count(const void *variable)

Description

Get the number of dimensions of a variable named variable. This function should help the programmer to better handle

the content stored in variable. The number of dimensions refers to the result of a DATA QUERY LANGUAGE (DQL) or DATA

INTROSPECTION LANGUAGE (DIL) operation redirected into memory – and not the number of dimensions that variable has

in the program. If variable has never been registered or has been unregistered, an error is returned. If variable has never

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 129 of 341

been populated (through the redirection of the result of a DATA QUERY LANGUAGE (DQL) or DATA INTROSPECTION

LANGUAGE (DIL) operation into memory), the returned number of dimensions is zero.

Parameter(s)

variable – variable to get its number of dimensions.

Return

int – depending on the success in getting the number of dimensions of the variable, it can either be ≥ 0 (i.e. the number of

dimensions), HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables

char script[1024];

int data[5][3];

// create an HDF5 dataset named "my_dataset" of data type int of two dimensions (size 5x3)

hdfql_execute("CREATE DATASET my_dataset AS INT(5, 3)");

// register variable "data" for subsequent use (by HDFql)

hdfql_variable_register(data);

// prepare script to select (i.e. read) data from dataset "my_dataset" and populate variable

"data" with it

sprintf(script, "SELECT FROM my_dataset INTO MEMORY %d", hdfql_variable_get_number(data));

// execute script

hdfql_execute(script);

// display number of dimensions of variable "data" (should be "Number of dimensions in variable

is 2")

printf("Number of dimensions in variable is %d\n", hdfql_variable_get_dimension_count(data));

5.2.58 HDFQL_VARIABLE_GET_DIMENSION

Syntax

long long hdfql_variable_get_dimension(const void *variable, int index)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 130 of 341

Description

Get the size of a certain dimension specified in index of a variable named variable. This function should help the

programmer to better handle the content stored in variable. The size of a certain dimension refers to the result of a DATA

QUERY LANGUAGE (DQL) or DATA INTROSPECTION LANGUAGE (DIL) operation redirected into memory – and not the size

of a certain dimension that variable has in the program. The index of the first dimension is zero (index must be between 0

and the value returned by hdfql_variable_get_dimension_count - 1). If variable has never been registered, populated

(through the redirection of the result of a DATA QUERY LANGUAGE (DQL) or DATA INTROSPECTION LANGUAGE (DIL)

operation into memory), or in case it has been unregistered, an error is returned.

Parameter(s)

variable – variable to get the size of one of its dimensions.

index – index of the dimension to get its size.

Return

long long – depending on the success in getting the size of a certain dimension of the variable, it can either be ≥ 0 (i.e. the

size of a certain dimension itself), HDFQL_ERROR_NO_ADDRESS, HDFQL_ERROR_NOT_REGISTERED or

HDFQL_ERROR_OUTSIDE_LIMIT.

Example(s)

// declare variables

char script[1024];

int data[5][3];

// create an HDF5 dataset named "my_dataset" of data type int of two dimensions (size 5x3)

hdfql_execute("CREATE DATASET my_dataset AS INT(5, 3)");

// register variable "data" for subsequent use (by HDFql)

hdfql_variable_register(data);

// prepare script to select (i.e. read) data from dataset "my_dataset" and populate variable

"data" with it

sprintf(script, "SELECT FROM my_dataset INTO MEMORY %d", hdfql_variable_get_number(data));

// execute script

hdfql_execute(script);

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 131 of 341

// display size of the first dimension of variable "data" (should be "Size of first dimension

of variable is 5")

printf("Size of first dimension of variable is %lld\n", hdfql_variable_get_dimension(data, 0));

// display size of the second dimension of variable "data" (should be "Size of second dimension

of variable is 3")

printf("Size of second dimension of variable is %lld\n", hdfql_variable_get_dimension(data,

1));

5.2.59 HDFQL_MPI_GET_SIZE

Syntax

int hdfql_mpi_get_size(void)

Description

Get the number (i.e. size) of processes associated to the default MPI communicator (MPI_COMM_WORLD). In other

words, this function returns the number of MPI processes that are specified upon launching a program in parallel using

“mpiexec” (or a similar launcher). Of note, this function is basically a wrapper of the MPI function “MPI_Comm_size”

(please refer to https://www.mpich.org/static/docs/v3.2/www3/MPI_Comm_size.html or https://www.open-

mpi.org/doc/v2.1/man3/MPI_Comm_size.3.php for additional information in case the MPI library used is MPICH (or,

alternatively, one of its ABI compatible derivative libraries) or Open MPI).

Parameter(s)

None

Return

int – depending on the success in getting the number of processes associated to the default MPI communicator

(MPI_COMM_WORLD), it can either be ≥ 1 (i.e. the number of processes) or HDFQL_UNDEFINED (in case MPI itself was

not initialized properly, in case of an HDFql non MPI-based distribution, or if it was executed in Windows as HDFql does

not support the parallel HDF5 (PHDF5) library in this platform currently).

Example(s)

// display number (i.e. size) of MPI processes (if the program is launched as, e.g., "mpiexec –

n 5 my_program", the message "Number (i.e. size) of MPI processes is 5" will be displayed five

https://www.mpich.org/static/docs/v3.2/www3/MPI_Comm_size.html
https://www.open-mpi.org/doc/v2.1/man3/MPI_Comm_size.3.php
https://www.open-mpi.org/doc/v2.1/man3/MPI_Comm_size.3.php

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 132 of 341

times)

printf("Number (i.e. size) of MPI processes is %d\n", hdfql_mpi_get_size());

5.2.60 HDFQL_MPI_GET_RANK

Syntax

int hdfql_mpi_get_rank(void)

Description

Get the number (i.e. rank) of the calling process associated to the default MPI communicator (MPI_COMM_WORLD). In

other words, this function returns the number of the MPI process assigned to a particular instance of a program that was

launched in parallel using “mpiexec” (or a similar launcher). Of note, this function is basically a wrapper of the MPI

function “MPI_Comm_rank” (please refer to https://www.mpich.org/static/docs/v3.2/www3/MPI_Comm_rank.html or

https://www.open-mpi.org/doc/v2.1/man3/MPI_Comm_rank.3.php for additional information in case the MPI library

used is MPICH (or, alternatively, one of its ABI compatible derivative libraries) or Open MPI).

Parameters(s)

None

Return

int – depending on the success in getting the number (i.e. rank) of the calling process associated to the default MPI

communicator (MPI_COMM_WORLD), it can either be ≥ 0 (i.e. the number of the calling process) or HDFQL_UNDEFINED

(in case MPI itself was not initialized properly, in case of an HDFql non MPI-based distribution, or if in Windows as HDFql

does not support the parallel HDF5 (PHDF5) library in this platform currently).

Example(s)

// display number (i.e. rank) of the MPI process (if the program is launched as, e.g., "mpiexec

–n 3 my_program", the message "Number (i.e. rank) of the MPI process is X" will be displayed

three times where X is 0, 1 or 2 (not necessarily in this order))

printf("Number (i.e. rank) of the MPI process is %d\n", hdfql_mpi_get_rank());

https://www.mpich.org/static/docs/v3.2/www3/MPI_Comm_rank.html
https://www.open-mpi.org/doc/v2.1/man3/MPI_Comm_rank.3.php

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 133 of 341

Version 2.3.0 __ Page 134 of 341

6. LANGUAGE

HDFql is a high-level language to manage HDF5 files in a simple and natural way. It was designed to be similar to SQL

(wherever possible) so that its learning effort is kept at minimum while still providing great power and flexibility to the

programmer. This chapter describes data types, post-processing options to further transform result sets, redirecting

options to read/write data/result sets from/into disparate input/output sources, and operations (i.e. the language itself)

available in HDFql. It also introduces text formatting conventions used throughout this chapter to describe HDFql

operations (Table 6.1), and a summary of existing operations (Table 6.2). Before continuing, it is highly recommended to

first read the HDF5 User’s Guide available at https://support.hdfgroup.org/HDF5/doc/UG/HDF5_Users_Guide.pdf to

facilitate the understanding of the current chapter.

Convention Description Example

Bold Keyword that must be typed exactly as shown CREATE

Italic Value that the programmer must supply dataset_name

Between brackets ([]) Optional keyword/value [DATASET]

Between braces ({}) Logical grouping of keywords/values (to ease understanding) {[TRUNCATE] BINARY FILE file_name}

Separated with a pipe (|) Set of keywords/values from which one must be chosen GROUP | DATASET | ATTRIBUTE

Asterisk (*) Keyword/value that can be supplied zero or more times group_name [, group_name]*

Table 6.1 – HDFql operations text formatting conventions

Operation Description

CREATE DIRECTORY Create a directory

CREATE FILE Create an HDF5 file

CREATE GROUP Create an HDF5 group

https://support.hdfgroup.org/HDF5/doc/UG/HDF5_Users_Guide.pdf

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 135 of 341

CREATE DATASET Create an HDF5 dataset

CREATE ATTRIBUTE Create an HDF5 attribute

CREATE [SOFT | HARD] LINK Create an HDF5 soft or hard link

CREATE EXTERNAL LINK Create an HDF5 external link

ALTER DIMENSION Alter (i.e. change) the dimensions of an existing HDF5 dataset

RENAME DIRECTORY Rename (or move) an existing directory

RENAME FILE Rename (or move) an existing file

RENAME [GROUP | DATASET | ATTRIBUTE |

[SOFT] LINK | EXTERNAL LINK]

Rename (or move) an existing HDF5 group, dataset, attribute, (soft) link or external

link

COPY FILE Copy an existing file

COPY [GROUP | DATASET | ATTRIBUTE |

[SOFT] LINK | EXTERNAL LINK]
Copy an existing HDF5 group, dataset, attribute, (soft) link or external link

DROP DIRECTORY Drop (i.e. delete) an existing directory

DROP FILE Drop (i.e. delete) an existing file

DROP [GROUP | DATASET | ATTRIBUTE |

[SOFT] LINK | EXTERNAL LINK]

Drop (i.e. delete) an existing HDF5 group, dataset, attribute, (soft) link or external

link

INSERT Insert (i.e. write) data into an HDF5 dataset or attribute

SELECT Select (i.e. read) data from an HDF5 dataset or attribute

SHOW FILE VALIDITY Get validity of a file (i.e. whether it is a valid HDF5 file or not)

SHOW USE DIRECTORY Get working directory currently in use

SHOW USE FILE Get HDF5 file currently in use or check if a certain HDF5 file is used (i.e. opened)

SHOW ALL USE FILE Get all HDF5 files in use (i.e. open)

SHOW USE GROUP Get HDF5 group currently in use

SHOW [GROUP | DATASET | ATTRIBUTE |

[SOFT] LINK | EXTERNAL LINK]

Get HDF5 objects (i.e. groups, datasets, attributes, (soft) links or external links) or

check the existence of an object

SHOW TYPE Get type of an HDF5 object (i.e. group, dataset or attribute)

SHOW DATA TYPE Get data type of an HDF5 dataset or attribute or of its members

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 136 of 341

SHOW MEMBER Get members of an HDF5 dataset or attribute

SHOW MASK Get (filter) mask of an HDF5 dataset

SHOW ENDIANNESS Get endianness of an HDF5 dataset or attribute or of its members

SHOW CHARSET Get charset of an HDF5 dataset or attribute or of its members

SHOW STORAGE TYPE Get storage type (layout) of an HDF5 dataset

SHOW STORAGE ALLOCATION Get storage allocation of an HDF5 dataset

SHOW STORAGE DIMENSION Get storage dimensions of an HDF5 dataset

SHOW DIMENSION Get dimensions of an HDF5 dataset or attribute

SHOW ORDER Get (creation) order strategy of an HDF5 group or dataset

SHOW TAG Get tag of an HDF5 dataset or attribute or of its members

SHOW OFFSET Get member offsets of an HDF5 dataset or attribute

SHOW FILL TYPE Get fill type of an HDF5 dataset

SHOW FILL VALUE Get fill values of an HDF5 dataset

SHOW FILE SIZE Get size (in bytes) of a file or of the HDF5 file currently in use

SHOW [DATASET | ATTRIBUTE] SIZE Get size (in bytes) of an HDF5 dataset or attribute

SHOW HDFQL VERSION Get version of the HDFql library

SHOW HDF5 VERSION Get version of the HDF5 library used by HDFql

SHOW MPI VERSION Get version of the MPI library used by HDFql

SHOW DIRECTORY Get directory names within a directory or check the existence of a directory

SHOW FILE Get file names within a directory or check the existence of a file

SHOW EXECUTE STATUS Get status of the last executed operation

SHOW LIBRARY BOUNDS Get library bound values for creating or opening HDF5 files

SHOW CACHE Get cache parameters for accessing HDF5 files or datasets

SHOW ATOMIC Get atomicity for accessing HDF5 files in an MPI environment

SHOW EXTERNAL LINK PREFIX Get prefix to prepend to file names stored in HDF5 external links

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 137 of 341

SHOW FLUSH Get status of the automatic flushing

SHOW THREAD
Show (i.e. get) number of (CPU) threads to use when executing operations that

support parallelism

SHOW PLUGIN PATH
Show (i.e. get) path where plugins (in the form of shared libraries) are searched for

by HDFql

SHOW DEBUG Get status of the debug mechanism

USE DIRECTORY Use (i.e. open) a directory for subsequent operations

USE FILE Use (i.e. open) an HDF5 file for subsequent operations

USE GROUP Use (i.e. open) an HDF5 group for subsequent operations

FLUSH Flush the entire virtual HDF5 file or only the HDF5 file currently in use

CLOSE FILE Close a certain HDF5 file used (i.e. opened) or the HDF5 file currently in use

CLOSE ALL FILE Close all HDF5 files in use

CLOSE GROUP Close the HDF5 group currently in use

SET LIBRARY BOUNDS Set library bound values for creating and opening HDF5 files

SET CACHE Set cache parameters for accessing HDF5 files or datasets

SET CACHE Set atomicity for accessing HDF5 files in an MPI environment to enabled or disabled

SET EXTERNAL LINK PREFIX Set prefix to prepend to file names stored in HDF5 external links

SET FLUSH
Set automatic flushing of the entire virtual HDF5 file or only the HDF5 file currently

in use to enabled or disabled

SET THREAD
Set number of (CPU) threads to use when executing operations that support

parallelism

SET PLUGIN PATH Set path where plugins (in the form of shared libraries) are searched for by HDFql

SET DEBUG Set debug mechanism to enabled or disabled

Table 6.2 – HDFql operations

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 138 of 341

6.1 DATA TYPES

A data type is a classification identifying one of various types of data such as integer, floating-point or string, which

determines the possible values for that type, the operations that can be done on values of that type, the meaning of the

data, and the way values of that type can be stored. In other words, a data type is a classification of data that tells HDFql

how the user intends to use it. The following table summarizes all existing HDFql data types, their range of values and size

(in bytes).

Data Type Range of Values Size

TINYINT -128 to 127 1 byte

UNSIGNED TINYINT 0 to 255 1 byte

SMALLINT -32,768 to 32,767 2 bytes

UNSIGNED SMALLINT 0 to 65,535 2 bytes

INT -2,147,483,648 to 2,147,483,647 4 bytes

UNSIGNED INT 0 to 4,294,967,295 4 bytes

BIGINT -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 8 bytes

UNSIGNED BIGINT 0 to 18,446,744,073,709,551,615 8 bytes

FLOAT -3.4E + 38 to 3.4E + 38 4 bytes

DOUBLE -1.79E + 308 to 1.79E + 308 8 bytes

CHAR 0 to 255 1 byte

VARTINYINT -128 to 127 1 byte (per element)

UNSIGNED VARTINYINT 0 to 255 1 byte (per element)

VARSMALLINT -32,768 to 32,767 2 bytes (per element)

UNSIGNED VARSMALLINT 0 to 65,535 2 bytes (per element)

VARINT -2,147,483,648 to 2,147,483,647 4 bytes (per element)

UNSIGNED VARINT 0 to 4,294,967,295 4 bytes (per element)

VARBIGINT -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 8 bytes (per element)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 139 of 341

UNSIGNED VARBIGINT 0 to 18,446,744,073,709,551,615 8 bytes (per element)

VARFLOAT -3.4E + 38 to 3.4E + 38 4 bytes (per element)

VARDOUBLE -1.79E + 308 to 1.79E + 308 8 bytes (per element)

VARCHAR 0 to 255 1 byte (per element)

OPAQUE 0 to 255 1 byte

ENUMERATION -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 1, 2, 4 or 8 bytes

COMPOUND Varies (depends on members) Varies (depends on members)

Table 6.3 – HDFql data types

6.1.1 TINYINT

The HDFql TINYINT data type may store a value between -128 and 127, and occupies 1 byte in memory. It represents the

data type of an HDF5 H5T_NATIVE_CHAR dataset/attribute or of a result set that stores elements within this range of

values (which can be retrieved using the HDFQL_CURSOR_GET_TINYINT function). Depending on the programming

language (supported by HDFql), the TINYINT data type is represented by:

 In C, the “char” data type.

 In C++, the “char” data type.

 In Java, the “byte” data type (or corresponding wrapper class “Byte”).

 In Python, the “int8” NumPy data type.

 In C#, the “SByte” data type (or corresponding alias “sbyte”).

 In Fortran, the “INTEGER(KIND = 1)” data type.

 In R1, the “integer” data type.

1 By design, R does not have a data type that may store a value between -128 and 127 with exactly 1 byte in memory. As a substitute, the R “integer”

data type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower

performance (as bytes alignment must be made by HDFql).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 140 of 341

6.1.2 UNSIGNED TINYINT

The HDFql UNSIGNED TINYINT data type may store a value between 0 and 255, and occupies 1 byte in memory. It

represents the data type of an HDF5 H5T_NATIVE_UCHAR dataset/attribute or of a result set that stores elements within

this range of values (which can be retrieved using the HDFQL_CURSOR_GET_UNSIGNED_TINYINT function). Depending on

the programming language (supported by HDFql), the UNSIGNED TINYINT data type is represented by:

 In C, the “unsigned char” data type.

 In C++, the “unsigned char” data type.

 In Java2, the “byte” data type (or corresponding wrapper class “Byte”).

 In Python, the “uint8” NumPy data type.

 In C#, the “Byte” data type (or corresponding alias “byte”).

 In Fortran3, the “INTEGER(KIND = 1)” data type.

 In R4, the “integer” data type.

6.1.3 SMALLINT

The HDFql SMALLINT data type may store a value between -32,768 and 32,767, and occupies 2 bytes in memory. It

represents the data type of an HDF5 H5T_NATIVE_SHORT dataset/attribute or of a result set that stores elements within

this range of values (which can be retrieved using the HDFQL_CURSOR_GET_SMALLINT function). Depending on the

programming language (supported by HDFql), the SMALLINT data type is represented by:

 In C, the “short” data type.

2 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its

equivalent unsigned number in Java.

3 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible

for making the conversion from a signed number to its equivalent unsigned number in Fortran.

4 By design, R does not have a data type that may store a value between 0 and 255 with exactly 1 byte in memory. As a substitute, the R “integer” data

type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower

performance (as bytes alignment must be made by HDFql).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 141 of 341

 In C++, the “short” data type.

 In Java, the “short” data type (or corresponding wrapper class “Short”).

 In Python, the “int16” NumPy data type.

 In C#, the “Int16” data type (or corresponding alias “short”).

 In Fortran, the “INTEGER(KIND = 2)” data type.

 In R5, the “integer” data type.

6.1.4 UNSIGNED SMALLINT

The HDFql UNSIGNED SMALLINT may store a value between 0 and 65,535, and occupies 2 bytes in memory. It represents

the data type of an HDF5 H5T_NATIVE_USHORT dataset/attribute or of a result set that stores elements within this range

of values (which can be retrieved using the HDFQL_CURSOR_GET_UNSIGNED_SMALLINT function). Depending on the

programming language (supported by HDFql), the UNSIGNED SMALLINT data type is represented by:

 In C, the “unsigned short” data type.

 In C++, the “unsigned short” data type.

 In Java6, the “short” data type (or corresponding wrapper class “Short”).

 In Python, the “uint16” NumPy data type.

 In C#, the “UInt16” data type (or corresponding alias “ushort”).

 In Fortran7, the “INTEGER(KIND = 2)” data type.

 In R8, the “integer” data type.

5 By design, R does not have a data type that may store a value between -32,768 and 32,767 with exactly 2 bytes in memory. As a substitute, the R

“integer” data type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and

lower performance (as bytes alignment must be made by HDFql).

6 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its

equivalent unsigned number in Java.

7 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible

for making the conversion from a signed number to its equivalent unsigned number in Fortran.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 142 of 341

6.1.5 INT

The HDFql INT data type may store a value between -2,147,483,648 and 2,147,483,647, and occupies 4 bytes in memory.

It represents the data type of an HDF5 H5T_NATIVE_INT dataset/attribute or of a result set that stores elements within

this range of values (which can be retrieved using the HDFQL_CURSOR_GET_INT function). Depending on the

programming language (supported by HDFql), the INT data type is represented by:

 In C, the “int” data type.

 In C++, the “int” data type.

 In Java, the “int” data type (or corresponding wrapper class “Integer”).

 In Python, the “int32” NumPy data type.

 In C#, the “Int32” data type (or corresponding alias “int”).

 In Fortran, the “INTEGER(KIND = 4)” or “INTEGER” data type.

 In R, the “integer” data type.

6.1.6 UNSIGNED INT

The HDFql UNSIGNED INT may store a value between 0 and 4,294,967,295, and occupies 4 bytes in memory. It represents

the data type of an HDF5 H5T_NATIVE_UINT dataset/attribute or of a result set that stores elements within this range of

values (which can be retrieved using the HDFQL_CURSOR_GET_UNSIGNED_INT function). Depending on the programming

language (supported by HDFql), the UNSIGNED INT data type is represented by:

 In C, the “unsigned int” data type.

 In C++, the “unsigned int” data type.

8 By design, R does not have a data type that may store a value between 0 and 65,535 with exactly 2 bytes in memory. As a substitute, the R “integer”

data type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower

performance (as bytes alignment must be made by HDFql).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 143 of 341

 In Java9, the “int” data type (or corresponding wrapper class “Integer”).

 In Python, the “uint32” NumPy data type.

 In C#, the “UInt32” data type (or corresponding alias “uint”).

 In Fortran10, the “INTEGER(KIND = 4)” or “INTEGER” data type.

 In R11, the “integer” data type.

6.1.7 BIGINT

The HDFql BIGINT data type may store a value between -9,223,372,036,854,775,808 and 9,223,372,036,854,775,807, and

occupies 8 bytes in memory. It represents the data type of an HDF5 H5T_NATIVE_LLONG dataset/attribute or of a result

set that stores elements within this range of values (which can be retrieved using the HDFQL_CURSOR_GET_BIGINT

function). Depending on the programming language (supported by HDFql), the BIGINT data type is represented by:

 In C, the “long long” data type.

 In C++, the “long long” data type.

 In Java, the “long” data type (or corresponding wrapper class “Long”).

 In Python, the “int64” NumPy data type.

 In C#, the “Int64” data type (or corresponding alias “long”).

 In Fortran, the “INTEGER(KIND = 8)” data type.

 In R, the “integer64” bit64 data type.

9 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its

equivalent unsigned in Java.

10 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible

for making the conversion from a signed number to its equivalent unsigned in Fortran.

11 By design, R does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its

equivalent unsigned in R.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 144 of 341

6.1.8 UNSIGNED BIGINT

The HDFql UNSIGNED BIGINT data type may store a value between 0 and 18,446,744,073,709,551,615, and occupies 8

bytes in memory. It represents the data type of an HDF5 H5T_NATIVE_ULLONG dataset/attribute or of a result set that

stores elements within this range of values (which can be retrieved using the HDFQL_CURSOR_GET_UNSIGNED_BIGINT

function). Depending on the programming language (supported by HDFql), the UNSIGNED BIGINT data type is represented

by:

 In C, the “unsigned long long” data type.

 In C++, the “unsigned long long” data type.

 In Java12, the “long” data type (or corresponding wrapper class “Long”).

 In Python, the “uint64” NumPy data type.

 In C#, the “UInt64” data type (or corresponding alias “ulong”).

 In Fortran13, the “INTEGER(KIND = 8)” data type.

 In R14, the “integer64” bit64 data type.

6.1.9 FLOAT

The HDFql FLOAT data type may store a value between -3.4E + 38 and 3.4E + 38, and occupies 4 bytes in memory. It

represents the data type of an HDF5 H5T_NATIVE_FLOAT dataset/attribute or of a result set that stores elements within

this range of values (which can be retrieved using the HDFQL_CURSOR_GET_FLOAT function). Depending on the

programming language (supported by HDFql), the FLOAT data type is represented by:

 In C, the “float” data type.

12 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its

equivalent unsigned in Java.

13 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible

for making the conversion from a signed number to its equivalent unsigned in Fortran.

14 By design, R does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its

equivalent unsigned in R.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 145 of 341

 In C++, the “float” data type.

 In Java, the “float” data type (or corresponding wrapper class “Float”).

 In Python, the “float32” NumPy data type.

 In C#, the “Single” data type (or corresponding alias “float”).

 In Fortran, the “REAL(KIND = 4)” or “REAL” data type.

 In R15, the “numeric” or “double” data type.

6.1.10 DOUBLE

The HDFql DOUBLE data type may store a value between -1.79E + 308 and 1.79E + 308, and occupies 8 bytes in memory. It

represents the data type of an HDF5 H5T_NATIVE_DOUBLE dataset/attribute or of a result set that stores elements within

this range of values (which can be retrieved using the HDFQL_CURSOR_GET_DOUBLE function). Depending on the

programming language (supported by HDFql), the DOUBLE data type is represented by:

 In C, the “double” data type.

 In C++, the “double” data type.

 In Java, the “double” data type (or corresponding wrapper class “Double”).

 In Python, the “float64” NumPy data type.

 In C#, the “Double” data type (or corresponding alias “double”).

 In Fortran, the “REAL(KIND = 8)” or “DOUBLE PRECISION” data type.

 In R, the “numeric” or “double” data type.

15 By design, R does not have a data type that may store a value between -3.4E + 38 and 3.4E + 38 with exactly 4 byte in memory. As a substitute, the R

“numeric” or “double” data types may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 8 bytes in

memory) and lower performance (as bytes alignment must be made by HDFql).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 146 of 341

6.1.11 CHAR

The HDFql CHAR data type may store a value between 0 and 255, and occupies size * 1 byte in memory (size being the

length of the string). It represents the data type of an HDF5 H5T_C_S1 dataset/attribute or of a result set that stores

elements within this range of values (which can be retrieved using the HDFQL_CURSOR_GET_UNSIGNED_TINYINT and

HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINT functions). The CHAR data type is useful for storing fixed-length strings.

Depending on the programming language (supported by HDFql), the CHAR data type is represented by:

 In C, the “unsigned char [size]” data type.

 In C++, the “unsigned char [size]” data type.

 In Java, the “byte [size]” data type (or corresponding wrapper class “Byte [size]”).

 In Python, the “Ssize” NumPy data type.

 In C#, the “Byte [size]” data type (or corresponding alias “byte [size]”).

 In Fortran, the “CHARACTER(LEN = size)” data type.

 In R16, the “integer” data type.

6.1.12 VARTINYINT

The HDFql VARTINYINT data type may store a value between -128 and 127, and occupies size * 1 byte in memory (size

being the number of elements composing the VARTINYINT data type). It represents the data type of an HDF5 (variable-

length) H5T_NATIVE_CHAR dataset/attribute or of a result set that stores (variable-length) elements within this range of

values (which can be retrieved using the HDFQL_CURSOR_GET_TINYINT and HDFQL_SUBCURSOR_GET_TINYINT functions).

Depending on the programming language (supported by HDFql), the VARTINYINT data type is represented by:

 In C, the “char” data type.

 In C++, the “char” data type.

 In Java, the “byte” data type (or corresponding wrapper class “Byte”).

16 By design, R does not have a data type that may store a value between 0 and 255 with exactly 1 byte in memory. As a substitute, the R “integer” data

type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower

performance (as bytes alignment must be made by HDFql).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 147 of 341

 In Python, the “int8” NumPy data type.

 In C#, the “SByte” data type (or corresponding alias “sbyte”).

 In Fortran, the “INTEGER(KIND = 1)” data type.

 In R17, the “integer” data type.

6.1.13 UNSIGNED VARTINYINT

The HDFql UNSIGNED VARTINYINT data type may store a value between 0 and 255, and occupies size * 1 byte in memory

(size being the number of elements composing the VARTINYINT data type). It represents the data type of an HDF5

(variable-length) H5T_NATIVE_UCHAR dataset/attribute or of a result set that stores (variable-length) elements within this

range of values (which can be retrieved using the HDFQL_CURSOR_GET_UNSIGNED_TINYINT and

HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINT functions). Depending on the programming language (supported by

HDFql), the UNSIGNED VARTINYINT data type is represented by:

 In C, the “unsigned char” data type.

 In C++, the “unsigned char” data type.

 In Java18, the “byte” data type (or corresponding wrapper class “Byte”).

 In Python, the “uint8” NumPy data type.

 In C#, the “Byte” data type (or corresponding alias “byte”).

 In Fortran19, the “INTEGER(KIND = 1)” data type.

 In R20, the “integer” data type.

17 By design, R does not have a data type that may store a value between -128 and 127 with exactly 1 byte in memory. As a substitute, the R “integer”

data type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower

performance (as bytes alignment must be made by HDFql).

18 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its

equivalent unsigned number in Java.

19 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible

for making the conversion from a signed number to its equivalent unsigned number in Fortran.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 148 of 341

6.1.14 VARSMALLINT

The HDFql VARSMALLINT data type may store a value between -32,768 and 32,767, and occupies size * 2 bytes in memory

(size being the number of elements composing the VARSMALLINT data type). It represents the data type of an HDF5

(variable-length) H5T_NATIVE_SHORT dataset/attribute or of a result set that stores (variable-length) elements within this

range of values (which can be retrieved using the HDFQL_CURSOR_GET_SMALLINT and

HDFQL_SUBCURSOR_GET_SMALLINT functions). Depending on the programming language (supported by HDFql), the

VARSMALLINT data type is represented by:

 In C, the “short” data type.

 In C++, the “short” data type.

 In Java, the “short” data type (or corresponding wrapper class “Short”).

 In Python, the “int16” NumPy data type.

 In C#, the “Int16” data type (or corresponding alias “short”).

 In Fortran, the “INTEGER(KIND = 2)” data type.

 In R21, the “integer” data type.

6.1.15 UNSIGNED VARSMALLINT

The HDFql UNSIGNED VARSMALLINT data type may store a value between 0 and 65,535, and occupies size * 2 bytes in

memory (size being the number of elements composing the VARSMALLINT data type). It represents the data type of an

HDF5 (variable-length) H5T_NATIVE_USHORT dataset/attribute or of a result set that stores (variable-length) elements

within this range of values (which can be retrieved using the HDFQL_CURSOR_GET_UNSIGNED_SMALLINT and

20 By design, R does not have a data type that may store a value between 0 and 255 with exactly 1 byte in memory. As a substitute, the R “integer” data

type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower

performance (as bytes alignment must be made by HDFql).

21 By design, R does not have a data type that may store a value between -32,768 and 32,767 with exactly 2 bytes in memory. As a substitute, the R

“integer” data type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and

lower performance (as bytes alignment must be made by HDFql).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 149 of 341

HDFQL_SUBCURSOR_GET_UNSIGNED_SMALLINT functions). Depending on the programming language (supported by

HDFql), the UNSIGNED VARSMALLINT data type is represented by:

 In C, the “unsigned short” data type.

 In C++, the “unsigned short” data type.

 In Java22, the “short” data type (or corresponding wrapper class “Short”).

 In Python, the “uint16” NumPy data type.

 In C#, the “UInt16” data type (or corresponding alias “ushort”).

 In Fortran23, the “INTEGER(KIND = 2)” data type.

 In R24, the “integer” data type.

6.1.16 VARINT

The HDFql VARINT data type may store a value between -2,147,483,648 and 2,147,483,647, and occupies size * 4 bytes in

memory (size being the number of elements composing the VARINT data type). It represents the data type of an HDF5

(variable-length) H5T_NATIVE_INT dataset/attribute or of a result set that stores (variable-length) elements within this

range of values (which can be retrieved using the HDFQL_CURSOR_GET_INT and HDFQL_SUBCURSOR_GET_INT functions).

Depending on the programming language (supported by HDFql), the VARINT data type is represented by:

 In C, the “int” data type.

 In C++, the “int” data type.

 In Java, the “int” data type (or corresponding wrapper class “Integer”).

 In Python, the “int32” NumPy data type.

22 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its

equivalent unsigned number in Java.

23 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible

for making the conversion from a signed number to its equivalent unsigned number in Fortran.

24 By design, R does not have a data type that may store a value between 0 and 65,535 with exactly 2 bytes in memory. As a substitute, the R “integer”

data type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower

performance (as bytes alignment must be made by HDFql).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 150 of 341

 In C#, the “Int32” data type (or corresponding alias “int”).

 In Fortran, the “INTEGER(KIND = 4)” data type.

 In R, the “integer” data type.

6.1.17 UNSIGNED VARINT

The HDFql UNSIGNED VARINT data type may store a value between 0 and 4,294,967,295, and occupies size * 4 bytes in

memory (size being the number of elements composing the UNSIGNED VARINT data type). It represents the data type of

an HDF5 (variable-length) H5T_NATIVE_UINT dataset/attribute or of a result set that stores (variable-length) elements

within this range of values (which can be retrieved using the HDFQL_CURSOR_GET_UNSIGNED_INT and

HDFQL_SUBCURSOR_GET_UNSIGNED_INT functions). Depending on the programming language (supported by HDFql), the

UNSIGNED VARINT data type is represented by:

 In C, the “unsigned int” data type.

 In C++, the “unsigned int” data type.

 In Java25, the “int” data type (or corresponding wrapper class “Integer”).

 In Python, the “uint32” NumPy data type.

 In C#, the “UInt32” data type (or corresponding alias “uint”).

 In Fortran26, the “INTEGER(KIND = 4)” data type.

 In R27, the “integer” data type.

25 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its

equivalent unsigned number in Java.

26 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible

for making the conversion from a signed number to its equivalent unsigned number in Fortran.

27 By design, R does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its

equivalent unsigned number in R.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 151 of 341

6.1.18 VARBIGINT

The HDFql VARBIGINT data type may store a value between -9,223,372,036,854,775,808 and 9,223,372,036,854,775,807,

and occupies size * 8 bytes in memory (size being the number of elements composing the VARBIGINT data type). It

represents the data type of an HDF5 (variable-length) H5T_NATIVE_LLONG dataset/attribute or of a result set that stores

(variable-length) elements within this range of values (which can be retrieved using the HDFQL_CURSOR_GET_BIGINT and

HDFQL_SUBCURSOR_GET_BIGINT functions). Depending on the programming language (supported by HDFql), the

VARBIGINT data type is represented by:

 In C, the “long long” data type.

 In C++, the “long long” data type.

 In Java, the “long” data type (or corresponding wrapper class “Long”).

 In Python, the “int64” NumPy data type.

 In C#, the “Int64” data type (or corresponding alias “long”).

 In Fortran, the “INTEGER(KIND = 8)” data type.

 In R, the “integer64” bit64 data type.

6.1.19 UNSIGNED VARBIGINT

The HDFql UNSIGNED VARBIGINT data type may store a value between 0 and 18,446,744,073,709,551,615, and occupies

size * 8 bytes in memory (size being the number of elements composing the UNSIGNED VARBIGINT data type). It

represents the data type of an HDF5 (variable-length) H5T_NATIVE_ULLONG dataset/attribute or of a result set that stores

(variable-length) elements within this range of values (which can be retrieved using the

HDFQL_CURSOR_GET_UNSIGNED_BIGINT and HDFQL_SUBCURSOR_GET_UNSIGNED_BIGINT functions). Depending on the

programming language (supported by HDFql), the UNSIGNED VARBIGINT data type is represented by:

 In C, the “unsigned long long” data type.

 In C++, the “unsigned long long” data type.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 152 of 341

 In Java28, the “long” data type (or corresponding wrapper class “Long”).

 In Python, the “uint64” NumPy data type.

 In C#, the “UInt64” data type (or corresponding alias “ulong”).

 In Fortran29, the “INTEGER(KIND = 8)” data type.

 In R30, the “integer64” bit64 data type.

6.1.20 VARFLOAT

The HDFql VARFLOAT data type may store a value between -3.4E + 38 and 3.4E + 38, and occupies size * 4 bytes in

memory (size being the number of elements composing the VARFLOAT data type). It represents the data type of an HDF5

(variable-length) H5T_NATIVE_FLOAT dataset/attribute or of a result set that stores (variable-length) elements within this

range of values (which can be retrieved using the HDFQL_CURSOR_GET_FLOAT and HDFQL_SUBCURSOR_GET_FLOAT

functions). Depending on the programming language (supported by HDFql), the VARFLOAT data type is represented by:

 In C, the “float” data type.

 In C++, the “float” data type.

 In Java, the “float” data type (or corresponding wrapper class “Float”).

 In Python, the “float32” NumPy data type.

 In C#, the “Single” data type (or corresponding alias “float”).

 In Fortran, the “REAL(KIND = 4)” data type.

 In R31, the “numeric” or “double” data type.

28 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its

equivalent unsigned number in Java.

29 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible

for making the conversion from a signed number to its equivalent unsigned number in Fortran.

30 By design, R does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its

equivalent unsigned number in R.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 153 of 341

6.1.21 VARDOUBLE

The HDFql VARDOUBLE data type may store a value between -1.79E + 308 and 1.79E + 308, and occupies size * 8 bytes in

memory (size being the number of elements composing the VARDOUBLE data type). It represents the data type of an

HDF5 (variable-length) H5T_NATIVE_DOUBLE dataset/attribute or of a result set that stores (variable-length) elements

within this range of values (which can be retrieved using the HDFQL_CURSOR_GET_DOUBLE and

HDFQL_SUBCURSOR_GET_DOUBLE functions). Depending on the programming language (supported by HDFql), the

VARDOUBLE data type is represented by:

 In C, the “double” data type.

 In C++, the “double” data type.

 In Java, the “double” data type (or corresponding wrapper class “Double”).

 In Python, the “float64” NumPy data type.

 In C#, the “Double” data type (or corresponding alias “double”).

 In Fortran, the “REAL(KIND = 8)” or “DOUBLE PRECISION” data type.

 In R, the “numeric” or “double” data type.

6.1.22 VARCHAR

The HDFql VARCHAR data type may store a value between 0 and 255, and occupies size * 1 byte in memory (size being the

length of the string). It represents the data type of an HDF5 (variable-length) H5T_C_S1 dataset/attribute or of a result set

that stores (variable-length) elements within this range of values (which can be retrieved using the

HDFQL_CURSOR_GET_CHAR function). The VARCHAR data type is useful for storing variable-length strings. Depending on

the programming language (supported by HDFql), the VARCHAR data type is represented by:

 In C, the “unsigned char *” data type.

31 By design, R does not have a data type that may store a value between -3.4E + 38 and 3.4E + 38 with exactly 4 byte in memory. As a substitute, the R

“numeric” or “double” data types may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 8 bytes in

memory) and lower performance (as bytes alignment must be made by HDFql).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 154 of 341

 In C++, the “unsigned char *” data type.

 In Java, the “String” object.

 In Python, the “Ssize” NumPy data type.

 In C#, the “String” data type (or corresponding alias “string”).

 In Fortran, the “CHARACTER(LEN = *)” data type.

 In R, the “character” data type.

6.1.23 OPAQUE

The HDFql OPAQUE data type may store a value between 0 and 255, and occupies 1 byte in memory. It represents the

data type of an HDF5 H5T_OPAQUE dataset/attribute or of a result set that stores elements within this range of values

(which can be retrieved using the HDFQL_CURSOR_GET_UNSIGNED_TINYINT and

HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINT functions). The OPAQUE data type is useful for representing data that

should not be interpreted/rearranged by the HDF5 library when reading/writing it from/into in a dataset or attribute.

Depending on the programming language (supported by HDFql), the OPAQUE data type is represented by:

 In C, the “unsigned char” data type.

 In C++, the “unsigned char” data type.

 In Java32, the “byte” data type (or corresponding wrapper class “Byte”).

 In Python, the “ubyte” NumPy data type.

 In C#, the “Byte” data type (or corresponding alias “byte”).

 In Fortran, the “CHARACTER” data type.

 In R, the “raw” data type.

32 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its

equivalent unsigned number in Java.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 155 of 341

6.1.24 ENUMERATION

The HDFql ENUMERATION data type is composed of one or more members that may store values between -

9,223,372,036,854,775,808 and 9,223,372,036,854,775,807, and occupies 1, 2, 4 or 8 bytes in memory (depending on the

range of values stored). It represents the data type of an HDF5 H5T_ENUM dataset/attribute or of a result set that stores

elements within this range of values (which can be retrieved using the HDFQL_CURSOR_GET_TINYINT,

HDFQL_CURSOR_GET_SMALLINT, HDFQL_CURSOR_GET_INT or HDFQL_CURSOR_GET_BIGINT functions). Depending on

the programming language (supported by HDFql), the ENUMERATION data type is represented by:

 In C, the “char”, “short”, “int” or “long long” data type.

 In C++, the “char”, “short”, “int” or “long long” data type.

 In Java, the “byte”, “short”, “int” or “long” data type (or corresponding wrapper class “Byte”, “Short”, “Integer” or

“Long”).

 In Python, the “int8”, “int16”, “int32” or “int64” NumPy data type.

 In C#, the “SByte”, “Int16”, “Int32” or “Int64” data type (or corresponding alias “sbyte”, “short”, “int” or “long”).

 In Fortran, the “INTEGER(KIND = 1)”, “INTEGER(KIND = 2)”, “INTEGER(KIND = 4)”, “INTEGER” or “INTEGER(KIND = 8)”

data type.

 In R, the “integer” or “integer64” bit64 data type.

6.1.25 COMPOUND

The HDFql COMPOUND data type is composed of one or more members that may store values of different nature (i.e.

data types), including other (nested) compounds. It represents the data type of an HDF5 H5T_COMPOUND

dataset/attribute or of a result set that stores elements of this data type (which can be retrieved using the

HDFQL_CURSOR_GET_TINYINT, HDFQL_CURSOR_GET_UNSIGNED_TINYINT, HDFQL_CURSOR_GET_SMALLINT,

HDFQL_CURSOR_GET_UNSIGNED_SMALLINT, HDFQL_CURSOR_GET_INT, HDFQL_CURSOR_GET_UNSIGNED_INT,

HDFQL_CURSOR_GET_BIGINT, HDFQL_CURSOR_GET_UNSIGNED_BIGINT, HDFQL_CURSOR_GET_FLOAT,

HDFQL_CURSOR_GET_DOUBLE, HDFQL_SUBCURSOR_GET_TINYINT, HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINT,

HDFQL_SUBCURSOR_GET_SMALLINT, HDFQL_SUBCURSOR_GET_UNSIGNED_SMALLINT, HDFQL_SUBCURSOR_GET_INT,

HDFQL_SUBCURSOR_GET_UNSIGNED_INT, HDFQL_SUBCURSOR_GET_BIGINT,

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 156 of 341

HDFQL_SUBCURSOR_GET_UNSIGNED_BIGINT, HDFQL_SUBCURSOR_GET_FLOAT, HDFQL_SUBCURSOR_GET_DOUBLE or

HDFQL_CURSOR_GET_CHAR functions).

6.2 POST-PROCESSING

Post-processing options enable transforming results of a query according to the programmer’s needs such as ordering or

truncating. These options are optional and may be used to create a (linear) pipeline to further process result sets returned

by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION LANGUAGE (DIL) operations. In case a pipeline is composed

of two or more options, the order in which they are used affects the final outcome (e.g. usage of ORDER ASC followed by

TOP 2 in a result set composed of 4, 2, 3 and 1, returns 1 and 2; usage of these same two options inversed – i.e. TOP 2

followed by ORDER ASC – returns 2 and 4 instead). The next subsections describe the post-processing options provided by

HDFql.

Post-processing Option Description

ORDER Order (i.e. sort) a result set in an ascending, descending or reverse way

TOP Truncate a result set after a certain given position in a topmost way

BOTTOM Truncate a result set after a certain given position in a bottommost way

FROM TO Retain a result set within a certain given range

STEP Step (i.e. jump) the result set at every given position

Table 6.4 – HDFql post-processing options

6.2.1 ORDER

Syntax

ORDER {{ASC | DESC | REV} | {, {ASC | DESC | REV}} | {{ASC | DESC | REV}, {ASC | DESC | REV}}}

Description

Order (i.e. sort) a result set in an ascending, descending or reverse way by specifying either the keyword ASC, DESC or REV

respectively. When in an ascending or descending order, HDFql automatically uses a certain number of (CPU) threads (that

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 157 of 341

may have been set through the operation SET THREAD) to speed-up the task completion33. Additionally, if the result set is

of data type HDFQL_CHAR, HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT,

HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT,

HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE or HDFQL_OPAQUE, the result subset can be

ordered (i.e. sorted) in an ascending, descending or reverse way by specifying a comma (,) and either the keyword ASC,

DESC or REV, respectively. Of note, when the result set is of data type HDFQL_COMPOUND then the ordering is ignored

(i.e. has no effect).

Parameter(s)

None

Return

The result set and/or subset is ordered (i.e. sorted) in an ascending, descending or reverse way depending on whether the

keyword ASC, DESC or REV is specified respectively.

Example(s)

create an HDF5 dataset named "my_dataset0" of data type float of four dimensions (size

5x8x4x7)

CREATE DATASET my_dataset0 AS FLOAT(5, 8, 4, 7)

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with these

(should be 5, 8, 4, 7)

SHOW DIMENSION my_dataset0

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with these in

ascending order (should be 4, 5, 7, 8)

SHOW DIMENSION my_dataset0 ORDER ASC

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with these in

descending order (should be 8, 7, 5, 4)

SHOW DIMENSION my_dataset0 ORDER DESC

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with these in

reversed order (should be 7, 4, 8, 5)

SHOW DIMENSION my_dataset0 ORDER REV

33 Through a parallelized Quicksort algorithm.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 158 of 341

create an HDF5 dataset named "my_dataset1" of data type double of two dimensions (size 3x2)

CREATE DATASET my_dataset1 AS DOUBLE(3, 2)

insert (i.e. write) values into dataset "my_dataset1"

INSERT INTO my_dataset1 VALUES((3.2, 1.3), (0, 0.2), (9.1, 6.5))

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with it (should

be 3.2, 1.3, 0, 0.2, 9.1, 6.5)

SELECT FROM my_dataset1

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with it in

ascending order (should be 0, 0.2, 1.3, 3.2, 6.5, 9.1)

SELECT FROM my_dataset1 ORDER ASC

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with it in

descending order (should be 9.1, 6.5, 3.2, 1.3, 0.2, 0)

SELECT FROM my_dataset1 ORDER DESC

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with it in

reversed order (should be 6.5, 9.1, 0.2, 0, 1.3, 3.2)

SELECT FROM my_dataset1 ORDER REV

create an HDF5 dataset named "my_dataset2" of data type variable-length double of one

dimension (size 3)

CREATE DATASET my_dataset2 AS VARDOUBLE(3)

insert (i.e. write) values into dataset "my_dataset2"

INSERT INTO my_dataset2 VALUES((3.2, 1.3), (0, 0.2), (9.1, 7.4, 6.5))

select (i.e. read) data from dataset "my_dataset2" and populate cursor in use with it (should

be 3.2, 1.3, 0, 0.2, 9.1, 7.4, 6.5)

SELECT FROM my_dataset2

select (i.e. read) data from dataset "my_dataset2" and populate cursor in use with it in

ascending order on the result subset only (should be 1.3, 3.2, 0, 0.2, 6.5, 7.4, 9.1)

SELECT FROM my_dataset2 ORDER , ASC

select (i.e. read) data from dataset "my_dataset2" and populate cursor in use with it in

descending order on the result subset only (should be 3.2, 1.3, 0.2, 0, 9.1, 7.4, 6.5)

SELECT FROM my_dataset2 ORDER , DESC

select (i.e. read) data from dataset "my_dataset2" and populate cursor in use with it in

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 159 of 341

reversed order on the result set only (should be 9.1, 7.4, 6.5, 0, 0.2, 3.2, 1.3)

SELECT FROM my_dataset2 ORDER REV

select (i.e. read) data from dataset "my_dataset2" and populate cursor in use with it in

reversed order on the result subset only (should be 1.3, 3.2, 0.2, 0, 6.5, 7.4, 9.1)

SELECT FROM my_dataset2 ORDER , REV

select (i.e. read) data from dataset "my_dataset2" and populate cursor in use with it in

reversed order on both the result set and result subset (should be 6.5, 7.4, 9.1, 0.2, 0, 1.3,

3.2)

SELECT FROM my_dataset2 ORDER REV, REV

6.2.2 TOP

Syntax

TOP {top_value | {, subtop_value} | {top_value, subtop_value}}

Description

Truncate a result set after position top_value in a topmost way. In other words, all elements after position top_value are

discarded from the result set. Additionally, if the result set is of data type HDFQL_CHAR, HDFQL_VARTINYINT,

HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT,

HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE

or HDFQL_OPAQUE, the result subset can be truncated in a topmost way by specifying a comma (,) and subtop_value.

Parameter(s)

top_value – optional integer that specifies the position of the truncation of a result set in a topmost way. If negative, the

TOP option will behave as the BOTTOM option with a positive top_value.

subtop_value – optional integer that specifies the position of the truncation of a result set in a topmost way. If negative,

the TOP option will behave as the BOTTOM option with a positive subtop_value. Of note, this parameter is only applicable

for a result set of one of the aforementioned data types and ignored otherwise.

Return

The result set and/or subset is truncated in a topmost way in function of the position provided.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 160 of 341

Example(s)

create an HDF5 dataset named "my_dataset0" of data type float of four dimensions (size

5x8x4x7)

CREATE DATASET my_dataset0 AS FLOAT(5, 8, 4, 7)

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with these

(should be 5, 8, 4, 7)

SHOW DIMENSION my_dataset0

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with the

topmost (i.e. first) dimension (should be 5)

SHOW DIMENSION my_dataset0 TOP 1

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with the two

topmost dimensions (should be 5, 8)

SHOW DIMENSION my_dataset0 TOP 2

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with the two

bottommost dimensions (should be 4, 7)

SHOW DIMENSION my_dataset0 TOP -2

create an HDF5 dataset named "my_dataset1" of data type variable-length int of one dimension

(size 3) with initial values of 12, 14 and 16 for the first position, 18 for the second

position, and 20, 22, 24 and 26 for the third position

CREATE DATASET my_dataset1 AS VARINT(3) VALUES((12, 14, 16), (18), (20, 22, 24, 26))

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with it (should

be 12, 14, 16, 18, 20, 22, 24, 26)

SELECT FROM my_dataset1

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with values of

the topmost (i.e. first) position (should be 12, 14, 16)

SELECT FROM my_dataset1 TOP 1

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with values of

the two topmost positions (should be 12, 14, 18, 20, 22)

SELECT FROM my_dataset1 TOP , 2

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with the

topmost value of the two bottommost positions (should be 18, 20)

SELECT FROM my_dataset1 TOP -2, 1

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 161 of 341

6.2.3 BOTTOM

Syntax

BOTTOM {bottom_value | {, subbottom_value} | {bottom_value, subbottom_value}}

Description

Truncate a result set after position bottom_value in a bottommost way. In other words, all elements before position

bottom_value are discarded from the result set. Additionally, if the result set is of data type HDFQL_CHAR,

HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT,

HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT,

HDFQL_VARDOUBLE or HDFQL_OPAQUE, the result subset can be truncated in a bottommost way by specifying a comma

(,) and subbottom_value.

Parameter(s)

bottom_value – optional integer that specifies the position of the truncation of a result set in a bottommost way. If

negative, the BOTTOM option will behave as the TOP option with a positive bottom_value.

subbottom_value – optional integer that specifies the position of the truncation of a result set in a bottommost way. If

negative, the BOTTOM option will behave as the TOP option with a positive subbottom_value. Of note, this parameter is

only applicable for a result set of one of the aforementioned data types and ignored otherwise.

Return

The result set and/or subset is truncated in a bottommost way in function of the position provided.

Example(s)

create an HDF5 dataset named "my_dataset0" of data type float of four dimensions (size

5x8x4x7)

CREATE DATASET my_dataset0 AS FLOAT(5, 8, 4, 7)

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with these

(should be 5, 8, 4, 7)

SHOW DIMENSION my_dataset0

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with the

bottommost (i.e. last) dimension (should be 7)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 162 of 341

SHOW DIMENSION my_dataset0 BOTTOM 1

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with the two

bottommost dimensions (should be 4, 7)

SHOW DIMENSION my_dataset0 BOTTOM 2

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with the two

topmost dimensions (should be 5, 8)

SHOW DIMENSION my_dataset0 BOTTOM -2

create an HDF5 dataset named "my_dataset1" of data type variable-length int of one dimension

(size 3) with initial values of 12, 14 and 16 for the first position, 18 for the second

position, and 20, 22, 24 and 26 for the third position

CREATE DATASET my_dataset1 AS VARINT(3) VALUES((12, 14, 16), (18), (20, 22, 24, 26))

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with it (should

be 12, 14, 16, 18, 20, 22, 24, 26)

SELECT FROM my_dataset1

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with values of

the bottommost (i.e. last) position (should be 20, 22, 24, 26)

SELECT FROM my_dataset1 BOTTOM 1

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with values of

the two bottommost positions (should be 14, 16, 18, 24, 26)

SELECT FROM my_dataset1 BOTTOM , 2

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with the

bottommost value of the two topmost positions (should be 16, 18)

SELECT FROM my_dataset1 BOTTOM -2, 1

6.2.4 FROM TO

Syntax

FROM {from_value | {, subfrom_value} | {from_value, subfrom_value}} TO {to_value | {, subto_value} | {to_value,

subto_value}}

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 163 of 341

Description

Retain a result set from from_value to to_value. In other words, all elements before position from_value and after position

to_value are discarded from the result set. The first element of the result set is at position zero, while the last element is

located at the position returned by hdfql_cursor_get_count - 1. Additionally, if the result set is of data type HDFQL_CHAR,

HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT,

HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT,

HDFQL_VARDOUBLE or HDFQL_OPAQUE, the result subset can be retained by specifying a comma (,), subfrom_value

and/or subto_value.

Parameter(s)

from_value – optional integer that specifies the starting position to retain elements of a result set. If negative, the FROM

option will retain elements of a result set starting from its end.

subfrom_value – optional integer that specifies the starting position to retain elements of a result set. If negative, the

FROM option will retain elements of a result set starting from its end. Of note, this parameter is only applicable for a result

set of one of the aforementioned data types and ignored otherwise.

to_value – optional integer that specifies the ending position to retain elements of a result set. If negative, the TO option

will retain elements of a result set starting from its end.

subto_value – optional integer that specifies the ending position to retain elements of a result set. If negative, the TO

option will retain elements of a result set starting from its end. Of note, this parameter is only applicable for a result set of

one of the aforementioned data types and ignored otherwise.

Return

The result set and/or subset is retained in function of the position provided.

Example(s)

create an HDF5 dataset named "my_dataset0" of data type float of four dimensions (size

5x8x4x7)

CREATE DATASET my_dataset0 AS FLOAT(5, 8, 4, 7)

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with these

(should be 5, 8, 4, 7)

SHOW DIMENSION my_dataset0

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 164 of 341

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with the

first, second and third dimensions (should be 5, 8, 4)

SHOW DIMENSION my_dataset0 FROM 0 TO 2

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with the

second and third dimensions (should be 8, 4)

SHOW DIMENSION my_dataset0 FROM 1 TO 2

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with the

second, third and fourth dimensions (should be 8, 4, 7)

SHOW DIMENSION my_dataset0 FROM -3 TO -1

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with the

second and third dimensions (should be 8, 4)

SHOW DIMENSION my_dataset0 FROM 1 TO -2

create an HDF5 dataset named "my_dataset1" of data type variable-length int of one dimension

(size 3) with initial values of 12, 14 and 16 for the first position, 18 for the second

position, and 20, 22, 24 and 26 for the third position

CREATE DATASET my_dataset1 AS VARINT(3) VALUES((12, 14, 16), (18), (20, 22, 24, 26))

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with it (should

be 12, 14, 16, 18, 20, 22, 24, 26)

SELECT FROM my_dataset1

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with values of

the second position (should be 18)

SELECT FROM my_dataset1 FROM 1 TO 1

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with values of

the second and third positions (should be 18, 20, 22, 24, 26)

SELECT FROM my_dataset1 FROM -2 TO -1

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with the second

and third values of all positions (should be 14, 16, 22, 24)

SELECT FROM my_dataset1 FROM , 1 TO , 2

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with second

bottommost and bottommost values of the first position (should be 14, 16)

SELECT FROM my_dataset1 FROM 0, -2 TO 0, -1

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 165 of 341

6.2.5 STEP

Syntax

STEP {step_value | {, substep_value} | {step_value, substep_value}}

Description

Step (i.e. jump) the result set at every step_value position. In other words, all elements between steps are discarded from

the result set. Additionally, if the result set is of data type HDFQL_CHAR, HDFQL_VARTINYINT,

HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT,

HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE

or HDFQL_OPAQUE, the result subset can be stepped (i.e. jumped) by specifying a comma (,) and substep_value.

Parameter(s)

step_value – optional integer that specifies the position to step (i.e. jump) a result set. If step_value is negative, the STEP

option will step (i.e. jump) the result set starting from its end.

substep_value – optional integer that specifies the position to step (i.e. jump) a result set. If substep_value is negative, the

STEP option will step (i.e. jump) the result set starting from its end. Of note, this parameter is only applicable for a result

set of one of the aforementioned data types and ignored otherwise.

Return

The result set and/or subset is stepped (i.e. jumped) in function of the position provided.

Example(s)

create an HDF5 dataset named "my_dataset0" of data type float of four dimensions (size

5x8x4x7)

CREATE DATASET my_dataset0 AS FLOAT(5, 8, 4, 7)

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with these

(should be 5, 8, 4, 7)

SHOW DIMENSION my_dataset0

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with these

(should be 5, 8, 4, 7)

SHOW DIMENSION my_dataset0 STEP 1

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 166 of 341

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with every

second dimension (should be 5, 4)

SHOW DIMENSION my_dataset0 STEP 2

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with every

second dimension starting from the end (should be 8, 7)

SHOW DIMENSION my_dataset0 STEP -2

show (i.e. get) dimensions of dataset "my_dataset0" and populate cursor in use with every

third dimension (should be 5, 7)

SHOW DIMENSION my_dataset0 STEP 3

create an HDF5 dataset named "my_dataset1" of data type variable-length int of one dimension

(size 3) with initial values of 12, 14 and 16 for the first position, 18 for the second

position, and 20, 22, 24 and 26 for the third position

CREATE DATASET my_dataset1 AS VARINT(3) VALUES((12, 14, 16), (18), (20, 22, 24, 26))

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with it (should

be 12, 14, 16, 18, 20, 22, 24, 26)

SELECT FROM my_dataset1

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with values of

every second position (should be 12, 14, 16, 20, 22, 24, 26)

SELECT FROM my_dataset1 STEP 2

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with every

third value of all positions (should be 12, 18, 20, 26)

SELECT FROM my_dataset1 STEP , 3

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with every

second value of every second position (should be 12, 16, 22, 26)

SELECT FROM my_dataset1 STEP 2, -2

6.3 REDIRECTING

Redirecting options enable reading data from the cursor in use, a (text, binary or Excel) file or memory (i.e. user-defined

variable) and writing it into an HDF5 dataset or attribute through a CREATE DATASET, CREATE ATTRIBUTE or INSERT

operation. It also enables writing result sets (i.e. data) returned by DATA QUERY LANGUAGE (DQL) and DATA

INTROSPECTION LANGUAGE (DIL) operations into the cursor in use, a (text, binary or Excel) file or memory. The next

subsections describe the redirecting options provided by HDFql.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 167 of 341

Redirecting Option Description

FROM
Read data from the cursor in use, a (text, binary or Excel) file or memory and write it

into an HDF5 dataset or attribute

INTO Write result sets into the cursor in use, a (text, binary or Excel) file or memory

Table 6.5 – HDFql redirecting options

6.3.1 FROM

Syntax

FROM {CURSOR | {[DOS | UNIX] [TEXT] FILE file_name [NO SEPARATOR | SEPARATOR {separator_value | {,

subseparator_value} | {separator_value, subseparator_value}}] [SKIP skip_value]} | {BINARY FILE file_name [SKIP

skip_value]} | {EXCEL [XLS | XLSX] FILE file_name [SHEET sheet_name] [SKIP skip_value]} | {MEMORY

variable_number [SIZE variable_size] [OFFSET (member_offset [, member_offset]*)] [MAX max_elements]}}

Description

Read data from the cursor in use (default behavior when no redirecting option is specified), a (text, binary or Excel) file or

memory (i.e. user-defined variable) and write it into an HDF5 dataset or attribute through a CREATE DATASET, CREATE

ATTRIBUTE or INSERT operation. In detail, this procedure (which is known as input redirecting option) can be performed

from:

 The cursor in use. Example: “CREATE DATASET my_dataset AS FLOAT VALUES FROM CURSOR” or “INSERT INTO

my_dataset VALUES FROM CURSOR”.

 A text file. Example: “CREATE DATASET my_dataset AS FLOAT VALUES FROM TEXT FILE my_file.txt” or “INSERT INTO

my_dataset VALUES FROM TEXT FILE my_file.txt”.

 A binary file. Example: “CREATE DATASET my_dataset AS FLOAT VALUES FROM BINARY FILE my_file.bin” or “INSERT

INTO my_dataset VALUES FROM BINARY FILE my_file.bin”.

 An Excel file (in XLS or XLSX format). Example: “CREATE DATASET my_dataset AS FLOAT VALUES FROM EXCEL XLS FILE

my_file.xls” or “INSERT INTO my_dataset VALUES FROM EXCEL FILE input.xlsx”. Of note, for HDFql to be able to read

data from an Excel file it needs to find and dynamically load a shared library named “libxl” (which is responsible for

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 168 of 341

handling files of this type). The specification of the path where HDFql may find shared libraries is done through the

operation SET PLUGIN PATH.

 A user-defined variable that was previously registered through the function hdfql_variable_register. Example:

“CREATE DATASET my_dataset AS FLOAT VALUES FROM MEMORY 0” or “INSERT INTO my_dataset VALUES FROM

MEMORY 2”. Of note, when working in Java, HDFql has to copy each element of the Java variable into the HDF5

dataset or attribute (managed by the underlying HDFql C library) as the JVM does not provide a direct access to the

memory associated to the variable, which induces a performance penalty. This penalty is not present when working in

other programming languages supported by HDFql – namely C, C++, Python, C#, Fortan and R – as these provide a way

for the underlying HDFql C library to access the variable directly.

Parameter(s)

file_name – optional string that specifies the name of a text, binary or Excel file to read data from.

sheet_name – optional string that specifies the name of an Excel sheet to read data from. If not specified, the sheet to

read data from is the one currently selected for viewing/editing within the Excel file.

separator_value – optional string that specifies the separator to use between elements (of the data) when reading these

from a text file. If not specified, its default value is a comma (,).

subseparator_value – optional string that specifies the subseparator to use between elements (of the data) when reading

these from a text file. The subseparator is only applicable when the data type of the HDF5 dataset or attribute is either

HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT,

HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT,

HDFQL_VARDOUBLE or HDFQL_OPAQUE, and ignored otherwise. If not specified, its default value is a space.

skip_value – optional integer that specifies the number of initial lines (delimited by an end of line (EOL) terminator or a

separator) to skip (i.e. ignore) in case the file (to read data from) is a text, the number of initial cells in the sheet to skip in

case the file (to read data from) is an Excel, or the number of initial bytes to skip in case the file (to read data from) is a

binary. If not specified, nothing is skipped.

variable_number – optional integer that specifies the number of the variable whose data will be written into the HDF5

dataset or attribute. The number is returned by the function hdfql_variable_register upon registering the variable or,

subsequently, returned by the function hdfql_variable_get_number.

variable_size – optional integer that specifies the size (in bytes) of the variable whose data will be written into the HDF5

dataset or attribute. Of note, the specification of a size only has effect for a dataset or attribute of data type

HDFQL_COMPOUND (for any other data type the specification is ignored – i.e. has no effect).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 169 of 341

member_offset – optional integer that specifies the (memory) member offsets that compose the variable whose data will

be written into the HDF5 dataset or attribute. Multiple offsets are separated with a comma (,). If specified, the variable is

assumed to be a C padded struct data type (i.e. its members may not be contiguous in memory due to padding between

these) and is used as such by HDFql. If not specified, the variable is assumed to be a C primitive or packed struct data type

(i.e. its members are contiguous in memory and have no padding between these) and is used as such by HDFql. Of note,

the specification of an offset only has effect for a dataset or attribute of data type HDFQL_COMPOUND (for any other data

type the specification is ignored – i.e. has no effect).

max_elements – optional integer that specifies the maximum number of elements of the data stored in the variable to

write into the HDF5 dataset or attribute. In other words, only the first max_elements of the data will be written into the

dataset or attribute. Of note, max_elements may be smaller than the number of elements that the dataset or attribute

may store (in this case, the remainder of the dataset or attribute will be zeroed if a number or emptied if a string).

Example(s)

use (i.e. open) an HDF5 file named "my_file.h5"

USE FILE my_file.h5

show (i.e. get) HDF5 file currently in use and populate cursor in use with it

SHOW USE FILE

create an HDF5 dataset named "my_dataset0" of data type variable-length char with initial

values from the cursor in use

CREATE DATASET my_dataset0 AS VARCHAR VALUES FROM CURSOR

select (i.e. read) data from dataset "my_dataset0" and populate cursor in use with it (should

be "my_file.h5")

SELECT FROM my_dataset0

create an HDF5 dataset named "my_dataset1" of data type char of one dimension (size 3)

CREATE DATASET my_dataset1 AS TINYINT(3)

insert (i.e. write) values from a text file named "my_file0.txt" into dataset "my_dataset1"

(assume that the file "my_file0.txt" exists and contains "65,66,67")

INSERT INTO my_dataset1 VALUES FROM FILE my_file0.txt

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with it (should

be 65, 66, 67)

SELECT FROM my_dataset1

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 170 of 341

insert (i.e. write) values from a text file named "my_file1.txt" into dataset "my_dataset1"

(assume that the file "my_file1.txt" exists and contains "90**92**94")

INSERT INTO my_dataset1 VALUES FROM TEXT FILE my_file1.txt SEPARATOR **

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with it (should

be 90, 92, 94)

SELECT FROM my_dataset1

insert (i.e. write) values from a binary file named "my_file.bin" into dataset "my_dataset1"

(assume that the file "my_file.bin" exists and contains "ABC")

INSERT INTO my_dataset1 VALUES FROM BINARY FILE my_file.bin

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with it (should

be 65, 66, 67)

SELECT FROM my_dataset1

insert (i.e. write) values from an Excel file named "my_file0.xlsx" stored in the sheet

currently selected for viewing/editing within the file into dataset "my_dataset1" (assume that

the file "my_file0.xlsx" exists and contains three cells with values 10, 20 and 30)

INSERT INTO my_dataset1 VALUES FROM EXCEL FILE my_file0.xlsx

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with it (should

be 10, 20, 30)

SELECT FROM my_dataset1

insert (i.e. write) values from an Excel file named "my_file1.xlsx" stored in a sheet named

"my_sheet" into dataset "my_dataset1" (assume that the file "my_file1.xlsx" exists and contains

three cells with values 5, 6 and 7)

INSERT INTO my_dataset1 VALUES FROM EXCEL FILE my_file1.xlsx SHEET my_sheet

select (i.e. read) data from dataset "my_dataset1" and populate cursor in use with it (should

be 5, 6, 7)

SELECT FROM my_dataset1

// declare variables

char script[1024];

double data[3][2];

int x;

int y;

// create an HDF5 dataset named "my_dataset2" of data type double of two dimensions (size 3x2)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 171 of 341

hdfql_execute("CREATE DATASET my_dataset2 AS DOUBLE(3, 2)");

// populate variable "data" with certain values

data[0][0] = 3.2;

data[0][1] = 1.3;

data[1][0] = 0;

data[1][1] = 0.2;

data[2][0] = 9.1;

data[2][1] = 6.5;

// register variable "data" for subsequent use (by HDFql)

hdfql_variable_register(data);

// prepare script to insert (i.e. write) values from variable "data" into dataset "my_dataset2"

sprintf(script, "INSERT INTO my_dataset2 VALUES FROM MEMORY %d",

hdfql_variable_get_number(data));

// execute script

hdfql_execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)

hdfql_variable_unregister(data);

// select (i.e. read) data from dataset "my_dataset2" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset2");

// display content of cursor in use (should be 3.2, 1.3, 0, 0.2, 9.1, 6.5)

while(hdfql_cursor_next(NULL) == HDFQL_SUCCESS)

{

 printf("%f\n", *hdfql_cursor_get_double(NULL));

}

// declare variables

char script[1024];

HDFQL_VARIABLE_LENGTH data[3];

// create an HDF5 dataset named "my_dataset3" of data type variable-length double of one

dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset3 AS VARDOUBLE(3)");

// allocate memory in variable "data"

data[0].address = malloc(2 * sizeof(double));

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 172 of 341

data[0].count = 2;

data[1].address = malloc(3 * sizeof(double));

data[1].count = 3;

data[2].address = malloc(1 * sizeof(double));

data[2].count = 1;

// populate variable "data" with certain values

*((double *) data[0].address + 0) = 3.2;

*((double *) data[0].address + 1) = 1.3;

*((double *) data[1].address + 0) = 0;

*((double *) data[1].address + 1) = 0.2;

*((double *) data[1].address + 2) = 9.1;

*((double *) data[2].address + 0) = 6.5;

// register variable "data" for subsequent use (by HDFql)

hdfql_variable_register(data);

// prepare script to insert (i.e. write) values from variable "data" into dataset "my_dataset3"

sprintf(script, "INSERT INTO my_dataset3 VALUES FROM MEMORY %d",

hdfql_variable_get_number(data));

// execute script

hdfql_execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)

hdfql_variable_unregister(data);

// select (i.e. read) data from dataset "my_dataset3" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset3");

// display content of cursor in use (should be 3.2, 1.3, 0, 0.2, 9.1, 6.5)

while(hdfql_cursor_next(NULL) == HDFQL_SUCCESS)

{

 while(hdfql_subcursor_next(NULL) == HDFQL_SUCCESS)

 {

 printf("%f\n", *hdfql_subcursor_get_double(NULL));

 }

}

// release memory allocated in variable "data"

free(data[0].address);

free(data[1].address);

free(data[2].address);

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 173 of 341

// declare variables

char script[1024];

char *data[3];

// create an HDF5 dataset named "my_dataset4" of data type variable-length char of one

dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset4 AS VARCHAR(3)");

// allocate memory in variable "data"

data[0] = malloc(13 * sizeof(char));

data[1] = malloc(5 * sizeof(char));

data[2] = malloc(7 * sizeof(char));

// populate variable "data" with certain values

strcpy(data[0], "Hierarchical");

strcpy(data[1], "Data");

strcpy(data[2], "Format");

// register variable "data" for subsequent use (by HDFql)

hdfql_variable_register(data);

// prepare script to insert (i.e. write) values from variable "data" into dataset "my_dataset4"

sprintf(script, "INSERT INTO my_dataset4 VALUES FROM MEMORY %d",

hdfql_variable_get_number(data));

// execute script

hdfql_execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)

hdfql_variable_unregister(data);

// select (i.e. read) data from dataset "my_dataset4" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset4");

// display content of cursor in use (should be "Hierarchical", "Data", "Format")

while(hdfql_cursor_next(NULL) == HDFQL_SUCCESS)

{

 printf("%s\n", hdfql_cursor_get_char(NULL));

}

// release memory allocated in variable "data"

free(data[0]);

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 174 of 341

free(data[1]);

free(data[2]);

// declare structure

struct data

{

 char name[7];

 int index;

};

// declare variables

char script[1024];

struct data cities[3];

int number;

// create an HDF5 dataset named "my_dataset5" of data type compound of one dimension (size 3)

composed of two members named "name" (of data type char) and "index" (of data type int)

hdfql_execute("CREATE DATASET my_dataset5 AS COMPOUND(name AS CHAR(7), index AS INT)(3)");

// populate variable "cities" with certain values

memcpy(cities[0].name, "Toronto", 7);

cities[0].index = 10;

memcpy(cities[1].name, "Nairobi", 7);

cities[1].index = 12;

memcpy(cities[2].name, "Caracas", 7);

cities[2].index = 11;

// register variable "cities" for subsequent use (by HDFql)

number = hdfql_variable_register(cities);

// prepare script to insert (i.e. write) values from variable "cities" into dataset

"my_dataset5"

sprintf(script, "INSERT INTO my_dataset5 VALUES FROM MEMORY %d SIZE %d OFFSET(%d, %d)",

number, sizeof(struct data), offsetof(struct data, name), offsetof(struct data, index));

// execute script

hdfql_execute(script);

// unregister variable "cities" as it is no longer used/needed (by HDFql)

hdfql_variable_unregister(cities);

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 175 of 341

6.3.2 INTO

Syntax

INTO {CURSOR | {[TRUNCATE] [DOS | UNIX] [TEXT] FILE file_name [HEADER header_value [, header_value]*] [NO

SEPARATOR | SEPARATOR {separator_value | {, subseparator_value} | {separator_value, subseparator_value}}]

[SPLIT split_value]} | {[TRUNCATE] BINARY FILE file_name} | {[TRUNCATE] EXCEL [XLS | XLSX] FILE file_name

[SHEET sheet_name] [HEADER header_value [, header_value]*]} | {MEMORY variable_number [SIZE variable_size]

[OFFSET (member_offset [, member_offset]*)] [MAX max_elements]}}

Description

Write result sets (i.e. data) returned by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION LANGUAGE (DIL)

operations into the cursor in use (default behavior when no redirecting option is specified), a (text, binary or Excel) file or

memory (i.e. user-defined variable). In detail, this procedure (which is known as output redirecting option) can be

performed into:

 The cursor in use. Example: “SELECT FROM my_dataset INTO CURSOR” or “SHOW USE DIRECTORY INTO CURSOR”.

 A text file. Example: “SELECT FROM my_dataset INTO TEXT FILE my_file.txt” or “SHOW USE DIRECTORY INTO TEXT FILE

output.txt”.

 A binary file. Example: “SELECT FROM my_dataset INTO BINARY FILE my_file.bin” or “SHOW USE DIRECTORY INTO

BINARY FILE output.bin”. When redirecting data of type HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT,

HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT, HDFQL_UNSIGNED_VARINT,

HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT or HDFQL_VARDOUBLE into a binary file, each

result subset to be written is preceeded by its number of elements (as a C “unsigned int” data type with a 4 bytes

size). This is to enable a correct parsing/interpretation of the binary file when reading it afterwards.

 An Excel file (in XLS or XLSX format). Example: “SELECT FROM my_dataset INTO EXCEL XLS FILE my_file.xls” or “SHOW

USE DIRECTORY INTO EXCEL FILE output.xlsx”. When redirecting data of type HDFQL_VARTINYINT,

HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT,

HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT or

HDFQL_VARDOUBLE into an Excel file, each result subset to be written is preceeded by its number of elements. This is

to enable a correct parsing/interpretation of the Excel file when reading it afterwards. Of note, for HDFql to be able to

redirect data into an Excel file it needs to find and dynamically load a shared library named “libxl” (which is

responsible for handling files of this type). The specification of the path where HDFql may find shared libraries is done

through the operation SET PLUGIN PATH.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 176 of 341

 A user-defined variable that was previously registered through the function hdfql_variable_register. Example: “SELECT

FROM my_dataset INTO MEMORY 0” or “SHOW USE DIRECTORY INTO MEMORY 2”. When redirecting data of type

HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT,

HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT,

HDFQL_VARDOUBLE or HDFQL_VARCHAR into a user-defined variable, the programmer is responsible for releasing

the memory (allocated by HDFql) afterwards. Of note, when working in Java, HDFql has to copy each element of the

result set (managed by the underlying HDFql C library) into the Java variable as the JVM does not provide a direct

access to the memory associated to the variable, which induces a performance penalty. This penalty is not present

when working in other programming languages supported by HDFql – namely C, C++, Python, C#, Fortan and R – as

these provide a way for the underlying HDFql C library to access the memory of the variable directly.

When redirecting a result set into a text file, binary file or a sheet of an Excel file that already exists, the result set is

appended to it. To overwrite an existing text file, binary file or a sheet of an Excel file, specify the keyword TRUNCATE (all

data stored in the file or in the sheet will be permanently lost).

Parameter(s)

file_name – optional string that specifies the name of a text, binary or Excel file to redirect (i.e. write) a result set into.

sheet_name – optional string that specifies the name of an Excel sheet to redirect (i.e. write) a result set into. If not

specified, the sheet to redirect (i.e. write) a result set into is the one currently selected for viewing/editing within the Excel

file.

header_value – optional string that specifies the header to write in a text or an Excel file before redirecting (i.e. writing) a

result set into. Multiple headers are separated with a comma (,).

separator_value – optional string that specifies the separator to use between elements (of the result set) when redirecting

(i.e. writing) these in a text file. If not specified, its default value is a comma (,).

subseparator_value – optional string that specifies the subseparator to use between elements (of the result subset) when

redirecting (i.e. writing) these in a text file. The subseparator is only applicable when the data type of the result set is

either HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT,

HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT,

HDFQL_VARDOUBLE or HDFQL_OPAQUE, and ignored otherwise. If not specified, its default value is a space.

split_value – optional integer that specifies the number of elements (of the result set) to redirect (i.e. write) per line

before starting writing remaining elements in a new line in a text or an Excel file. If split_value is specified it must be equal

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 177 of 341

to or greater than zero (otherwise an error will be raised). Otherwise, if it is not specified, no splitting is done which means

that all elements (of the result set) are redirectered (i.e. written) in the same line.

variable_number – optional integer that specifies the number of the variable that will store the result set (i.e. data)

returned by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION LANGUAGE (DIL) operations. The number is

returned by the function hdfql_variable_register upon registering the variable or, subsequently, returned by the function

hdfql_variable_get_number.

variable_size – optional integer that specifies the size (in bytes) of the variable that will store the result set (i.e. data). Of

note, the specification of a size only has effect for a result set of data type HDFQL_COMPOUND (for any other data type

the specification is ignored – i.e. has no effect).

member_offset – optional integer that specifies the (memory) member offsets that compose the variable that will store

the result set (i.e. data). Multiple offsets are separated with a comma (,). If specified, the variable is assumed to be a C

padded struct data type (i.e. its members may not be contiguous in memory due to padding between these) and is used as

such by HDFql. If not specified, the variable is assumed to be a C primitive or packed struct data type (i.e. its members are

contiguous in memory and have no padding between these) and is used as such by HDFql. Of note, the specification of an

offset only has effect for a result set of data type HDFQL_COMPOUND (for any other data type the specification is ignored

– i.e. has no effect).

max_elements – optional integer that specifies the maximum number of elements to use from the variable to store the

result set (i.e. data). In other words, only the first max_elements of the variable will be used to store the result set. Of

note, max_elements may be smaller than the number of elements that the result set may store (in this case, the

remainder of the result set is discarded). If max_elements is specified it must be equal to or greater than zero (otherwise

an error will be raised). Otherwise, if it is not specified, the variable must have enough space to store the entire result set

(otherwise an error may occur such as a segmentation fault).

Example(s)

create an HDF5 dataset named "my_dataset0" of data type char of one dimension (size 3)

CREATE DATASET my_dataset0 AS TINYINT(3)

insert (i.e. write) values into dataset "my_dataset0"

INSERT INTO my_dataset0 VALUES(65, 66, 67)

select (i.e. read) data from dataset "my_dataset0" and populate cursor in use with it (should

be 65, 66, 67)

SELECT FROM my_dataset0

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 178 of 341

select (i.e. read) data from dataset "my_dataset0" and populate cursor in use with it (should

be 65, 66, 67)

SELECT FROM my_dataset0 INTO CURSOR

select (i.e. read) data from dataset "my_dataset0" and write it into a text file named

"my_file0.txt" using default separator "," (should be "65,66,67," in one single line)

SELECT FROM my_dataset0 INTO FILE my_file0.txt

select (i.e. read) data from dataset "my_dataset0" and write it into a text file named

"my_file1.txt" using separator "**" (should be "65**66**67**" in one single line)

SELECT FROM my_dataset0 INTO TEXT FILE my_file1.txt SEPARATOR **

select (i.e. read) data from dataset "my_dataset0" and write it into a text file named

"my_file2.txt" splitting every two values in a new line using a UNIX-based EOL terminator

(should be "65,65" in the first line and "67" in the second line)

SELECT FROM my_dataset0 INTO UNIX TEXT FILE my_file2.txt SPLIT 2

select (i.e. read) data from dataset "my_dataset0" and write it into a binary file named

"my_file.bin" (truncate it if it already exists) (should be "ABC")

SELECT FROM my_dataset0 INTO TRUNCATE BINARY FILE my_file.bin

select (i.e. read) data from dataset "my_dataset0" and write it into an Excel file named

"my_file0.xlsx" in the sheet currently selected for viewing/editing within the file (should be

65, 66, 67)

SELECT FROM my_dataset0 INTO EXCEL FILE my_file0.xlsx

select (i.e. read) data from dataset "my_dataset0" and write it into an Excel file named

"my_file1.xlsx" in a sheet named "my_sheet" (truncate it if it already exists) (should be 65,

66, 67)

SELECT FROM my_dataset0 INTO TRUNCATE EXCEL FILE my_file1.xlsx SHEET my_sheet

// declare variables

char script[1024];

double data[3][2];

int x;

int y;

// create an HDF5 dataset named "my_dataset1" of data type double of two dimensions (size 3x2)

hdfql_execute("CREATE DATASET my_dataset1 AS DOUBLE(3, 2)");

// insert (i.e. write) values into dataset "my_dataset1"

hdfql_execute("INSERT INTO my_dataset1 VALUES((3.2, 1.3), (0, 0.2), (9.1, 6.5))");

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 179 of 341

// register variable "data" for subsequent use (by HDFql)

hdfql_variable_register(data);

// prepare script to select (i.e. read) data from dataset "my_dataset1" and populate variable

"data" with it

sprintf(script, "SELECT FROM my_dataset1 INTO MEMORY %d", hdfql_variable_get_number(data));

// execute script

hdfql_execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)

hdfql_variable_unregister(data);

// display content of variable "data" (should be 3.2, 1.3, 0, 0.2, 9.1, 6.5)

for(x = 0; x < 3; x++)

{

 for(y = 0; y < 2; y++)

 {

 printf("%d\n", data[x][y]);

 }

}

// declare variables

char script[1024];

HDFQL_VARIABLE_LENGTH data[3];

int x;

int y;

int count;

// create an HDF5 dataset named "my_dataset2" of data type variable-length double of one

dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset2 AS VARDOUBLE(3)");

// insert (i.e. write) values into dataset "my_dataset2"

hdfql_execute("INSERT INTO my_dataset2 VALUES((3.2, 1.3), (0, 0.2), (9.1, 7.4, 6.5))");

// register variable "data" for subsequent use (by HDFql)

hdfql_variable_register(data);

// prepare script to select (i.e. read) data from dataset "my_dataset2" and populate variable

"data" with it

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 180 of 341

sprintf(script, "SELECT FROM my_dataset2 INTO MEMORY %d", hdfql_variable_get_number(data));

// execute script

hdfql_execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)

hdfql_variable_unregister(data);

// display content of variable "data" (should be 3.2, 1.3, 0, 0.2, 9.1, 7.4, 6.5)

for(x = 0; x < 3; x++)

{

 count = data[x].count;

 for(y = 0; y < count; y++)

 {

 printf("%f\n", *((double *) data[x].address + y));

 }

}

// release memory allocated (by HDFql) in variable "data"

for(x = 0; x < 3; x++)

{

 free(data[x].address);

}

// declare variables

char script[1024];

char *data[3];

int x;

// create an HDF5 dataset named "my_dataset3" of data type variable-length char of one

dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset3 AS VARCHAR(3)");

// insert (i.e. write) values into dataset "my_dataset3"

hdfql_execute("INSERT INTO my_dataset3 VALUES(\"Hierarchical\", \"Data\", \"Format\")");

// register variable "data" for subsequent use (by HDFql)

hdfql_variable_register(data);

// prepare script to select (i.e. read) data from dataset "my_dataset3" and populate variable

"data" with it

sprintf(script, "SELECT FROM my_dataset3 INTO MEMORY %d", hdfql_variable_get_number(data));

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 181 of 341

// execute script

hdfql_execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)

hdfql_variable_unregister(data);

// display content of variable "data" (should be "Hierarchical", "Data", "Format")

for(x = 0; x < 3; x++)

{

 printf("%s\n", data[x]);

}

// release memory allocated (by HDFql) in variable "data"

for(x = 0; x < 3; x++)

{

 free(data[x]);

}

// declare structure

struct data

{

 char name[7];

 int index;

};

// declare variables

char script[1024];

struct data cities[3];

int number;

int i;

// create an HDF5 dataset named "my_dataset4" of data type compound of one dimension (size 3)

composed of two members named "name" (of data type char) and "index" (of data type int), and

with initial values of "Toronto" and 10 for the first position, "Nairobi" and 12 for the second

position, and "Caracas" and 11 for the third position

hdfql_execute("CREATE DATASET my_dataset4 AS COMPOUND(name AS CHAR(7), index AS INT)(3)

VALUES((Toronto, 10), (Nairobi, 12), (Caracas, 11))");

// register variable "cities" for subsequent use (by HDFql)

number = hdfql_variable_register(cities);

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 182 of 341

// prepare script to select (i.e. read) data from dataset "my_dataset4" and populate variable

"cities" with it

sprintf(script, "SELECT FROM my_dataset4 INTO MEMORY %d SIZE %d OFFSET(%d, %d)", number,

sizeof(struct data), offsetof(struct data, name), offsetof(struct data, index));

// execute script

hdfql_execute(script);

// unregister variable "cities" as it is no longer used/needed (by HDFql)

hdfql_variable_unregister(cities);

// display content of variable "cities" (should be "The city of Toronto has index 10", "The

city of Nairobi has index 12", "The city of Caracas has index 11")

for(i = 0; i < 3; i++)

{

 printf("The city of %s has index %d\n", cities[i].name, cities[i].index);

}

6.4 DATA DEFINITION LANGUAGE (DDL)

Data Definition Language (DDL) is, generally speaking, syntax for defining and modifying structures that store data. In

HDFql, the DDL assembles the operations that enable the creation, alteration, renaming, copying and deletion of HDF5

files, groups, datasets, attributes and links. These operations begin either with the keyword CREATE, ALTER, RENAME,

COPY or DROP.

6.4.1 CREATE DIRECTORY

Syntax

CREATE [AND USE] DIRECTORY directory_name [, directory_name]*

Description

Create a directory named directory_name. Multiple directories can be created at once by separating these with a comma

(,). If directory_name already exists, it will not be overwritten, no subsequent directories are created, and an error is

raised. In case the keyword AND USE is specified, the directory is used (i.e. opened) after being successfully created

(please refer to the operation USE DIRECTORY for additional information). In case directory_name has intermediate

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 183 of 341

directories that do not exist, besides directory_name being created, all these intermediate directories will be created on

the fly (e.g. when creating the directory “my_directory/my_subdirectory/my_subsubdirectory”, besides

“my_subsubdirectory” being created, “my_directory” and “my_subdirectory” will be created in case they do not exist).

Parameter(s)

directory_name – mandatory string that specifies the name of the directory to create. Multiple directories are separated

with a comma (,). As a general rule, in case directory_name is composed of spaces, special characters or reserved

keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by double-quotes,

the directory will not be created and an error is raised. This rule also applies to any other HDFql operation that works with

directory names (e.g. RENAME DIRECTORY).

Return

Nothing

Example(s)

create a directory named "my_directory0" (the directory will not be overwritten if it already

exists)

CREATE DIRECTORY my_directory0

create a directory named "my_directory1" in a root directory named "data" (neither directory

will be overwritten if they already exist; directory "data" will be created on the fly if it

does not exist)

CREATE DIRECTORY /data/my_directory1

create two directories named "my_directory2" and "my_directory3" (neither directory will be

overwritten if they already exist)

CREATE DIRECTORY my_directory2, my_directory3

create a directory named "this is a long directory name" (the directory will not be

overwritten if it already exists)

CREATE DIRECTORY "this is a long directory name"

6.4.2 CREATE FILE

Syntax

CREATE [TRUNCATE] [AND USE] FILE file_name [, file_name]* [IN PARALLEL]

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 184 of 341

[LIBRARY BOUNDS [FROM {EARLIEST | LATEST | V18 | DEFAULT}] [TO {LATEST | V18 | DEFAULT}]]

Description

Create an HDF5 file named file_name. Multiple files can be created at once by separating these with a comma (,). If

file_name already exists, it will not be overwritten, no subsequent files are created, and an error is raised. To overwrite an

existing file, specify the keyword TRUNCATE (all data stored in the file will be permanently lost). In case the keyword AND

USE is specified, the file is used (i.e. opened) after being successfully created (please refer to the operation USE FILE for

additional information). In case the keyword IN PARALLEL34 is specified, HDFql creates the file in parallel using all the MPI

processes specified upon launching the program (that employs HDFql). In case the keyword LIBRARY BOUNDS is specified,

HDFql creates the file using these bounds (instead of the library bounds that may have been set through the operation SET

LIBRARY BOUNDS).

Parameter(s)

file_name – mandatory string that specifies the name of the HDF5 file to create. Multiple files are separated with a comma

(,). As a general rule, in case file_name is composed of spaces, special characters or reserved keywords (e.g. SELECT), it

should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by double-quotes, the file will not be

created and an error is raised. This rule also applies to any other HDFql operation that works with file names (e.g. RENAME

FILE).

Return

Nothing

Example(s)

create an HDF5 file named "my_file0.h5" (the file will not be overwritten if it already

exists)

CREATE FILE my_file0.h5

create an HDF5 file named "my_file1.h5" in a root directory named "data" (the file will not

be overwritten if it already exists)

CREATE FILE /data/my_file1.h5

create two HDF5 files named "my_file2.h5" and "my_file3.h5" (both files will be overwritten

if they already exist)

34 This option is not allowed in Windows as HDFql does not support the parallel HDF5 (PHDF5) library in this platform currently.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 185 of 341

CREATE TRUNCATE FILE my_file2.h5, my_file3.h5

create an HDF5 file named "my_file4.h5" (the file will not be overwritten if it already

exists) with the latest version of the HDF5 library

CREATE FILE my_file4.h5 LIBRARY BOUNDS FROM LATEST TO LATEST

create an HDF5 file named "this is a long file name.h5" (the file will not be overwritten if

it already exists)

CREATE FILE "this is a long file name.h5"

create an HDF5 file named "my_file5.h5" (the file will not be overwritten if it already

exists) in parallel (i.e. all the MPI processes specified upon launching the program (that

employs HDFql) will collectively create the file – e.g. if the program is launched as "mpiexec

–n 3 my_program", all three MPI processes will participate in the creation of the file)

CREATE FILE my_file5.h5 IN PARALLEL

6.4.3 CREATE GROUP

Syntax

CREATE [TRUNCATE] [AND USE] GROUP [file_name] group_name [, [file_name] group_name]*

[ORDER {TRACKED | INDEXED}]

[STORAGE COMPACT object_max_compact DENSE object_min_dense]

[ATTRIBUTE [ORDER {TRACKED | INDEXED}] [STORAGE COMPACT attribute_max_compact DENSE

attribute_min_dense]]

Description

Create an HDF5 group named group_name. Multiple groups can be created at once by separating these with a comma (,).

If group_name already exists, it will not be overwritten, no subsequent groups are created, and an error is raised. To

overwrite an existing group, specify the keyword TRUNCATE (all data stored in the group will be permanently lost). In case

the keyword AND USE is specified, the group is used (i.e. opened) after being successfully created (please refer to the

operation USE GROUP for additional information). In case group_name has intermediate groups that do not exist, besides

group_name being created, all these intermediate groups will be created on the fly (e.g. when creating the group

“my_group/my_subgroup/my_subsubgroup”, besides “my_subsubgroup” being created, “my_group” and “my_subgroup”

will be created in case they do not exist). By default, group_name does not track objects (i.e. groups, datasets, (soft) links

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 186 of 341

or external links) stored within it by their creation order. To track the creation order of objects stored in group_name, the

keyword ORDER TRACKED must be specified. In case the keyword ORDER INDEXED is specified, objects stored within

group_name are also tracked by their creation order and using an index (to speed-up retrieval of object names). By

default, group_name does not track attributes stored within it by their creation order. To track the creation order of

attributes stored in group_name, the keyword ATTRIBUTE ORDER TRACKED must be specified. In case the keyword

ATTRIBUTE ORDER INDEXED is specified, attributes stored within group_name are also tracked by their creation order and

using an index (to speed-up retrieval of attribute names).

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file in which the group is created. If file_name is specified,

the file is opened on the fly, the group is created within it and, afterwards, the file is closed. Otherwise, if it is not

specified, the group is created in the file currently in use. As a general rule, in case file_name is composed of spaces,

special characters or reserved keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not

surrounded by double-quotes, the group will not be created and an error is raised. This rule also applies to any other

HDFql operation that works with file names (e.g. RENAME FILE).

group_name – mandatory string that specifies the name of the HDF5 group to create. Multiple groups are separated with

a comma (,). As a general rule, in case group_name is composed of spaces, special characters or reserved keywords (e.g.

SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by double-quotes, the group will

not be created and an error is raised. This rule also applies to any other HDFql operation that works with group names

(e.g. RENAME GROUP).

object_max_compact – optional integer that specifies the maximum number of links (i.e. objects) to store in the compact

format. In case the number of links (stored in group_name) exceeds object_max_compact, the storage of links switches to

the dense format. If not specified, its default value is 8 (defined by the HDF5 library).

object_min_dense – optional integer that specifies the minimum number of links (i.e. objects) to store in the dense

format. In case the number of links (stored in group_name) falls below object_min_dense, the storage of links switches to

the compact format. If not specified, its default value is 6 (defined by the HDF5 library).

attribute_max_compact – optional integer that specifies the maximum number of attributes to store in the compact

format. In case the number of attributes (stored in group_name) exceeds attribute_max_compact, the storage of

attributes switches to the dense format. If not specified, its default value is 8 (defined by the HDF5 library).

attribute_min_dense – optional integer that specifies the minimum number of attributes to store in the dense format. In

case the number of attributes (stored in group_name) falls below attribute_min_dense, the storage of attributes switches

to the compact format. If not specified, its default value is 6 (defined by the HDF5 library).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 187 of 341

Return

Nothing

Example(s)

create an HDF5 group named "my_group0" (the group will not be overwritten if it already

exists)

CREATE GROUP my_group0

create an HDF5 group named "my_subgroup0" in a root group named "my_group1" (neither group

will be overwritten if they already exist; group "my_group1" will be created on the fly if it

does not exist)

CREATE GROUP /my_group1/my_subgroup0

create two HDF5 groups named "my_group2" and "my_group3" (both groups will be overwritten if

they already exist)

CREATE TRUNCATE GROUP my_group2, my_group3

create an HDF5 group named "this is a long group name" (the group will not be overwritten if

it already exists)

CREATE GROUP "this is a long group name"

create an HDF5 group named "my_group4" that tracks the objects’ (i.e. groups and datasets)

creation order within the group and using compact storage

CREATE GROUP my_group4 ORDER TRACKED STORAGE COMPACT 10 DENSE 7

create an HDF5 group named "my_group5" that indexes the attributes’ creation order

CREATE GROUP my_group5 ATTRIBUTE ORDER INDEXED

use (i.e. open) an HDF5 file named "my_file.h5"

USE FILE my_file.h5

create an HDF5 group named "my_group6" in the HDF5 file currently in use (i.e. file

"my_file.h5")

CREATE GROUP my_group6

close HDF5 file currently in use (i.e. file "my_file.h5")

CLOSE FILE

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 188 of 341

create an HDF5 group named "my_group7" in file "my_file.h5"

CREATE GROUP my_file.h5 my_group7

6.4.4 CREATE DATASET

Syntax

CREATE [TRUNCATE] [EARLY | INCREMENTAL | LATE] [CONTIGUOUS | COMPACT | {CHUNKED [(chunk_dim [,

chunk_dim]*)]}] DATASET [file_name] dataset_name [, [file_name] dataset_name]* AS data_type [(UNLIMITED |

{dataset_dim [TO {dataset_max_dim | UNLIMITED}]} [, UNLIMITED | {dataset_dim [TO {dataset_max_dim |

UNLIMITED}]}]*)]

[SIZE compound_size]

[TAG tag_value]

[NO FILL | FILL {(fill_value [, fill_value]*) | UNDEFINED}]

[ATTRIBUTE [ORDER {TRACKED | INDEXED}] [STORAGE COMPACT attribute_max_compact DENSE

attribute_min_dense]]

[ENABLE [NBIT PRECISION nbit_precision_value OFFSET nbit_offset_value] [SCALEOFFSET scaleoffset_value]

[SHUFFLE] [ZLIB [LEVEL zlib_level]] [FLETCHER32]]

[VALUES {(initial_value [, initial_value]*) | input_redirecting_option}]

data_type := [NATIVE | LITTLE ENDIAN | BIG ENDIAN | ASCII | UTF8] {TINYINT | UNSIGNED TINYINT |

SMALLINT | UNSIGNED SMALLINT | INT | UNSIGNED INT | BIGINT | UNSIGNED BIGINT | FLOAT | DOUBLE |

CHAR | VARTINYINT | UNSIGNED VARTINYINT | VARSMALLINT | UNSIGNED VARSMALLINT | VARINT |

UNSIGNED VARINT | VARBIGINT | UNSIGNED VARBIGINT | VARFLOAT | VARDOUBLE | VARCHAR | OPAQUE |

{ENUMERATION (member_name [AS member_value] [, member_name [AS member_value]]*)} | {COMPOUND

(member_name AS data_type [(member_dim [, member_dim]*)] [SIZE compound_size] [OFFSET member_offset]

[TAG tag_value] [, member_name AS data_type [(member_dim [, member_dim]*)] [SIZE compound_size] [OFFSET

member_offset] [TAG tag_value]]*)]}}

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 189 of 341

Description

Create an HDF5 dataset named dataset_name. Multiple datasets can be created at once by separating these with a

comma (,). If dataset_name already exists, it will not be overwritten, no subsequent datasets are created, and an error is

raised. To overwrite an existing dataset, specify the keyword TRUNCATE (all data stored in the dataset will be permanently

lost). In case dataset_name has intermediate groups that do not exist, besides dataset_name being created, all these

intermediate groups will be created on the fly (e.g. when creating the dataset “my_group/my_subgroup/my_dataset”,

besides “my_dataset” being created as a dataset, “my_group” and “my_subgroup” will be created as groups in case they

do not exist). By default, dataset_name does not track attributes stored within it by their creation order. To track the

creation order of attributes stored in dataset_name, the keyword ATTRIBUTE ORDER TRACKED must be specified. In case

the keyword ATTRIBUTE ORDER INDEXED is specified, attributes stored within dataset_name are also tracked by their

creation order and using an index (to speed-up retrieval of attribute names).

By default, if no storage type (layout) is specified and (1) the dataset is not extendible and (2) no HDF5 pre-defined filter is

used, the dataset will be created as contiguous. To specify a certain storage type (layout), one of the following keywords

may be employed:

 CONTIGUOUS – the data is stored in the HDF5 file in one contiguous block.

 COMPACT – the data is stored in the object header of the dataset. This storage type (layout) should only be used for

data with a size limit of 65520 bytes (otherwise an error is raised).

 CHUNKED – the data is stored in equal-sized blocks or chunks of a pre-defined size. This storage type (layout) should

be used when the dataset is extendible and/or HDF5 pre-defined filters are specified (otherwise an error is raised).

By default, if no storage allocation is specified, the dataset will have an early, incremental or late storage allocation

depending on whether its storage type (layout) is compact, chunked or contiguous, respectively. To specify a certain

storage allocation, one of the following keywords may be employed:

 EARLY – the space necessary to store the entire dataset is immediately allocated (i.e. reserved) in the HDF5 file.

 INCREMENTAL – the space necessary to store the dataset is incrementally allocated (i.e. reserved) according to the

ongoing needs in the HDF5 file.

 LATE – the space necessary to store the entire dataset is only allocated (i.e. reserved) in the HDF5 file when data is

written into the dataset for the first time.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 190 of 341

To create an extendible dataset35, the keyword TO may be employed when specifying the dimensions that are extendible

(i.e. that can grow) along with the initial size of the dimension (dataset_dim) and the maximum size (dataset_max_dim)

that it may grow to. If a dimension is expected to grow infinitely, the keyword UNLIMITED should be specified. Of note,

when a dimension has an initial size of one and is expected to grow infinitely, the keyword TO along with dataset_dim and

dataset_max_dim may simply be replaced by the keyword UNLIMITED.

In case the keyword ENABLE is specified, one or more HDF5 pre-defined filters36 may be used to create a (linear) pipeline

by additionaly specifying one or more of the following keywords:

 NBIT – Compresses the data of an n-bit data type (including arrays and the n-bit fields of compound data types) by

packing n‐bit data on output (i.e. stripping off all unused bits) and unpacking on input (i.e. restoring the extra bits

required by the computation). This filter may only be used for integer and floating-point data types (otherwise an

error is raised).

 SCALEOFFSET – Compresses the data by performing a scale and/or offset operation on each element and truncates

the result to a minimum number of bits. This filter may only be used for integer and floating-point data types

(otherwise an error is raised).

 SHUFFLE – Rearranges the bytes in the chunk by de-interlacing a block of data, which may lead to a better

compression ratio. This filter is usually used in conjunction with the ZLIB filter.

 ZLIB – Compresses the data using the ZLIB library which is based on the Deflate lossless data compression algorithm.

 FLETCHER32 – Adds a checksum to each chunk to detect data corruption. In case a chunk gets corrupted, any attempt

to read it afterwards will raise an error.

Parameter(s)

chunk_dim – optional integer that specifies the chunk size of the dimension in question. Multiple chunk sizes are

separated with a comma (,). If chunk_dim is specified it must be equal to or greater than one (otherwise an error will be

35 An extendible HDF5 dataset is one whose one or more dimensions can grow. These dimensions start with an initial size and may be increased in a later

stage. To be able to create an extendible dataset, the storage type (layout) of the dataset must be chunked (otherwise an error is raised). In case the

storage type (layout) is not specified, HDFql will automatically set it to chunked and calculate an appropriate value for the chunk size.

36 To be able use HDF5 pre-defined filters the storage type (layout) of the HDF5 dataset must be chunked (otherwise an error is raised). In case the

storage type (layout) is not specified, HDFql will automatically set it to chunked and calculate an appropriate value for the chunk size.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 191 of 341

raised). Otherwise, if it is not specified and in case the keyword CHUNKED is specified, HDFql will automatically calculate

an appropriate value37 and assign it to chunk_dim.

file_name – optional string that specifies the name of the HDF5 file in which the dataset is created. If file_name is

specified, the file is opened on the fly, the dataset is created within it and, afterwards, the file is closed. Otherwise, if it is

not specified, the dataset is created in the file currently in use. As a general rule, in case file_name is composed of spaces,

special characters or reserved keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not

surrounded by double-quotes, the dataset will not be created and an error is raised. This rule also applies to any other

HDFql operation that works with file names (e.g. RENAME FILE).

dataset_name – mandatory string that specifies the name of the HDF5 dataset to create. Multiple datasets are separated

with a comma (,). As a general rule, in case dataset_name is composed of spaces, special characters or reserved keywords

(e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by double-quotes, the

dataset will not be created and an error is raised. This rule also applies to any other HDFql operation that works with

dataset names (e.g. RENAME DATASET).

data_type – mandatory keyword that specifies the data type of (the member that composes) the HDF5 dataset to create.

member_name – mandatory string that specifies the name of the member that composes the HDF5 dataset of data type

HDFQL_ENUMERATION or HDFQL_COMPOUND. Multiple members are separated with a comma (,). As a general rule, in

case member_name is composed of spaces, special characters or reserved keywords (e.g. SELECT), it should be surrounded

by double-quotes (“). Otherwise, if it is not surrounded by double-quotes, the dataset will not be created and an error is

raised. This rule also applies to any other HDFql operation that works with member names (e.g. SHOW MEMBER).

member_value – optional integer that specifies the value to assign to the member that composes the HDF5 dataset of

data type HDFQL_ENUMERATION. If not specified, its value is the value assigned to the previous member incremented by

one. Of note, the default value assigned to the first member (of the enumeration) is 0 (unless explicitly specified).

member_dim – optional integer that specifies the size of the dimension of the member that composes the HDF5 dataset of

data type HDFQL_COMPOUND. Multiple dimensions are separated with a comma (,).

dataset_dim – optional integer that specifies the size of the dimension. Multiple dimensions are separated with a comma

(,). If not specified, the size of the dimension is zero.

37 This calculated value may not be optimal as it is based on a best guess approach with the main purpose of alleviating the programmer from specifying

it. In case performance is critical, the chunk size of the dimension in question should be explicitly specified taking into account how the data (stored in

the HDF5 dataset) is accessed as it greatly influences performance (HDFql does not have enough information on how this access is ultimately done).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 192 of 341

dataset_max_dim – optional integer that specifies the maximum size of the dimension. Multiple dimensions are separated

with a comma (,). To specify an unlimited size, the keyword UNLIMITED should be specified for this purpose. If

dataset_max_dim is specified it must be equal to or greater than dataset_dim and the keyword CHUNKED should be

specified (otherwise an error will be raised).

compound_size – optional integer that specifies the size (in bytes) of the HDF5 (nested) compound dataset. If not

specified, HDFql automatically calculates the size by either 1) summing the size (in bytes) of all members of the compound

if member_offset is not specified or 2) taking the highest sum of the member_offset with its size (in bytes) if

member_offset is specified. Of note, the specification of a size is only available for a dataset of data type

HDFQL_COMPOUND (any other data type will raise an error).

member_offset – optional integer that specifies the (memory) member offsets that compose the HDF5 dataset. If

specified, the dataset is assumed to store a C padded struct data type (i.e. its members may not be contiguous in memory

due to padding between these) and is used as such by HDFql. If not specified, the dataset is assumed to store a C primitive

or packed struct data type (i.e. its members are contiguous in memory and have no padding between these) and is used as

such by HDFql. Of note, the specification of an offset is only available for a dataset of data type HDFQL_COMPOUND (any

other data type will raise an error).

tag_value – optional string that specifies the value of a tag attached to the HDF5 dataset or to its member(s). Of note, the

specification of a tag is only available for a dataset or a member of data type HDFQL_OPAQUE (any other data type will

raise an error).

fill_value – optional integer, float or string that specifies the (default) value to return in case of reading the HDF5 dataset

when no data has ever been written into it. Multiple fill values are separated with a comma (,). If not specified, the dataset

will be zeroed or emptied depending on whether the dataset is a number or a string, respectively.

attribute_max_compact – optional integer that specifies the maximum number of attributes to store in the compact

format. In case the number of attributes (stored in dataset_name) exceeds attribute_max_compact, the storage of

attributes switches to the dense format. If not specified, its default value is 8 (defined by the HDF5 library).

attribute_min_dense – optional integer that specifies the minimum number of attributes to store in the dense format. In

case the number of attributes (stored in dataset_name) falls below attribute_min_dense, the storage of attributes

switches to the compact format. If not specified, its default value is 6 (defined by the HDF5 library).

nbit_precision_value – optional integer that specifies the precision of the N-bit filter.

nbit_offset_value – optional integer that specifies the N-bit filter offset.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 193 of 341

scaleoffset_value – optional integer that specifies the scale-offset filter offset. The scaleoffset_value must be equal to or

greater than zero (otherwise an error is raised). In case the HDF5 dataset is of integer data type, scaleoffset_value

specifies the number of bits to retain (of note, if scaleoffset_value is zero, the HDF5 library automatically calculates the

number of bits required for lossless compression). In case the dataset is of floating-point data type, scaleoffset_value

specifies the number of digits after the decimal point to retain.

zlib_level – optional integer that specifies the compression level of the ZLIB filter. The zlib_level must be between 0 (no

compression) and 9 (best compression) (otherwise an error is raised). If not specified and in case the keyword ZLIB is

specified, its default value is 9.

initial_value – optional integer, float or string to write into the created HDF5 dataset. Multiple values are separated with a

comma (,).

input_redirecting_option – optional option that specifies a file or memory to read data from in order to write it into the

created HDF5 dataset (please refer to the subsection FROM for additional information).

Return

Nothing

Example(s)

create an HDF5 dataset named "my_dataset0" of data type int (the dataset will not be

overwritten if it already exists)

CREATE DATASET my_dataset0 AS INT

create an HDF5 dataset named "my_dataset1" of data type char in a root group named "my_group"

(the dataset will not be overwritten if it already exists)

CREATE DATASET /my_group/my_dataset1 AS CHAR

create two HDF5 datasets named "my_dataset2" and "my_dataset3" of data type short (both

datasets will be overwritten if they already exist)

CREATE TRUNCATE DATASET my_dataset2, my_dataset3 AS SMALLINT

create an HDF5 dataset named "this is a long dataset name" of data type float (the dataset

will not be overwritten if it already exists)

CREATE DATASET "this is a long dataset name" AS FLOAT

create an HDF5 dataset named "my_dataset4" of data type unsigned long long using the big

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 194 of 341

endian representation

CREATE DATASET my_dataset4 AS BIG ENDIAN UNSIGNED BIGINT

create an HDF5 dataset named "my_dataset5" of data type int using the little endian

representation with an initial value of 80178

CREATE DATASET my_dataset5 AS LITTLE ENDIAN INT VALUES(80178)

create an HDF5 dataset named "my_dataset6" of data type char using an ASCII representation

CREATE DATASET my_dataset6 AS ASCII CHAR

create an HDF5 dataset named "my_dataset7" of data type float of one dimension (size 1024)

with a fill value of 85.2

CREATE DATASET my_dataset7 AS FLOAT(1024) FILL(85.2)

create a compact HDF5 dataset named "my_dataset8" of data type double of three dimensions

(size 2x5x10)

CREATE COMPACT DATASET my_dataset8 AS DOUBLE(2, 5, 10)

create a chunked (size 20x100) HDF5 dataset named "my_dataset9" of data type unsigned char of

two dimensions (size 500x1000)

CREATE CHUNKED(20, 100) DATASET my_dataset9 AS UNSIGNED TINYINT(500, 1000)

create an HDF5 dataset named "my_dataset10" of data type int of two dimensions (size 20x400)

using the N-bit data compression filter

CREATE DATASET my_dataset10 AS INT(20, 400) ENABLE NBIT PRECISION 16 OFFSET 4

create an HDF5 dataset named "my_dataset11" of data type float of one dimension (size 500000)

using both the ZLIB data compression and Fletcher32 checksum error detection filters

CREATE DATASET my_dataset11 AS FLOAT(500000) ENABLE ZLIB LEVEL 5 FLETCHER32

create an HDF5 dataset named "my_dataset12" of data type variable-length float

CREATE DATASET my_dataset12 AS VARFLOAT

create an HDF5 dataset named "my_dataset13" of data type variable-length short of one

dimension (size 5) with initial values from a text file named "my_file.txt"

CREATE DATASET my_dataset13 AS VARSMALLINT(5) VALUES FROM FILE my_file.txt

create an HDF5 dataset named "my_dataset14" of data type variable-length char with an initial

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 195 of 341

value of "Hierarchical Data Format"

CREATE DATASET my_dataset14 AS VARCHAR VALUES("Hierarchical Data Format")

create an HDF5 dataset named "my_dataset15" of data type opaque

CREATE DATASET my_dataset15 AS OPAQUE

create an HDF5 dataset named "my_dataset16" of data type opaque of one dimension (size 6)

with initial (ASCII) values of 72, 68, 70, 0, 113 and 108 (i.e. "HDF\0ql")

CREATE DATASET my_dataset16 AS OPAQUE(6) VALUES(72, 68, 70, 0, 113, 108)

create an HDF5 dataset named "my_dataset17" of data type opaque of two dimensions (size

10x1024) with a tag value "Raw data"

CREATE DATASET my_dataset17 AS OPAQUE(10, 1024) TAG "Raw data"

create a chunked (size 2) HDF5 dataset named "my_dataset18" of data type float of one

dimension (size 5 and extendible up to 10)

CREATE CHUNKED(2) DATASET my_dataset18 AS FLOAT(5 TO 10)

create a chunked (with an automatically calculated size) HDF5 dataset named "my_dataset19" of

data type variable-length int of one dimension (size 1 and extendible to an unlimited size)

CREATE CHUNKED DATASET my_dataset19 AS VARINT(UNLIMITED)

create a chunked (with an automatically calculated size) HDF5 dataset named "my_dataset20" of

data type double of three dimensions (first dimension with size 3 and extendible up to 5;

second dimension with size 7; third dimension with size 20 and extendible to an unlimited size)

CREATE CHUNKED DATASET my_dataset20 AS DOUBLE(3 TO 5, 7, 20 TO UNLIMITED)

create an HDF5 dataset named "my_dataset21" of data type enumeration composed of three

members named "Lisbon" (with value 0), "New York" (with value 1) and "Tokyo" (with value 2)

CREATE DATASET my_dataset21 AS ENUMERATION(Lisbon, "New York", Tokyo)

create an HDF5 dataset named "my_dataset22" of data type enumeration composed of three

members named "red" (with value 0), "green" (with value 15) and "blue" (with value 16)

CREATE DATASET my_dataset22 AS ENUMERATION(red, green AS 15, blue)

create an HDF5 dataset named "my_dataset23" of data type enumeration of one dimension (size

4) composed of two members named "car" (with value 100) and "plane" (with value 200), with a

fill value of "plane" (i.e. 200)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 196 of 341

CREATE DATASET my_dataset23 AS ENUMERATION(car AS 100, plane AS 200)(4) FILL(plane)

create an HDF5 dataset named "my_dataset24" of data type compound composed of three members

named "name" (of data type variable-length char), "age" (of data type unsigned int) and

"weight" (of data type float)

CREATE DATASET my_dataset24 AS COMPOUND(name AS VARCHAR, age AS UNSIGNED INT, weight AS FLOAT)

create an HDF5 dataset named "my_dataset25" of data type compound composed of four members

named "id" (of data type long long), "description" (of data type variable-length char),

"position" (of data type compound composed of two members named "x" (of data type short) and

"y" (of data type short)) and "temperature" (of data type enumeration composed of three members

named "cold" (with value 0), "warm" (with value 1) and "hot" (with value 10))

CREATE DATASET my_dataset25 AS COMPOUND(id AS BIGINT, description AS VARCHAR, position AS

COMPOUND(x AS SMALLINT, y AS SMALLINT), temperature AS ENUMERATION(cold, warm, hot AS 10))

create an HDF5 dataset named "my_dataset26" of data type compound of one dimension (size 5)

composed of three members named "state" (of data type enumeration composed of two members named

"off" (with value 0) and "on" (with value 1)), "readings" (of data type int of two dimensions

(size 3x4)) and "factors" (of data type compound composed of two members named "first" (of data

type float) and "second" (of data type double))

CREATE DATASET my_dataset26 AS COMPOUND(state AS ENUMERATION(off, on), readings AS INT(3, 4),

factors AS COMPOUND(first AS FLOAT, second AS DOUBLE))(5)

create an HDF5 dataset named "my_dataset27" of data type compound of one dimension (size 1

and extendible to an unlimited size) composed of two members named "m0" (of data type double)

and "m1" (of data type float)

CREATE DATASET my_dataset27 AS COMPOUND(m0 AS DOUBLE, m1 AS FLOAT)(UNLIMITED)

use (i.e. open) an HDF5 file named "my_file.h5"

USE FILE my_file.h5

create an HDF5 dataset named "my_dataset28" of data type double in the HDF5 file currently in

use (i.e. file "my_file.h5")

CREATE DATASET my_dataset28 AS DOUBLE

close HDF5 file currently in use (i.e. file "my_file.h5")

CLOSE FILE

create an HDF5 dataset named "my_dataset29" of data type int in file "my_file.h5"

CREATE DATASET my_file.h5 my_dataset29 AS INT

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 197 of 341

6.4.5 CREATE ATTRIBUTE

Syntax

CREATE [TRUNCATE] ATTRIBUTE [file_name] attribute_name [, [file_name] attribute_name]* AS data_type

[(attribute_dim [, attribute_dim]*)]

[SIZE compound_size]

[TAG tag_value]

[VALUES {(initial_value [, initial_value]*) | input_redirecting_option}]

data_type := [NATIVE | LITTLE ENDIAN | BIG ENDIAN | ASCII | UTF8] {TINYINT | UNSIGNED TINYINT |

SMALLINT | UNSIGNED SMALLINT | INT | UNSIGNED INT | BIGINT | UNSIGNED BIGINT | FLOAT | DOUBLE |

CHAR | VARTINYINT | UNSIGNED VARTINYINT | VARSMALLINT | UNSIGNED VARSMALLINT | VARINT |

UNSIGNED VARINT | VARBIGINT | UNSIGNED VARBIGINT | VARFLOAT | VARDOUBLE | VARCHAR | OPAQUE |

{ENUMERATION (member_name [AS member_value] [, member_name [AS member_value]]*)} | {COMPOUND

(member_name AS data_type [(member_dim [, member_dim]*)] [SIZE compound_size] [OFFSET member_offset]

[TAG tag_value] [, member_name AS data_type [(member_dim [, member_dim]*)] [SIZE compound_size] [OFFSET

member_offset] [TAG tag_value]]*)]}}

Description

Create an HDF5 attribute named attribute_name. Multiple attributes can be created at once by separating these with a

comma (,). If attribute_name already exists, it will not be overwritten, no subsequent attributes are created, and an error

is raised. To overwrite an existing attribute, specify the keyword TRUNCATE (all data stored in the attribute will be

permanently lost).

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file in which the attribute is created. If file_name is

specified, the file is opened on the fly, the attribute is created within it and, afterwards, the file is closed. Otherwise, if it is

not specified, the attribute is created in the file currently in use. As a general rule, in case file_name is composed of

spaces, special characters or reserved keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if

it is not surrounded by double-quotes, the attribute will not be created and an error is raised. This rule also applies to any

other HDFql operation that works with file names (e.g. RENAME FILE).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 198 of 341

attribute_name – mandatory string that specifies the name of the HDF5 attribute to create. Multiple attributes are

separated with a comma (,). As a general rule, in case attribute_name is composed of spaces, special characters or

reserved keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by

double-quotes, the attribute will not be created and an error is raised. This rule also applies to any other HDFql operation

that works with attribute names (e.g. RENAME ATTRIBUTE).

data_type – mandatory keyword that specifies the data type of (the member that composes) the HDF5 attribute to create.

member_name – mandatory string that specifies the name of the member that composes the HDF5 attribute of data type

HDFQL_ENUMERATION or HDFQL_COMPOUND. Multiple members are separated with a comma (,). As a general rule, in

case member_name is composed of spaces, special characters or reserved keywords (e.g. SELECT), it should be surrounded

by double-quotes (“). Otherwise, if it is not surrounded by double-quotes, the attribute will not be created and an error is

raised. This rule also applies to any other HDFql operation that works with member names (e.g. SHOW MEMBER).

member_value – optional integer that specifies the value to assign to the member that composes the HDF5 attribute of

data type HDFQL_ENUMERATION. If not specified, its value is the value assigned to the previous member incremented by

one. Of note, the default value assigned to the first member (of the enumeration) is 0 (unless explicitly specified).

member_dim – optional integer that specifies the size of the dimension of the member that composes the HDF5 attribute

of data type HDFQL_COMPOUND. Multiple dimensions are separated with a comma (,).

attribute_dim – optional integer that specifies the size of the dimension. Multiple dimensions are separated with a comma

(,).

compound_size – optional integer that specifies the size (in bytes) of the HDF5 (nested) compound attribute. If not

specified, HDFql automatically calculates the size by summing the size of all members of the compound. Of note, the

specification of a size is only available for an attribute of data type HDFQL_COMPOUND (any other data type will raise an

error).

member_offset – optional integer that specifies the (memory) member offsets that compose the HDF5 attribute. If

specified, the attribute is assumed to store a C padded struct data type (i.e. its members may not be contiguous in

memory due to padding between these) and is used as such by HDFql. If not specified, the attribute is assumed to store a

C primitive or packed struct data type (i.e. its members are contiguous in memory and have no padding between these)

and is used as such by HDFql. Of note, the specification of an offset is only available for an attribute of data type

HDFQL_COMPOUND (any other data type will raise an error).

tag_value – optional string that specifies the value of a tag attached to the HDF5 attribute or to its member(s). Of note,

the specification of a tag is only available for an attribute or a member of data type HDFQL_OPAQUE (any other data type

will raise an error).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 199 of 341

initial_value – optional integer, float or string to write into the created HDF5 attribute. Multiple values are separated with

a comma (,). In case initial_value is not specified, the element in question will be zeroed or emptied depending on

whether the attribute is a number or a string, respectively.

input_redirecting_option – optional option that specifies a file or memory to read data from in order to write it into the

created HDF5 attribute (please refer to the subsection FROM for additional information).

Return

Nothing

Example(s)

create an HDF5 attribute named "my_attribute0" of data type int (the attribute will not be

overwritten if it already exists)

CREATE ATTRIBUTE my_attribute0 AS INT

create an HDF5 attribute named "my_attribute1" of data type char in a root object (either a

group or dataset) named "my_object" (the attribute will not be overwritten if it already

exists)

CREATE ATTRIBUTE /my_object/my_attribute1 AS CHAR

create two HDF5 attributes named "my_attribute2" and "my_attribute3" of data type short (both

attributes will be overwritten if they already exist)

CREATE TRUNCATE ATTRIBUTE my_attribute2, my_attribute3 AS SMALLINT

create an HDF5 attribute named "this is a long attribute name" of data type float (the

attribute will not be overwritten if it already exists)

CREATE ATTRIBUTE "this is a long attribute name" AS FLOAT

create an HDF5 attribute named "my_attribute4" of data type unsigned long long using the big

endian representation

CREATE ATTRIBUTE my_attribute4 AS BIG ENDIAN UNSIGNED BIGINT

create an HDF5 attribute named "my_attribute5" of data type int using the little endian

representation with an initial value of 80178

CREATE ATTRIBUTE my_attribute5 AS LITTLE ENDIAN INT VALUES(80178)

create an HDF5 attribute named "my_attribute6" of data type char using an UTF8 representation

CREATE ATTRIBUTE my_attribute6 AS UTF8 CHAR

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 200 of 341

create an HDF5 attribute named "my_attribute7" of data type float of one dimension (size 512)

CREATE ATTRIBUTE my_attribute7 AS FLOAT(512)

create an HDF5 attribute named "my_attribute8" of data type unsigned char of two dimensions

(size 500x1000)

CREATE ATTRIBUTE my_attribute8 AS UNSIGNED TINYINT(500, 1000)

create an HDF5 attribute named "my_attribute9" of data type variable-length float

CREATE ATTRIBUTE my_attribute9 AS VARFLOAT

create an HDF5 attribute named "my_attribute10" of data type variable-length short of one

dimension (size 5) with initial values from a text file named "my_file.txt"

CREATE ATTRIBUTE my_attribute10 AS VARSMALLINT(5) VALUES FROM FILE my_file.txt

create an HDF5 attribute named "my_attribute11" of data type variable-length char with an

initial value of "Hierarchical Data Format"

CREATE ATTRIBUTE my_attribute11 AS VARCHAR VALUES("Hierarchical Data Format")

create an HDF5 attribute named "my_attribute12" of data type opaque

CREATE ATTRIBUTE my_attribute12 AS OPAQUE

create an HDF5 attribute named "my_attribute13" of data type opaque of one dimension (size 6)

with initial (ASCII) values 72, 68, 70, 0, 113 and 108 (i.e. "HDF\0ql")

CREATE ATTRIBUTE my_attribute13 AS OPAQUE(6) VALUES(72, 68, 70, 0, 113, 108)

create an HDF5 attribute named "my_attribute14" of data type opaque of two dimensions (size

10x1024) with a tag value "Raw data"

CREATE ATTRIBUTE my_attribute14 AS OPAQUE(10, 1024) TAG "Raw data"

create an HDF5 attribute named "my_attribute15" of data type enumeration composed of three

members named "Lisbon" (with value 0), "New York" (with value 1) and "Tokyo" (with value 2)

CREATE ATTRIBUTE my_attribute15 AS ENUMERATION(Lisbon, "New York", Tokyo)

create an HDF5 attribute named "my_attribute16" of data type enumeration composed of three

members named "red" (with value 0), "green" (with value 15) and "blue" (with value 16)

CREATE ATTRIBUTE my_attribute16 AS ENUMERATION(red, green AS 15, blue)

create an HDF5 attribute named "my_attribute17" of data type enumeration of two dimensions

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 201 of 341

(size 4x5) composed of two members named "car" (with value 10) and "plane" (with value 20)

CREATE ATTRIBUTE my_attribute17 AS ENUMERATION(car AS 10, plane AS 20)(4, 5)

create an HDF5 attribute named "my_attribute18" of data type compound composed of three

members named "name" (of data type variable-length char), "age" (of data type int) and "weight"

(of data type float)

CREATE ATTRIBUTE my_attribute18 AS COMPOUND(name AS VARCHAR, age AS INT, weight AS FLOAT)

create an HDF5 attribute named "my_ attribute19" of data type compound composed of four

members named "id" (of data type long long), "description" (of data type variable-length char),

"position" (of data type compound composed of two members named "x" (of data type short) and

"y" (of data type short)) and "temperature" (of data type enumeration composed of three members

named "cold" (with value 0), "warm" (with value 1) and "hot" (with value 10))

CREATE ATTRIBUTE my_attribute19 AS COMPOUND(id AS BIGINT, description AS VARCHAR, position AS

COMPOUND(x AS SMALLINT, y AS SMALLINT), temperature AS ENUMERATION(cold, warm, hot AS 10))

create an HDF5 attribute named "my_attribute20" of data type compound of one dimension (size

5) composed of three members named "state" (of data type enumeration composed of two members

named "off" (with value 0) and "on" (with value 1)), "readings" (of data type int of two

dimensions (size 3x4)) and "factors" (of data type compound composed of two members named

"first" (of data type float) and "second" (of data type double))

CREATE ATTRIBUTE my_attribute20 AS COMPOUND(state AS ENUMERATION(off, on), readings AS INT(3,

4), factors AS COMPOUND(first AS FLOAT, second AS DOUBLE))(5)

use (i.e. open) an HDF5 file named "my_file.h5"

USE FILE my_file.h5

create an HDF5 attribute named "my_attribute21" of data type double in the HDF5 file

currently in use (i.e. file "my_file.h5")

CREATE ATTRIBUTE my_attribute21 AS DOUBLE

close HDF5 file currently in use (i.e. file "my_file.h5")

CLOSE FILE

create an HDF5 attribute named "my_attribute21" of data type int in file "my_file.h5"

CREATE ATTRIBUTE my_file.h5 my_attribute21 AS INT

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 202 of 341

6.4.6 CREATE [SOFT | HARD] LINK

Syntax

CREATE [TRUNCATE] [SOFT | HARD] LINK [file_name] link_name [, [file_name] link_name]* TO object_name [,

object_name]*

Description

Create an HDF5 soft or hard link named link_name to a group or dataset named object_name. Multiple links can be

created at once by separating these with a comma (,). If link_name already exists, it will not be overwritten, no

subsequent links are created, and an error is raised. To overwrite an existing link, specify the keyword TRUNCATE. If

neither the keyword SOFT nor HARD is specified, a soft link is created by default. To create a hard link, the keyword HARD

must be specified.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file in which the soft or hard link is created. If file_name is

specified, the file is opened on the fly, the soft or hard link is created within it and, afterwards, the file is closed.

Otherwise, if it is not specified, the soft or hard link is created in the file currently in use. As a general rule, in case

file_name is composed of spaces, special characters or reserved keywords (e.g. SELECT), it should be surrounded by

double-quotes (“). Otherwise, if it is not surrounded by double-quotes, the link will not be created and an error is raised.

This rule also applies to any other HDFql operation that works with file names (e.g. RENAME FILE).

link_name – mandatory string that specifies the name of the HDF5 soft or hard link to create. Multiple links are separated

with a comma (,). As a general rule, in case link_name is composed of spaces, special characters or reserved keywords (e.g.

SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by double-quotes, the link will

not be created and an error is raised. This rule also applies to any other HDFql operation that works with link names (e.g.

RENAME LINK).

object_name – mandatory string that specifies the name of the HDF5 group or dataset that link_name points to. Multiple

objects are separated with a comma (,). As a general rule, in case object_name is composed of spaces, special characters

or reserved keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by

double-quotes, the link will not be created and an error is raised. This rule also applies to any other HDFql operation that

works with link names (e.g. RENAME LINK).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 203 of 341

Return

Nothing

Example(s)

create an HDF5 group named "my_group0"

CREATE GROUP my_group0

create an HDF5 dataset named "my_dataset0" of data type variable-length unsigned int

CREATE DATASET my_dataset0 AS UNSIGNED VARINT

create an HDF5 soft link named "my_link0" to group "my_group0" (the soft link will not be

overwritten if it already exists)

CREATE LINK my_link0 TO my_group0

create an HDF5 soft link named "my_link1" to dataset "my_dataset0" (the soft link will not be

overwritten if it already exists)

CREATE SOFT LINK my_link1 TO my_dataset0

create two HDF5 soft links named "my_link2" and "my_link3" to dataset "my_dataset0" and group

"my_group0" respectively (both soft links will be overwritten if they already exist)

CREATE TRUNCATE SOFT LINK my_link2, my_link3 TO my_dataset0, my_group0

create an HDF5 soft link named "this is a long link name" to dataset "my_dataset0" (the soft

link will not be overwritten if it already exists)

CREATE LINK "this is a long link name" TO my_dataset0

create an HDF5 group named "my_group1"

CREATE GROUP my_group1

create an HDF5 dataset named "my_dataset1" of data type variable-length unsigned int

CREATE DATASET my_dataset1 AS UNSIGNED VARINT

create an HDF5 hard link named "my_link4" to group "my_group1" (the hard link will not be

overwritten if it already exists)

CREATE HARD LINK my_link4 TO my_group1

create an HDF5 hard link named "my_link5" to dataset "my_dataset1" (the hard link will not be

overwritten if it already exists)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 204 of 341

CREATE HARD LINK my_link5 TO my_dataset1

create two HDF5 hard links named "my_link6" and "my_link7" to dataset "my_dataset1" and group

"my_group1" respectively (both hard links will be overwritten if they already exist)

CREATE TRUNCATE HARD LINK my_link6, my_link7 TO my_dataset1, my_group1

use (i.e. open) an HDF5 file named "my_file.h5"

USE FILE my_file.h5

create an HDF5 soft link named "my_link8" to object "my_object0" in the HDF5 file currently

in use (i.e. file "my_file.h5")

CREATE LINK my_link8 TO my_object0

close HDF5 file currently in use (i.e. file "my_file.h5")

CLOSE FILE

create an HDF5 soft link named "my_link9" to object "my_object1" in file "my_file.h5"

CREATE LINK my_file.h5 my_link9 TO my_object1

6.4.7 CREATE EXTERNAL LINK

Syntax

CREATE [TRUNCATE] EXTERNAL LINK [file_name] link_name [, [file_name] link_name]* TO target_file_name

object_name [, target_file_name object_name]*

Description

Create an HDF5 external link named link_name to a group or dataset named object_name belonging to another HDF5 file

named target_file_name. Multiple external links can be created at once by separating these with a comma (,). If link_name

already exists, it will not be overwritten, no subsequent external links are created, and an error is raised. To overwrite an

existing external link, specify the keyword TRUNCATE.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file in which the external link is created. If file_name is

specified, the file is opened on the fly, the external link is created within it and, afterwards, the file is closed. Otherwise, if

it is not specified, the external link is created in the file currently in use. As a general rule, in case file_name is composed of

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 205 of 341

spaces, special characters or reserved keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if

it is not surrounded by double-quotes, the link will not be created and an error is raised. This rule also applies to any other

HDFql operation that works with file names (e.g. RENAME FILE).

link_name – mandatory string that specifies the name of the HDF5 external link to create. Multiple external links are

separated with a comma (,). As a general rule, in case link_name is composed of spaces, special characters or reserved

keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by double-quotes,

the link will not be created and an error is raised. This rule also applies to any other HDFql operation that works with

external link names (e.g. RENAME EXTERNAL LINK).

target_file_name – mandatory string that specifies the name of the HDF5 file where object_name is stored and link_name

points to. Multiple files are separated with a comma (,). As a general rule, in case target_file_name is composed of spaces,

special characters or reserved keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not

surrounded by double-quotes, the link will not be created and an error is raised. This rule also applies to any other HDFql

operation that works with file names (e.g. RENAME FILE).

object_name – mandatory string that specifies the name of the HDF5 group or dataset (stored in file_name) that

link_name points to. As a general rule, in case object_name is composed of spaces, special characters or reserved

keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by double-quotes,

the link will not be created and an error is raised. This rule also applies to any other HDFql operation that works with

external link names (e.g. RENAME EXTERNAL LINK).

Return

Nothing

Example(s)

use (i.e. open) an HDF5 file named "my_file0.h5"

USE FILE my_file0.h5

create an HDF5 group named "my_group0"

CREATE GROUP my_group0

create an HDF5 dataset named "my_dataset0" of data type variable-length unsigned int

CREATE DATASET my_dataset0 AS UNSIGNED VARINT

create an HDF5 external link named "my_link0" to object "my_group0" in file "my_file0.h5"

(the external link will not be overwritten if it already exists)

CREATE EXTERNAL LINK my_link0 TO my_file0.h5 my_group0

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 206 of 341

create an HDF5 external link named "my_link1" to object "my_object0" in file "my_file1.h5"

(the external link will be overwritten if it already exists)

CREATE TRUNCATE EXTERNAL LINK my_link1 TO my_file1.h5 my_object0

create two HDF5 external links named "my_link2" and "my_link3" to object "my_object1" in file

"my_file1.h5" and object "my_object2" in file "my_file2.h5" respectively (neither external

links will be overwritten if they already exist)

CREATE EXTERNAL LINK my_link2, my_link3 TO my_file1.h5 my_object1, my_file2.h5 my_object2

create an HDF5 external link named "this is a long external link name" to object "my_object3"

in file "my_file3.h5" (the external link will not be overwritten if it already exists)

CREATE EXTERNAL LINK "this is a long external link name" TO my_file3.h5 my_object3

use (i.e. open) an HDF5 file named "my_file4.h5"

USE FILE my_file4.h5

create an HDF5 external link named "my_link4" in the HDF5 file currently in use (i.e. file

"my_file4.h5") to object "my_object4" in file "my_file5.h5"

CREATE EXTERNAL LINK my_link4 TO my_file5.h5 my_object4

close HDF5 file currently in use (i.e. file "my_file4.h5")

CLOSE FILE

create an HDF5 external link named "my_link5" in file "my_file4.h5" to object "my_object5" in

file "my_file6.h5"

CREATE EXTERNAL LINK my_file4.h5 my_link5 TO my_file6.h5 my_object5

6.4.8 ALTER DIMENSION

Syntax

ALTER DIMENSION [file_name] dataset_name [, [file_name] dataset_name]* TO dataset_dim [, dataset_dim]*

Description

Alter (i.e. change) the dimensions of an existing HDF5 dataset named dataset_name. Multiple datasets can have their

dimensions altered at once by separating these with a comma (,). If dataset_name was not found or its dimensions could

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 207 of 341

not be altered (due to its storage type not being HDFQL_CHUNKED or for unknown/unexpected reasons), no subsequent

datasets are altered, and an error is raised.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file which stores the dataset to alter (i.e. change)

dimensions. If file_name is specified, the file is opened on the fly, the dimensions of the dataset are altered and,

afterwards, the file is closed. Otherwise, if it is not specified, the dataset to alter the dimensions is stored in the file

currently in use.

dataset_name – mandatory string that specifies the name of the HDF5 dataset whose dimensions are to be altered (i.e.

changed). Multiple datasets are separated with a comma (,).

dataset_dim – mandatory integer that specifies the new size for the dimension in question. Multiple dimensions are

separated with a comma (,). Depending on the prefix of the value specified in dataset_dim, one of the following behaviors

applies:

 If its prefix is “+”, the dimension will have its size increased by this value.

 If its prefix is “-”, the dimension will have its size decreased by this value.

 In case its prefix is neither “+” nor “-”, the dimension will have exactly the size of this value.

To preserve the value of a certain dimension (i.e. for its size not to be altered), it should be skipped with a comma (,).

Return

Nothing

Example(s)

create an HDF5 dataset named "my_dataset" of data type double of three dimensions (first

dimension with size 2 and extendible up to 10; second dimension with size 7; third dimension

with size 20 and extendible to an unlimited size)

CREATE CHUNKED DATASET my_dataset AS DOUBLE(2 TO 10, 7, 20 TO UNLIMITED)

show (i.e. get) current dimensions of dataset "my_dataset" (should be 2, 7, 20)

SHOW DIMENSION my_dataset

alter (i.e. change) dimensions of dataset "my_dataset" to set its first dimension size to 6,

and increase the third dimension size by 10 (the second dimension size remains intact)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 208 of 341

ALTER DIMENSION my_dataset TO 6, , +10

show (i.e. get) current dimensions of dataset "my_dataset" (should be 6, 7, 30)

SHOW DIMENSION my_dataset

alter (i.e. change) dimensions of dataset "my_dataset" to increase its first dimension size

by 2, to set the second dimension size to 3, and to decrease the third dimension size by 5

ALTER DIMENSION my_dataset TO +2, 3, -5

show (i.e. get) current dimensions of dataset "my_dataset" (should be 8, 3, 25)

SHOW DIMENSION my_dataset

6.4.9 RENAME DIRECTORY

Syntax

RENAME DIRECTORY directory_name [, directory_name]* AS new_directory_name [, new_directory_name]*

Description

Rename (or move) an existing directory named directory_name as new_directory_name. Multiple directories can be

renamed (or moved) at once by separating these with a comma (,). If new_directory_name already exists, it will not be

overwritten, no subsequent directories are renamed (or moved), and an error is raised.

Parameter(s)

directory_name – mandatory string that specifies the name of the directory to rename (or move). Multiple directories are

separated with a comma (,).

new_directory_name – mandatory string that specifies the new name and/or location (in the file system) to use for

renaming and/or moving directory_name. Multiple directories are separated with a comma (,).

Return

Nothing

Example(s)

rename a directory named "my_directory0" as "my_directory1" (the directory "my_directory1"

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 209 of 341

will not be overwritten if it already exists)

RENAME DIRECTORY my_directory0 AS my_directory1

rename two directories named "my_directory2" and "my_directory3" as "my_directory4" and

"my_directory5" respectively (neither directory will be overwritten if it already exists)

RENAME DIRECTORY my_directory2, my_directory3 AS my_directory4, my_directory5

move a directory named "my_directory6" into a root directory named "data" and rename it as

"my_directory7" (the directory "my_directory7" will not be overwritten if it already exists)

RENAME DIRECTORY my_directory6 AS /data/my_directory7

move a directory named "my_directory8" into a relative directory named "backup" (the

directory "my_directory8" will not be overwritten if it already exists)

RENAME DIRECTORY my_directory8 AS backup/

6.4.10 RENAME FILE

Syntax

RENAME [TRUNCATE] FILE file_name [, file_name]* AS new_file_name [, new_file_name]*

Description

Rename (or move) an existing file named file_name as new_file_name. Multiple files can be renamed (or moved) at once

by separating these with a comma (,). If new_file_name already exists, it will not be overwritten, no subsequent files are

renamed (or moved), and an error is raised. To overwrite an existing file, specify the keyword TRUNCATE (all data stored in

the file will be permanently lost).

Parameter(s)

file_name – mandatory string that specifies the name of the file to rename (or move). Multiple files are separated with a

comma (,).

new_file_name – mandatory string that specifies the new name and/or location (in the file system) to use for renaming

and/or moving file_name. Multiple files are separated with a comma (,).

Return

Nothing

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 210 of 341

Example(s)

rename a file named "my_file0.h5" as "my_file1.h5" (the file "my_file1.h5" will not be

overwritten if it already exists)

RENAME FILE my_file0.h5 AS my_file1.h5

rename a file named "my_file2.h5" as "my_file3.h5" (the file "my_file3.h5" will be

overwritten if it already exists)

RENAME TRUNCATE FILE my_file2.h5 AS my_file3.h5

rename two files named "my_file4.h5" and "my_file5.h5" as "my_file6.h5" and "my_file7.h5"

respectively (both files "my_file6.h5" and "my_file7.h5" will be overwritten if they already

exist)

RENAME TRUNCATE FILE my_file4.h5, my_file5.h5 AS my_file6.h5, my_file7.h5

move a file named "my_file8.h5" into a root directory named "data" and rename it as

"my_file9.h5" (the file "my_file9.h5" will not be overwritten if it already exists in this

directory)

RENAME FILE my_file8.h5 AS /data/my_file9.h5

move a file named "my_file10.h5" into a relative directory named "backup" (the file

"my_file10.h5" will not be overwritten if it already exists in this directory)

RENAME FILE my_file10.h5 AS backup/

6.4.11 RENAME [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK]

Syntax

RENAME [TRUNCATE] [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK] [file_name] object_name

[, [file_name] object_name]* AS new_object_name [, new_object_name]*

Description

Rename (or move) an existing HDF5 group, dataset, attribute, (soft) link or external link named object_name as

new_object_name. Multiple groups, datasets, attributes, (soft) links or external links can be renamed (or moved) at once

by separating these with a comma (,). If new_object_name already exists, it will not be overwritten, no subsequent objects

are renamed (or moved), and an error is raised. To overwrite an existing object, specify the keyword TRUNCATE (all data

stored in the object will be permanently lost). In case (1) a group and an attribute or (2) a dataset and an attribute with

identical names (object_name) are stored in the same location (i.e. group) and neither the keyword GROUP, DATASET nor

ATTRIBUTE is specified, the object to be renamed is the group or dataset, respectively. To explicitly rename an object

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 211 of 341

according to its type, the keyword GROUP, DATASET, ATTRIBUTE, [SOFT] LINK or EXTERNAL LINK must be specified. While

the renaming (or moving) of groups and datasets to a different location is supported by the HDF5 library, this is not the

case for attributes; HDFql overcomes this limitation by (1) creating a new attribute with the same characteristics as the

existing one (e.g. data type, number of dimensions) using the new specified location and name, (2) writing the data from

the existing attribute to the newly created attribute, and (3) deleting the existing attribute.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file which stores the object to rename (or move). If

file_name is specified, the file is opened on the fly, the object is renamed (or moved) and, afterwards, the file is closed.

Otherwise, if it is not specified, the object to rename (or move) is stored in the file currently in use.

object_name – mandatory string that specifies the name of the object to rename (or move). Multiple objects are

separated with a comma (,).

new_object_name – mandatory string that specifies the new name and/or location (within the HDF5 file) to use for

renaming and/or moving object_name. Multiple objects are separated with a comma (,).

Return

Nothing

Example(s)

create two HDF5 groups named "my_group0" and "my_group1"

CREATE GROUP my_group0, my_group1

create two HDF5 datasets named "my_dataset" and "my_common" of data type short

CREATE DATASET my_dataset, my_common AS SMALLINT

create two HDF5 attributes named "my_attribute" and "my_common" of data type float

CREATE ATTRIBUTE my_attribute, my_common AS FLOAT

rename an object named "my_group0" as "my_group" (the object "my_group" will not be

overwritten if it already exists)

RENAME my_group0 AS my_group

move an object named "my_group1" into object "my_group" and rename it as "my_subgroup" (the

object "my_subgroup" will be overwritten if it already exists in object "my_group")

RENAME TRUNCATE my_group1 AS my_group/my_subgroup

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 212 of 341

move two objects named "my_dataset" and "my_attribute" into objects "my_group" and

"my_group/my_subgroup" respectively (both objects "my_dataset" and "my_attribute" will not be

overwritten if they already exist in objects "my_group" and "my_group/my_subgroup")

RENAME my_dataset, my_attribute AS my_group/, my_group/my_subgroup/

rename attribute "my_common" as "my_attribute" (the attribute "my_attribute" will not be

overwritten if it already exists)

RENAME ATTRIBUTE my_common AS my_attribute

rename dataset "my_common" as "my_dataset" (the dataset "my_dataset" will not be overwritten

if it already exists)

RENAME DATASET my_common AS my_dataset

6.4.12 COPY FILE

Syntax

COPY [TRUNCATE] FILE file_name [, file_name]* TO new_file_name [, new_file_name]*

Description

Copy an existing file named file_name to new_file_name. Multiple files can be copied at once by separating these with a

comma (,). If new_file_name already exists, it will not be overwritten, no subsequent files are copied, and an error is

raised. To overwrite an existing file, specify the keyword TRUNCATE (all data stored in the file will be permanently lost).

Parameter(s)

file_name – mandatory string that specifies the name of the file to copy. Multiple files are separated with a comma (,).

new_file_name – mandatory string that specifies the new name and/or location (in the file system) to use for copying

file_name. Multiple files are separated with a comma (,).

Return

Nothing

Example(s)

copy a file named "my_file0.h5" to "my_file1.h5" (the file "my_file1.h5" will not be

overwritten if it already exists)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 213 of 341

COPY FILE my_file0.h5 TO my_file1.h5

copy a file named "my_file2.h5" to "my_file3.h5" (the file "my_file3.h5" will be overwritten

if it already exists)

COPY TRUNCATE FILE my_file2.h5 TO my_file3.h5

copy two files named "my_file4.h5" and "my_file5.h5" to "my_file6.h5" and "my_file7.h5"

respectively (both files "my_file6.h5" and "my_file7.h5" will be overwritten if they already

exist)

COPY TRUNCATE FILE my_file4.h5, my_file5.h5 TO my_file6.h5, my_file7.h5

copy a file named "my_file8.h5" into a root directory named "data" and rename it as

"my_file9.h5" (the file "my_file9.h5" will not be overwritten if it already exists in this

directory)

COPY FILE my_file8.h5 TO /data/my_file9.h5

copy a file named "my_file10.h5" into a relative directory named "backup" (the file

"my_file10.h5" will not be overwritten if it already exists in this directory)

COPY FILE my_file10.h5 TO backup/

6.4.13 COPY [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK]

Syntax

COPY [TRUNCATE] [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK] [file_name] object_name [,

[file_name] object_name]* TO [target_file_name] new_object_name [, [target_file_name] new_object_name]*

Description

Copy an existing HDF5 group, dataset, attribute, (soft) link or external link named object_name to new_object_name.

Multiple groups, datasets, attributes, (soft) links or external links can be copied at once by separating these with a comma

(,). If new_object_name already exists, it will not be overwritten, no subsequent objects are copied, and an error is raised.

To overwrite an existing object, specify the keyword TRUNCATE (all data stored in the object will be permanently lost). In

case (1) a group and an attribute or (2) a dataset and an attribute with identical names (object_name) are stored in the

same location (i.e. group) and neither the keyword GROUP, DATASET nor ATTRIBUTE is specified, the object to be copied is

the group or dataset, respectively. To explicitly copy an object according to its type, the keyword GROUP, DATASET,

ATTRIBUTE, [SOFT] LINK or EXTERNAL LINK must be specified.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 214 of 341

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file which stores the object to copy. If file_name is

specified, the file is opened on the fly, the object is copied and, afterwards, the file is closed. Otherwise, if it is not

specified, the object to copy is stored in the file currently in use.

object_name – mandatory string that specifies the name of the object to copy. Multiple objects are separated with a

comma (,).

target_file_name – optional string that specifies the name of the HDF5 file in which to copy the object. Multiple files are

separated with a comma (,).

new_object_name – mandatory string that specifies the new name and/or location (within the HDF5 file or in another

HDF5 file specified by target_file_name) to use for copying object_name. Multiple objects are separated with a comma (,).

Return

Nothing

Example(s)

create two HDF5 groups named "my_group0" and "my_group1"

CREATE GROUP my_group0, my_group1

create two HDF5 datasets named "my_dataset0" and "my_common" of data type short

CREATE DATASET my_dataset0, my_common AS SMALLINT

create two HDF5 attributes named "my_attribute0" and "my_common" of data type float

CREATE ATTRIBUTE my_attribute0, my_common AS FLOAT

copy an object named "my_group0" to "my_group2" (the object "my_group2" will not be

overwritten if it already exists)

COPY my_group0 TO my_group2

copy an object named "my_group1" into object "my_group0" and rename it as "my_subgroup0" (the

object "my_subgroup0" will be overwritten if it already exists in object "my_group0")

COPY TRUNCATE my_group1 TO my_group0/my_subgroup0

copy two objects named "my_dataset0" and "my_attribute0" into objects "my_group0" and

"my_group0/my_subgroup0" respectively (both objects "my_dataset0" and "my_attribute0" will not

be overwritten if they already exist in objects "my_group0" and "my_group0/my_subgroup0")

COPY my_dataset0, my_attribute0 TO my_group0/, my_group0/my_subgroup0/

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 215 of 341

copy attribute "my_common" to "my_attribute1" (the attribute "my_attribute1" will not be

overwritten if it already exists)

COPY ATTRIBUTE my_common TO my_attribute1

copy dataset "my_common" to "my_dataset1" (the dataset "my_dataset1" will not be overwritten

if it already exists)

COPY DATASET my_common TO my_dataset1

copy an object named "my_group3" from the file currently in use to "my_group4" in an HDF5

file named "my.file0.h5" (the object "my_group4" will not be overwritten if it already exists

in the file)

COPY my_group3 TO my_file0.h5 my_group4

copy an object named "my_group5" from an HDF5 file named "my_file1.h5" to "my_group6" in the

file currently in use (the object "my_group6" will not be overwritten if it already exists in

the file)

COPY my_file1.h5 my_group5 TO my_group6

copy an object named "my_group7" from an HDF5 file named "my_file2.h5" to "my_group8" in an

HDF5 file named "my.file3.h5" (the object "my_group8" will not be overwritten if it already

exists in the file)

COPY my_file2.h5 my_group7 TO my_file3.h5 my_group8

6.4.14 DROP DIRECTORY

Syntax

DROP DIRECTORY directory_name [, directory_name]*

Description

Drop (i.e. delete) an existing directory named directory_name. Multiple directories can be dropped at once by separating

these with a comma (,). If directory_name contains directories or files (i.e. if it is not empty), it will not be dropped, no

subsequent directories are dropped, and an error is raised.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 216 of 341

Parameter(s)

directory_name – mandatory string that specifies the name of the directory to drop (i.e. delete). Multiple directories are

separated with a comma (,).

Return

Nothing

Example(s)

create two directories named "my_directory0" and "my_directory1" within the current working

directory

CREATE DIRECTORY my_directory0, my_directory1

create two directories named "my_subdirectory0" and "my_subdirectory1" within the directory

"my_directory0"

CREATE DIRECTORY my_directory0/my_subdirectory0, my_directory0/my_subdirectory1

drop (i.e. delete) directory "my_directory1" within the current working directory

DROP DIRECTORY my_directory1

drop (i.e. delete) directory "my_subdirectory0" within directory "my_directory0"

DROP DIRECTORY my_directory0/my_subdirectory0

6.4.15 DROP FILE

Syntax

DROP FILE file_name [, file_name]*

Description

Drop (i.e. delete) an existing file named file_name. Multiple files can be dropped at once by separating these with a

comma (,). If file_name was not found or could not be dropped (due to unknown/unexpected reasons), no subsequent

files are dropped, and an error is raised.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 217 of 341

Parameter(s)

file_name – mandatory string that specifies the name of the file to drop (i.e. delete). Multiple files are separated with a

comma (,).

Return

Nothing

Example(s)

create two HDF5 files named "my_file0.h5" and "my_file1.h5" within the current working

directory

CREATE FILE my_file0.h5, my_file1.h5

create two HDF5 files named "my_file2.h5" and "my_file3.h5" within a directory named

"my_directory"

CREATE FILE my_directory/my_file2.h5, my_directory/my_file3.h5

drop (i.e. delete) file "my_file1.h5" within the current working directory

DROP FILE my_file1.h5

drop (i.e. delete) file "my_file2.h5" within directory "my_directory"

DROP FILE my_directory/my_file2.h5

6.4.16 DROP [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK]

Syntax

DROP {GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK} | {[GROUP | DATASET | ATTRIBUTE |

[SOFT] LINK | EXTERNAL LINK] [{[file_name] object_name [, [file_name] object_name]*} | {[[file_name]

object_name] LIKE regular_expression [DEEP deep_value [, deep_value]*]}]}

Description

Drop (i.e. delete) an existing HDF5 group, dataset, attribute, (soft) link or external link named object_name. Multiple

groups, datasets, attributes, (soft) links or external links can be dropped at once by separating these with a comma (,). If

object_name was not found or could not be dropped (due to unknown/unexpected reasons), no subsequent objects are

dropped, and an error is raised. In case (1) a group and an attribute or (2) a dataset and an attribute with identical names

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 218 of 341

(object_name) are stored in the same location (i.e. group) and neither the keyword GROUP, DATASET nor ATTRIBUTE is

specified, the object to be dropped is the group or dataset, respectively. To explicitly drop an object according to its type,

the keyword GROUP, DATASET, ATTRIBUTE, [SOFT] LINK or EXTERNAL LINK must be specified. If the keyword LIKE is

specified, only objects with names complying with a regular expression named regular_expression will be dropped (in

HDFql, regular expressions are the ones specified by PCRE which closely follow PERL5 syntax – please refer to

http://www.pcre.org and http://perldoc.perl.org/perlre.html for additional information). As a general rule, in case

regular_expression is composed of spaces, special characters or reserved keywords (e.g. SELECT), it should be surrounded

by double-quotes (“). Otherwise, if it is not surrounded by double-quotes, objects will not be dropped and an error is

raised. If regular_expression includes “**”, recursive search is performed (i.e. HDFql will search in all existing groups and

subgroups for objects). To limit the recursiveness, the keyword DEEP may be specified along with a value deep_value

representing the maximum recursiveness limit.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file which stores the object to drop (i.e. delete). If

file_name is specified, the file is opened on the fly, the object is dropped and, afterwards, the file is closed. Otherwise, if it

is not specified, the object to drop is stored in the file currently in use.

object_name – mandatory string that specifies the name of the object to drop (i.e. delete). Multiple objects are separated

with a comma (,).

regular_expression – optional string that specifies the regular expression which only names of objects that comply with it

are dropped. If regular_expression includes “**”, recursive search is performed.

deep_value – optional integer that specifies the maximum recursiveness limit (i.e. how deep recursive search is

performed).

Return

Nothing

Example(s)

create three HDF5 groups named "my_group0", "my_group1" and "my_group2"

CREATE GROUP my_group0, my_group1, my_group2

create two HDF5 datasets named "my_dataset0" and "my_dataset1" of data type short in group

"my_group2"

CREATE DATASET my_group2/my_dataset0, my_group2/my_dataset1 AS SMALLINT

http://www.pcre.org/
http://perldoc.perl.org/perlre.html

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 219 of 341

create two HDF5 datasets named "my_dataset2" and "my_common" of data type short

CREATE DATASET my_dataset2, my_common AS SMALLINT

create two HDF5 attributes named "my_attribute0" and "my_common" of data type float

CREATE ATTRIBUTE my_attribute0, my_common AS FLOAT

drop (i.e. delete) an object named "my_group0" (and all objects that may eventually be stored

in it)

DROP my_group0

drop (i.e. delete) attribute "my_common"

DROP ATTRIBUTE my_common

drop (i.e. delete) all existing datasets in group "my_group2" (should be "my_dataset2" and

"my_dataset3")

DROP DATASET my_group2/

drop (i.e. delete) all existing groups (should be "my_group1" and "my_group2")

DROP GROUP

drop (i.e. delete) all existing objects (should be "my_dataset2", "my_common" and

"my_attribute0")

DROP /

6.5 DATA MANIPULATION LANGUAGE (DML)

Data Manipulation Language (DML) is, generally speaking, syntax for defining and modifying data stored in structures. In

HDFql, the DML is composed of only one operation (INSERT), which enables the insertion (i.e. writing) of data into HDF5

datasets or attributes. Moreover, it supports REDIRECTING options to redirect the input source according to the

programmer’s needs.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 220 of 341

6.5.1 INSERT

Syntax

INSERT [DIRECTLY [MASK mask_value] [SIZE data_size]] INTO [DATASET | ATTRIBUTE] [file_name] object_name

[(selection)] [, [file_name] object_name [(selection)]]* [{IN PARALLEL [NO VALUES]} | {[IN PARALLEL] [VALUES

{(value [, value]*) | input_redirecting_option}]}]

selection := {[start]:[stride]:[count]:[block] [, [start]:[stride]:[count]:[block]]* [, {OR | AND | XOR | NOTA | NOTB}

[start]:[stride]:[count]:[block] [, [start]:[stride]:[count]:[block]]*]*} | {coord [, coord]* [; coord [, coord]*]*} |

{chunk_number [, chunk_number]*}

Description

Insert (i.e. write) data into an HDF5 dataset or attribute named object_name. Multiple datasets or attributes can be

written at once by separating these with a comma (,). If object_name was not found or could not be written (due to

unknown/unexpected reasons), no subsequent objects are written, and an error is raised. In case a dataset and an

attribute with identical names (object_name) are stored in the same location (i.e. group) and neither the keyword

DATASET nor ATTRIBUTE is specified, the object that will have data written into it is the dataset. To explicitly write data

into an object according to its type, the keyword DATASET or ATTRIBUTE must be specified.

In case the keyword DIRECTLY38 is specified, HDFql writes data chunks directly into a dataset bypassing several internal

processing steps of the HDF5 library itself (e.g. data conversion, filter pipeline), which can lead to a much faster writing.

By default, the entire object_name is written when performing an insert operation. To write only a subset (i.e. portion) of

object_name, hyperslab and point selections can be used40. To enable a (regular) hyperslab selection, the start, stride,

count and block parameters may be specified and separated with a colon (:). For each dimension of object_name, a set of

such parameters may be specified and each set should be separated with a comma (,). Multiple hyperslab selections can

be enabled at once (in this case, the hyperslab will be considered irregular). This is enabled by using the following boolean

operators:

 OR – adds the new selection to the existing selection.

38 Only available for HDF5 datasets as, by design, direct insert (i.e. write) for HDF5 attributes is not supported by the HDF5 library. Moreover, the library

does not support writing data directly into a dataset of data type variable-length or compound with a member of data type variable-length.

40 Only available for HDF5 datasets as, by design, both hyperslab and point selections for HDF5 attributes are not supported by the HDF5 library.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 221 of 341

 AND – retains only the overlapping portions of the new selection and the existing selection.

 XOR – retains only the elements that are members of the new selection or the existing selection, excluding elements

that are members of both selections.

 NOTA – retains only elements of the new selection that are not in the existing selection.

 NOTB – retains only elements of the existing selection that are not in the new selection.

To enable a point selection, a set of coordinates may be specified. Each coordinate is separated with a comma (,). More

than one set of coordinates (i.e. points) may be specified and each set should be separated with a semicolon (;). Of note,

hyperslab and point selections cannot be used both at the same time (i.e. be mixed) in an insert operation. Since

hyperslab and point selections can be complicated to set up, it is highly recommended to first read

https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-

Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_I_O.htm%23T

OC_7_4_1_Data_Selectionbc-7 and eventually enable the debug mechanism (through the operation SET DEBUG) when

working with these to obtain debug information in case of errors.

In case the keyword IN PARALLEL41 42 is specified, HDFql writes data into a dataset in parallel using all the MPI processes

specified upon launching the program (that employs HDFql). Of note, a dataset may only be written in parallel if the HDF5

file was opened in parallel in the first place (please refer to the operation USE FILE for additional information). In case the

keyword NO VALUES is specified, no data is actually written by the MPI process in question (which may be useful in certain

situations) only forcing it to participate in the operation (as when working in parallel it is mandatory that all MPI processes

work collectively).

HDFql provides several ways of writing data into a dataset or attribute, namely either from a cursor (e.g. “INSERT INTO

my_dataset”), direct values (e.g. “INSERT INTO my_dataset VALUES(0, 2, 4, 6, 8)”), or an input redirecting option (e.g.

“INSERT INTO my_dataset VALUES FROM FILE my_file.txt”).

Parameter(s)

mask_value – optional integer that specifies which filters have been applied to the data chunk. A filter is skipped if the bit

corresponding to the position of the filter in the pipeline is turned on. If mask_value is specified it must be equal to or

41 This option is not allowed in Windows as HDFql does not support the parallel HDF5 (PHDF5) library in this platform currently.

42 Only available for HDF5 datasets as, by design, inserting (i.e. writing) data into HDF5 attributes is not supported in parallel. Moreover, the library does

not support writing data into a dataset of data type variable-length or compound with a member of data type variable-length in parallel.

https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_I_O.htm%23TOC_7_4_1_Data_Selectionbc-7
https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_I_O.htm%23TOC_7_4_1_Data_Selectionbc-7
https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_I_O.htm%23TOC_7_4_1_Data_Selectionbc-7

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 222 of 341

greater than zero (otherwise an error will be raised). Otherwise, if it is not specified and in case the keyword DIRECTLY is

specified, its default value is 0 (meaning that all filters have been applied to the data chunk).

data_size – optional integer that specifies the size (in bytes) of the data to insert (i.e. write) into the HDF5 dataset. If

data_size is specified it must be greater than zero (otherwise an error will be raised). Otherwise, if it is not specified and in

case the keyword DIRECTLY is specified, HDFql automatically calculates the size by multiplying all storage dimensions of

the dataset with its data type size.

file_name – optional string that specifies the name of the HDF5 file in which the HDF5 dataset or attribute to insert (i.e.

write) data into is stored. If file_name is specified, the file is opened on the fly, the dataset or attribute is inserted and,

afterwards, the file is closed. Otherwise, if it is not specified, the dataset or attribute (whose data is to be inserted) is

stored in the file currently in use.

object_name – mandatory string that specifies the name of the HDF5 dataset or attribute to insert (i.e. write) data into.

Multiple datasets or attributes are separated with a comma (,).

start – optional integer that specifies the starting location of the hyperslab selection. If not specified, its default value is 0

(i.e. the first position of the dimension in question). If negative, its value will be the last position of the dimension in

question minus the value of start.

stride – optional integer that specifies the number of elements to separate each block to be selected. If not specified, its

default value is equal to the value of block.

count – optional integer that specifies the number of blocks to select along each dimension. If not specified, its default

value is 1.

block – optional integer that specifies the size of the block selected (i.e. number of elements) from the HDF5 dataset. If

not specified, its default value is the size of the dimension in question minus the value of start divided by the value of

count.

coord – optional integer that specifies the point of interest (i.e. to insert) for the point selection. If negative, its value will

be the last position of the dimension in question minus the value of coord.

chunk_number – optional integer that specifies the number of the chunk to insert (i.e. write) data into. Multiple chunk

numbers are separated with a comma (,). If chunk_number is specified it must either be between 0 and the storage

dimension in question - 1 (otherwise an error will be raised) or negative (in this case its value will be the last position of

the storage dimension in question minus the value of chunk_number). Otherwise, if it is not specified and in case the

keyword DIRECTLY is specified, its default value is 0 (i.e. first chunk of the storage dimension in question).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 223 of 341

value – optional integer, float or string to insert (i.e. write) into the HDF5 dataset or attribute. Multiple values are

separated with a comma (,). In case value is not specified, the element in question will be zeroed or emptied depending on

whether the dataset/attribute is a number or a string, respectively.

input_redirecting_option – optional option that specifies a file or memory to read data from in order to write it into an

HDF5 dataset or attribute (please refer to the subsection FROM for additional information).

Return

Nothing

Example(s)

create an HDF5 dataset named "my_dataset0" of data type short of one dimension (size 3)

CREATE DATASET my_dataset0 AS SMALLINT(3)

create an HDF5 dataset named "my_dataset1" of data type int of one dimension (size 5)

CREATE DATASET my_dataset1 AS INT(5)

insert (i.e. write) values 65, 66 and 67 into dataset "my_dataset0"

INSERT INTO my_dataset0 VALUES(65, 66, 67)

select (i.e. read) data from dataset "my_dataset0" and populate cursor in use with it (should

be 65, 66, 67)

SELECT FROM my_dataset0

insert (i.e. write) values into dataset "my_dataset1" from cursor in use (should be 65, 66,

67, 0, 0)

INSERT INTO my_dataset1

create an HDF5 attribute named "my_attribute0" of data type short

CREATE ATTRIBUTE my_attribute0 AS SMALLINT

insert (i.e. write) value 95 into attribute "my_ attribute0"

INSERT INTO my_attribute0 VALUES(95)

create an HDF5 attribute named "my_attribute1" of data type unsigned short of one dimension

(size 2)

CREATE ATTRIBUTE my_attribute1 AS UNSIGNED SMALLINT(2)

insert (i.e. write) values 95 and 97 into attribute "my_ attribute1"

INSERT INTO my_attribute1 VALUES(95, 97)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 224 of 341

create an HDF5 dataset named "my_dataset2" of data type float of one dimension (size 512)

CREATE DATASET my_dataset2 AS FLOAT(512)

insert (i.e. write) values into dataset "my_dataset2" from a text file named "my_file0.txt"

that has values separated with "," (i.e. default separator)

INSERT INTO my_dataset2 VALUES FROM FILE my_file0.txt

insert (i.e. write) values into dataset "my_dataset2" from a text file named "my_file1.txt"

that has a DOS-based end of line (EOL) terminator and values separated with "**"

INSERT INTO my_dataset2 VALUES FROM DOS TEXT FILE my_file1.txt SEPARATOR **

insert (i.e. write) values into dataset "my_dataset2" from a binary file named "my_file.bin"

INSERT INTO my_dataset2 VALUES FROM BINARY FILE my_file.bin

create an HDF5 dataset named "my_dataset3" of data type short of one dimension (size 5)

CREATE DATASET my_dataset3 AS SMALLINT(5)

insert (i.e. write) value 9 into position #3 of dataset "my_dataset3" using a hyperslab

selection

INSERT INTO my_dataset3(3:::) VALUES(9)

select (i.e. read) data from dataset "my_dataset3" and populate cursor in use with it (should

be 0, 0, 0, 9, 0)

SELECT FROM my_dataset3

insert (i.e. write) value 9 into position #4 of dataset "my_dataset3" using a hyperslab

selection

INSERT INTO my_dataset3(-1:::) VALUES(7)

select (i.e. read) data from dataset "my_dataset3" and populate cursor in use with it (should

be 0, 0, 0, 9, 7)

SELECT FROM my_dataset3

insert (i.e. write) values 5 and 3 into positions #1 and #2 of dataset "my_dataset3" using a

hyperslab selection

INSERT INTO my_dataset3(1:::2) VALUES(5, 3)

select (i.e. read) data from dataset "my_dataset3" and populate cursor in use with it (should

be 0, 5, 3, 9, 7)

SELECT FROM my_dataset3

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 225 of 341

create an HDF5 dataset named "my_dataset4" of data type int of two dimensions (size 3x3)

CREATE DATASET my_dataset4 AS INT(3, 3)

insert (i.e. write) value 8 into position #2 of the first dimension and position #1 of the

second dimension of dataset "my_dataset4" using a hyperslab selection

INSERT INTO my_dataset4(2:::, 1:::) VALUES(8)

select (i.e. read) data from dataset "my_dataset4" and populate cursor in use with it (should

be 0, 0, 0, 0, 0, 0, 0, 8, 0)

SELECT FROM my_dataset4

insert (i.e. write) value 4 into position #2 of the first dimension and position #0 of the

second dimension, and value 6 into position #2 of the first dimension and position #2 of the

second dimension of dataset "my_dataset4" using a hyperslab selection

INSERT INTO my_dataset4(2:::, 0:2:2:1) VALUES(4, 6)

select (i.e. read) data from dataset "my_dataset4" and populate cursor in use with it (should

be 0, 0, 0, 0, 0, 0, 4, 8, 6)

SELECT FROM my_dataset4

create an HDF5 dataset named "my_dataset5" of data type short of one dimension (size 10)

CREATE DATASET my_dataset5 AS SMALLINT(10)

insert (i.e. write) values 90, 91 and 92 into positions #2, #3 and #4, value 93 into

position#5, and values 94 and 95 into positions #7 and #8 of dataset "my_dataset5" using an

irregular hyperslab selection

INSERT INTO my_dataset5(2::3:1 OR 4::2:1 OR 7::2:1) VALUES(90, 91, 92, 93, 94, 95)

select (i.e. read) data from dataset "my_dataset5" and populate cursor in use with it (should

be 0, 0, 90, 91, 92, 93, 0, 94, 95, 0)

SELECT FROM my_dataset5

create an HDF5 dataset named "my_dataset6" of data type long long of one dimension (size 15)

CREATE DATASET my_dataset6 AS BIGINT(15)

insert (i.e. write) values 75 and 77 into positions #5 and #6 of dataset "my_dataset6" using

an irregular hyperslab selection

INSERT INTO my_dataset6(3::4:1 AND 5::3:1) VALUES(75, 77, 79, 81, 83, 85, 87)

select (i.e. read) data from dataset "my_dataset6" and populate cursor in use with it (should

be 0, 0, 0, 0, 0, 75, 77, 0, 0, 0, 0, 0, 0, 0, 0)

SELECT FROM my_dataset6

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 226 of 341

create an HDF5 dataset named "my_dataset7" of data type float of one dimension (size 8)

CREATE DATASET my_dataset7 AS FLOAT(8)

insert (i.e. write) values 7.5, 7.7 and 7.9 into positions #2, #4 and #7 of dataset

"my_dataset7" using a point selection

INSERT INTO my_dataset7(2; 4; 7) VALUES(7.5, 7.7, 7.9)

select (i.e. read) data from dataset "my_dataset7" and populate cursor in use with it (should

be 0, 0, 7.5, 0, 7.7, 0, 0, 7.9)

SELECT FROM my_dataset7

create an HDF5 dataset named "my_dataset8" of data type double of two dimensions (size 4x3)

CREATE DATASET my_dataset8 AS DOUBLE(4, 3)

insert (i.e. write) value 15.2 into position #1 of the first dimension and position #2 of the

second dimension, and value 18.5 into position #3 of the first dimension and position #0 of the

second dimension of dataset "my_dataset8" using a point selection

INSERT INTO my_dataset8(1, 2; 3, 0) VALUES(15.2, 18.5)

select (i.e. read) data from dataset "my_dataset8" and populate cursor in use with it (should

be 0, 0, 0, 0, 0, 15.2, 0, 0, 0, 18.5, 0, 0)

SELECT FROM my_dataset8

use (i.e. open) an HDF5 file named "my_file.h5"

USE FILE my_file.h5

create an HDF5 dataset named "my_dataset9" of data type double in the HDF5 file currently in

use (i.e. file "my_file.h5")

CREATE DATASET my_dataset9 AS DOUBLE

insert (i.e. write) value 6.5 into dataset "my_dataset9"

INSERT INTO my_dataset9 VALUES(6.5)

select (i.e. read) data from dataset "my_dataset9" and populate cursor in use with it (should

be 6.5)

SELECT FROM my_dataset9

close HDF5 file currently in use (i.e. file "my_file.h5")

CLOSE FILE

insert (i.e. write) value 3.2 into dataset "my_dataset9" in file "my_file.h5"

INSERT INTO my_file.h5 my_dataset9 VALUES(3.2)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 227 of 341

select (i.e. read) data from dataset "my_dataset9" in file "my_file.h5" and populate cursor

in use with it (should be 3.2)

SELECT FROM my_file.h5 my_dataset9

create an HDF5 dataset named "my_dataset10" of data type enumeration composed of three

members named "helium" (with value 0), "oxygen" (with value 1) and "argon" (with value 2)

CREATE DATASET my_dataset10 AS ENUMERATION(helium, oxygen, argon)

insert (i.e. write) value 1 (i.e. "oxygen") into dataset "my_dataset10"

INSERT INTO my_dataset10 VALUES(oxygen)

select (i.e. read) data from dataset "my_dataset10" and populate cursor in use with it

(should be 1 – i.e. "oxygen")

SELECT FROM my_dataset10

create an HDF5 attribute named "my_attribute2" of data type enumeration of one dimension

(size 4) composed of three members named "red" (with value 0), "green" (with value 50) and

"blue" (with value 51)

CREATE ATTRIBUTE my_attribute2 AS ENUMERATION(red, green AS 50, blue)(4)

insert (i.e. write) values 51 (i.e. "blue"), "red" (i.e. 0), "green" (i.e. 50) and "blue"

(i.e. 51) into attribute "my_attribute2"

INSERT INTO my_attribute2 VALUES(51, red, green, blue)

select (i.e. read) data from attribute "my_attribute2" and populate cursor in use with it

(should be 51 – i.e. "blue", 0 – i.e. "red", 50 – i.e. "green", 51 – i.e. "blue")

SELECT FROM my_attribute2

create a chunked (size 2) HDF5 dataset named "my_dataset11" of data type int of one dimension

(size 6)

CREATE CHUNKED(2) DATASET my_dataset11 AS INT(6)

insert (i.e. write) values 60 and 61 directly into chunk #0 of dataset "my_dataset11" using a

(filter) mask equal to 8

INSERT DIRECTLY MASK 8 INTO my_dataset11 VALUES(60, 61)

insert (i.e. write) values 62 and 63 directly into chunk #1 of dataset "my_dataset11" using a

(filter) mask equal to 255 (i.e. 0xFF)

INSERT DIRECTLY MASK 0xFF INTO my_dataset11(1) VALUES(62, 63)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 228 of 341

insert (i.e. write) values 64 and 65 directly into chunk #2 of dataset "my_dataset11" using a

(filter) mask equal to 0 (i.e. default value)

INSERT DIRECTLY INTO my_dataset11(2) VALUES(64, 65)

select (i.e. read) data from dataset "my_dataset11" and populate cursor in use with it

(should be 60, 61, 62, 63, 64, 65)

SELECT FROM my_dataset11

// declare variables

char script[1024];

double data[3];

// create an HDF5 dataset named "my_dataset12" of data type double of one dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset12 AS DOUBLE(3)");

// populate variable "data" with certain values

data[0] = 21.1;

data[1] = 18.8;

data[2] = 75.6;

// register variable "data" for subsequent use (by HDFql)

hdfql_variable_register(data);

// prepare script to insert (i.e. write) values from variable "data" into dataset

"my_dataset12"

sprintf(script, "INSERT INTO my_dataset12 VALUES FROM MEMORY %d",

hdfql_variable_get_number(data));

// execute script

hdfql_execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)

hdfql_variable_unregister(data);

// declare variables

char script[1024];

HDFQL_VARIABLE_LENGTH data[3];

// create an HDF5 dataset named "my_dataset13" of data type variable-length double of one

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 229 of 341

dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset13 AS VARDOUBLE(3)");

// allocate memory in variable "data"

data[0].address = malloc(2 * sizeof(double));

data[0].count = 2;

data[1].address = malloc(3 * sizeof(double));

data[1].count = 3;

data[2].address = malloc(1 * sizeof(double));

data[2].count = 1;

// populate variable "data" with certain values

*((double *) data[0].address + 0) = 3.2;

*((double *) data[0].address + 1) = 1.3;

*((double *) data[1].address + 0) = 0;

*((double *) data[1].address + 1) = 0.2;

*((double *) data[1].address + 2) = 9.1;

*((double *) data[2].address + 0) = 6.5;

// register variable "data" for subsequent use (by HDFql)

hdfql_variable_register(data);

// prepare script to insert (i.e. write) values from variable "data" into dataset

"my_dataset13"

sprintf(script, "INSERT INTO my_dataset13 VALUES FROM MEMORY %d",

hdfql_variable_get_number(data));

// execute script

hdfql_execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)

hdfql_variable_unregister(data);

// select (i.e. read) data from dataset "my_dataset13" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset13");

// display content of cursor in use (should be 3.2, 1.3, 0, 0.2, 9.1, 6.5)

while(hdfql_cursor_next(NULL) == HDFQL_SUCCESS)

{

 while(hdfql_subcursor_next(NULL) == HDFQL_SUCCESS)

 {

 printf("%f\n", *hdfql_subcursor_get_double(NULL));

 }

}

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 230 of 341

// release memory allocated in variable "data"

free(data[0].address);

free(data[1].address);

free(data[2].address);

// declare variables

char script[1024];

char *data[3];

// create an HDF5 dataset named "my_dataset14" of data type variable-length char of one

dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset14 AS VARCHAR(3)");

// allocate memory in variable "data"

data[0] = malloc(13 * sizeof(char));

data[1] = malloc(5 * sizeof(char));

data[2] = malloc(7 * sizeof(char));

// populate variable "data" with certain values

strcpy(data[0], "Hierarchical");

strcpy(data[1], "Data");

strcpy(data[2], "Format");

// register variable "data" for subsequent use (by HDFql)

hdfql_variable_register(data);

// prepare script to insert (i.e. write) values from variable "data" into dataset

"my_dataset14"

sprintf(script, "INSERT INTO my_dataset14 VALUES FROM MEMORY %d",

hdfql_variable_get_number(data));

// execute script

hdfql_execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)

hdfql_variable_unregister(data);

// select (i.e. read) data from dataset "my_dataset14" and populate cursor in use with it

hdfql_execute("SELECT FROM my_dataset14");

// display content of cursor in use (should be "Hierarchical", "Data", "Format")

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 231 of 341

while(hdfql_cursor_next(NULL) == HDFQL_SUCCESS)

{

 printf("%s\n", hdfql_cursor_get_char(NULL));

}

// release memory allocated in variable "data"

free(data[0]);

free(data[1]);

free(data[2]);

// declare structure

struct coordinate

{

 double latitude;

 double longitude;

};

// declare variables

char script[1024];

struct coordinate location;

// create an HDF5 attribute named "my_attribute3" of data type compound composed of two members

named "latitude" (of data type double) and "longitude" (of data type double)

hdfql_execute("CREATE ATTRIBUTE my_attribute3 AS COMPOUND(latitude AS DOUBLE, longitude AS

DOUBLE)");

// populate variable "location" with certain values

location.latitude = 15.9803486587;

location.longitude = 48.6352028395;

// prepare script to insert (i.e. write) values from variable "location" into attribute

"my_attribute3"

sprintf(script, "INSERT INTO my_attribute3 VALUES FROM MEMORY %d",

hdfql_variable_transient_register(&location));

// execute script

hdfql_execute(script);

// declare structure

struct data

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 232 of 341

{

 char name[7];

 int index;

};

// declare variables

char script[1024];

struct data cities[3];

int number;

// create an HDF5 dataset named "my_dataset15" of data type compound of one dimension (size 3)

composed of two members named "name" (of data type char) and "index" (of data type int)

hdfql_execute("CREATE DATASET my_dataset15 AS COMPOUND(name AS CHAR(7), index AS INT)(3)");

// populate variable "cities" with certain values

memcpy(cities[0].name, "Toronto", 7);

cities[0].index = 10;

memcpy(cities[1].name, "Nairobi", 7);

cities[1].index = 12;

memcpy(cities[2].name, "Caracas", 7);

cities[2].index = 11;

// register variable "cities" for subsequent use (by HDFql)

number = hdfql_variable_register(cities);

// prepare script to insert (i.e. write) values from variable "cities" into dataset

"my_dataset15"

sprintf(script, "INSERT INTO my_dataset15 VALUES FROM MEMORY %d SIZE %d OFFSET(%d, %d)",

number, sizeof(struct data), offsetof(struct data, name), offsetof(struct data, index));

// execute script

hdfql_execute(script);

// unregister variable "cities" as it is no longer used/needed (by HDFql)

hdfql_variable_unregister(cities);

// assume that the following program is launched in parallel using four MPI processes (e.g.

"mpiexec –n 4 my_program")

// declare variables

char script[1024];

int rank;

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 233 of 341

// create an HDF5 file named "my_file.h5" in parallel

hdfql_execute("CREATE FILE my_file.h5 IN PARALLEL");

// use (i.e. open) HDF5 file "my_file.h5" in parallel

hdfql_execute("USE FILE my_file.h5 IN PARALLEL");

// create an HDF5 dataset named "my_dataset16" of data type int of one dimension (size 4)

hdfql_execute("CREATE DATASET my_dataset16 AS INT(4)");

// get number (i.e. rank) of the MPI process (should be between 0 and 3)

rank = hdfql_mpi_get_rank();

// prepare script to insert (i.e. write) values 0, 10, 20 and 30 in parallel into positions #0

(by MPI process rank 0), #1 (by MPI process rank 1), #2 (by MPI process rank 2) and #3 (by MPI

process rank 3) of dataset "my_dataset16" using a point selection

sprintf(script, "INSERT INTO my_dataset16(%d) IN PARALLEL VALUES(%d)", rank, rank * 10);

// execute script

hdfql_execute(script);

6.6 DATA QUERY LANGUAGE (DQL)

Data Query Language (DQL) is, generally speaking, syntax for retrieving data stored in structures. In HDFql, the DQL is

composed of only one operation (SELECT). It enables retrieval (i.e. reading) of data stored in HDF5 datasets or attributes

optionally according to certain criteria such as hyperslab selections. Moreover, it supports both POST-PROCESSING and

REDIRECTING options to further transform and redirect the result of the operation according to the programmer’s needs.

6.6.1 SELECT

Syntax

SELECT [DIRECTLY] FROM [DATASET | ATTRIBUTE] [file_name] object_name [(selection)] [IN PARALLEL [NO

VALUES]]

[CACHE [SLOTS {slots_value | FILE | DEFAULT}] [SIZE {size_value | FILE | DEFAULT}] [PREEMPTION

{preemption_value | FILE | DEFAULT}]]

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 234 of 341

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

selection := {[start]:[stride]:[count]:[block] [, [start]:[stride]:[count]:[block]]* [, {OR | AND | XOR | NOTA | NOTB}

[start]:[stride]:[count]:[block] [, [start]:[stride]:[count]:[block]]*]*} | {coord [, coord]* [; coord [, coord]*]*} |

{chunk_number [, chunk_number]*}

Description

Select (i.e. read) data from an HDF5 dataset or attribute named object_name. In case the keyword CACHE is specified, the

dataset is read using cache parametrized with the values slots_value, size_value and preemption_value (instead of the

dataset cache parameters that may have been set through the operation SET CACHE). In case a dataset and an attribute

with identical names (object_name) are stored in the same location (i.e. group) and neither the keyword DATASET nor

ATTRIBUTE is specified, the object for which data will be read is the dataset. To explicitly read data from an object

according to its type, the keyword DATASET or ATTRIBUTE must be specified.

In case the keyword DIRECTLY43 is specified, HDFql reads data chunks directly from a dataset bypassing several internal

processing steps of the HDF5 library itself (e.g. data conversion, filter pipeline), which can lead to a much faster reading.

 By default, the entire object_name is read when performing a select operation. To read only a subset (i.e. portion) of

object_name, hyperslab and point selections can be used45. To enable a (regular) hyperslab selection, the start, stride,

count and block parameters may be specified and separated with a colon (:). For each dimension of object_name, a set of

such parameters may be specified and each set should be separated with a comma (,). Multiple hyperslab selections can

be enabled at once (in this case, the hyperslab will be considered irregular). This is enabled by using the following boolean

operators:

 OR – adds the new selection to the existing selection.

 AND – retains only the overlapping portions of the new selection and the existing selection.

 XOR – retains only the elements that are members of the new selection or the existing selection, excluding elements

that are members of both selections.

43 Only available for HDF5 datasets as, by design, direct selection (i.e. read) for HDF5 attributes is not supported by the HDF5 library. Moreover, the

library does not support reading data directly from a dataset of data type variable-length or compound with a member of data type variable-length.

45 Only available for HDF5 datasets as, by design, both hyperslab and point selections for HDF5 attributes are not supported by the HDF5 library.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 235 of 341

 NOTA – retains only elements of the new selection that are not in the existing selection.

 NOTB – retains only elements of the existing selection that are not in the new selection.

To enable a point selection, a set of coordinates may be specified. Each coordinate is separated with a comma (,). More

than one set of coordinates (i.e. points) may be specified and each set should be separated with a semicolon (;). Of note,

hyperslab and point selections cannot be used both at the same time (i.e. be mixed) in a select operation. Since hyperslab

and point selections can be complicated to set up, it is highly recommended to first read

https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-

Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_I_O.htm%23T

OC_7_4_1_Data_Selectionbc-7 and eventually enable the debug mechanism (through the operation SET DEBUG) when

working with these to obtain debug information in case of errors.

In case the keyword IN PARALLEL46 47 is specified, HDFql reads data from a dataset in parallel using all the MPI processes

specified upon launching the program (that employs HDFql). Of note, a dataset may only be read in parallel if the HDF5 file

was opened in parallel in the first place (please refer to the operation USE FILE for additional information). In case the

keyword NO VALUES is specified, no data is actually read by the MPI process in question (which may be useful in certain

situations) only forcing it to participate in the operation (as when working in parallel it is mandatory that all MPI processes

work collectively).

HDFql provides several ways of writing result sets that was read from a dataset or attribute, namely either to a cursor (e.g.

“SELECT FROM my_dataset”) or an output redirecting option (e.g. “SELECT FROM my_dataset INTO FILE my_file.txt”).

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file in which the HDF5 dataset or attribute to select (i.e.

read) data from is stored. If file_name is specified, the file is opened on the fly, the dataset or attribute is selected and,

afterwards, the file is closed. Otherwise, if it is not specified, the dataset or attribute (whose data is to be selected is

stored) in the file currently in use.

object_name – mandatory string that specifies the name of the HDF5 dataset or attribute to select (i.e. read) data from.

46 This option is not allowed in Windows as HDFql does not support the parallel HDF5 (PHDF5) library in this platform currently.

47 Only available for HDF5 datasets as, by design, selecting (i.e. reading) data from HDF5 attributes is not supported in parallel. Moreover, the library does

not support reading data from a dataset of data type variable-length or compound with a member of data type variable-length in parallel.

https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_I_O.htm%23TOC_7_4_1_Data_Selectionbc-7
https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_I_O.htm%23TOC_7_4_1_Data_Selectionbc-7
https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_I_O.htm%23TOC_7_4_1_Data_Selectionbc-7

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 236 of 341

start – optional integer that specifies the starting location of the hyperslab selection. If not specified, its default value is 0

(i.e. the first position of the dimension in question). If negative, its value will be the last position of the dimension in

question minus the value of start.

stride – optional integer that specifies the number of elements to separate each block to be selected. If not specified, its

default value is equal to the value of block.

count – optional integer that specifies the number of blocks to select along each dimension. If not specified, its default

value is 1.

block – optional integer that specifies the size of the block (i.e. number of elements) selected from the HDF5 dataset. If

not specified, its default value is the size of the dimension in question minus the value of start divided by the value of

count.

coord – optional integer that specifies the point of interest (i.e. to select) for the point selection. If negative, its value will

be the last position of the dimension in question minus the value of coord.

chunk_number – optional integer that specifies the number of the chunk to select (i.e. read) data from. Multiple chunk

numbers are separated with a comma (,). If chunk_number is specified it must either be between 0 and the storage

dimension in question - 1 (otherwise an error will be raised) or negative (in this case its value will be the last position of

the storage dimension in question minus the value of chunk_number). Otherwise, if it is not specified and in case the

keyword DIRECTLY is specified, its default value is 0 (i.e. first chunk of the storage dimension in question).

slots_value – optional integer that specifies the number of chunk slots in the raw data chunk cache for accessing the HDF5

dataset. Due to the hashing strategy, its value should ideally be a prime number. In case the keyword DEFAULT is

specified, its value is 521 (i.e. default value defined by the HDF5 library). In case the keyword FILE is specified, its value will

be as defined in the cache slots parameter upon using (i.e. opening) the file. In case the keyword SLOTS is not specified, its

current value remains intact. Of note, if object_name is an HDF5 attribute then the cache is ignored (i.e. has no effect).

size_value – optional integer that specifies the total size of the raw data chunk cache in bytes for accessing the HDF5

dataset. In case the keyword DEFAULT is specified, its value is 1048576 (i.e. 1 MB – default value defined by the HDF5

library). In case the keyword FILE is specified, its value will be as defined in the cache size parameter upon using (i.e.

opening) the file. In case the keyword SIZE is not specified, its current value remains intact. Of note, if object_name is an

HDF5 attribute then the cache is ignored (i.e. has no effect).

preemption_value – optional float that specifies the chunk preemption policy for accessing the HDF5 dataset. Its value

must be between 0 and 1. It indicates the weighting according to which chunks which have been fully read or written are

penalized when determining which chunks to flush from cache. In case the keyword DEFAULT is specified, its value is 0.75

(i.e. default value defined by the HDF5 library). In case the keyword FILE is specified, its value will be as defined in the

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 237 of 341

cache preemption parameter upon using (i.e. opening) the file. In case the keyword PREEMPTION is not specified, its

current value remains intact. Of note, if object_name is an HDF5 attribute then the cache is ignored (i.e. has no effect).

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The data selected (i.e. read) from an HDF5 dataset or attribute as an HDFQL_TINYINT (in case the data type of the dataset

or attribute is HDFQL_TINYINT), HDFQL_UNSIGNED_TINYINT (in case the data type of the dataset or attribute is

HDFQL_UNSIGNED_TINYINT), HDFQL_SMALLINT (in case the data type of the dataset or attribute is HDFQL_SMALLINT),

HDFQL_UNSIGNED_SMALLINT (in case the data type of the dataset or attribute is HDFQL_UNSIGNED_SMALLINT),

HDFQL_INT (in case the data type of the dataset or attribute is HDFQL_INT), HDFQL_UNSIGNED_INT (in case the data type

of the dataset or attribute is HDFQL_UNSIGNED_INT), HDFQL_BIGINT (in case the data type of the dataset or attribute is

HDFQL_BIGINT), HDFQL_UNSIGNED_BIGINT (in case the data type of the dataset or attribute is

HDFQL_UNSIGNED_BIGINT), HDFQL_FLOAT (in case the data type of the dataset or attribute is HDFQL_FLOAT),

HDFQL_DOUBLE (in case the data type of the dataset or attribute is HDFQL_DOUBLE), HDFQL_CHAR (in case the data type

of the dataset or attribute is HDFQL_CHAR), HDFQL_VARTINYINT (in case the data type of the dataset or attribute is

HDFQL_VARTINYINT), HDFQL_UNSIGNED_VARTINYINT (in case the data type of the dataset or attribute is

HDFQL_UNSIGNED_VARTINYINT), HDFQL_VARSMALLINT (in case the data type of the dataset or attribute is

HDFQL_VARSMALLINT), HDFQL_UNSIGNED_VARSMALLINT (in case the data type of the dataset or attribute is

HDFQL_UNSIGNED_VARSMALLINT), HDFQL_VARINT (in case the data type of the dataset or attribute is HDFQL_VARINT),

HDFQL_UNSIGNED_VARINT (in case the data type of the dataset or attribute is HDFQL_UNSIGNED_VARINT),

HDFQL_VARBIGINT (in case the data type of the dataset or attribute is HDFQL_VARBIGINT),

HDFQL_UNSIGNED_VARBIGINT (in case the data type of the dataset or attribute is HDFQL_UNSIGNED_VARBIGINT),

HDFQL_VARFLOAT (in case the data type of the dataset or attribute is HDFQL_VARFLOAT), HDFQL_VARDOUBLE (in case

the data type of the dataset or attribute is HDFQL_VARDOUBLE), HDFQL_VARCHAR (in case the data type of the dataset or

attribute is HDFQL_VARCHAR), HDFQL_OPAQUE (in case the data type of the dataset or attribute is HDFQL_OPAQUE),

HDFQL_ENUMERATION (in case the data type of the dataset or attribute is HDFQL_ENUMERATION) or

HDFQL_COMPOUND (in case the data type of the dataset or attribute is HDFQL_COMPOUND).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 238 of 341

Example(s)

create an HDF5 dataset named "my_dataset0" of data type short of one dimension (size 3) with

initial values of 65, 66 and 77

CREATE DATASET my_dataset0 AS SMALLINT(3) VALUES(65, 66, 67)

select (i.e. read) data from dataset "my_dataset0" and populate cursor in use with it (should

be 65, 66, 67)

SELECT FROM my_dataset0

create an HDF5 attribute named "my_attribute0" of data type short

CREATE ATTRIBUTE my_attribute0 AS SMALLINT

select (i.e. read) data from attribute "my_attribute0" and populate cursor in use with it

(should be 0)

SELECT FROM my_attribute0

create an HDF5 attribute named "my_attribute1" of data type unsigned short of one dimension

(size 2) with initial values of 95 and 97

CREATE ATTRIBUTE my_attribute1 AS UNSIGNED SMALLINT(2) VALUES(95, 97)

select (i.e. read) data from attribute "my_attribute1" and populate cursor in use with it

(should be 95, 97)

SELECT FROM my_attribute1

create an HDF5 dataset named "my_dataset1" of data type float of one dimension (size 512)

CREATE DATASET my_dataset1 AS FLOAT(512)

select (i.e. read) data from dataset "my_dataset1" and write it into a text file named

"my_file0.txt" using default separator ","

SELECT FROM my_dataset1 INTO FILE my_file0.txt

select (i.e. read) data from dataset "my_dataset1" and write it into a text file named

"my_file1.txt" using a DOS-based end of line (EOL) terminator and separator "**"

SELECT FROM my_dataset1 INTO DOS TEXT FILE my_file1.txt SEPARATOR **

select (i.e. read) data from dataset "my_dataset1" and write it into a binary file named

"my_file.bin"

SELECT FROM my_dataset1 INTO BINARY FILE my_file.bin

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 239 of 341

create an HDF5 dataset named "my_dataset2" of data type short of one dimension (size 5)

CREATE DATASET my_dataset2 AS SMALLINT(5)

insert (i.e. write) values 0, 5, 3, 9 and 7 into dataset "my_dataset2"

INSERT INTO my_dataset2 VALUES(0, 5, 3, 9, 7)

select (i.e. read) data from dataset "my_dataset2" using a hyperslab selection (starting from

position #3) and populate cursor in use with it (should be 9, 7)

SELECT FROM my_dataset2(3:::)

select (i.e. read) data from dataset "my_dataset2" using a hyperslab selection (starting from

position #4) and populate cursor in use with it (should be 7)

SELECT FROM my_dataset2(-1:::)

select (i.e. read) data from dataset "my_dataset2" using a hyperslab selection (starting from

position #1 with a block of 2) and populate cursor in use with it (should be 5, 3)

SELECT FROM my_dataset2(1:::2)

create an HDF5 dataset named "my_dataset3" of data type int of two dimensions (size 3x3)

CREATE DATASET my_dataset3 AS INT(3, 3)

insert (i.e. write) values 0, 0, 0, 0, 0, 0, 4, 8 and 6 into dataset "my_dataset3"

INSERT INTO my_dataset3 VALUES(0, 0, 0, 0, 0, 0, 4, 8, 6)

select (i.e. read) data from dataset "my_dataset3" using a hyperslab selection (starting from

position #2 of the first dimension and position #1 of the second dimension) and populate cursor

in use with it (should be 8, 6)

SELECT FROM my_dataset3(2:::, 1:::)

select (i.e. read) data from dataset "my_dataset3" using a hyperslab selection (starting from

position #2 of the first dimension and position #0 of the second dimension with a stride of 2,

count of 2 and block of 1) and populate cursor in use with it (should be 4, 6)

SELECT FROM my_dataset3(2:::, 0:2:2:1)

create an HDF5 dataset named "my_dataset4" of data type short of one dimension (size 10)

CREATE DATASET my_dataset4 AS SMALLINT(10)

insert (i.e. write) values 0, 0, 90, 91, 92, 93, 0, 94, 95 and 0 into dataset "my_dataset4"

INSERT INTO my_dataset4 VALUES(0, 0, 90, 91, 92, 93, 0, 94, 95, 0)

select (i.e. read) data from dataset "my_dataset4" using an irregular hyperslab selection

(starting from position #2 with a count of 3 and block of 1; starting from position #4 with a

count of 2 and block of 1; starting from position #7 with a count of 2 and block of 1) and

populate cursor in use with it (should be 90, 91, 92, 93, 94, 95)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 240 of 341

SELECT FROM my_dataset4(2::3:1 OR 4::2:1 OR 7::2:1)

create an HDF5 dataset named "my_dataset5" of data type long long of one dimension (size 15)

CREATE DATASET my_dataset5 AS BIGINT(15)

insert (i.e. write) values 0, 0, 0, 0, 0, 75, 77, 0, 0, 0, 0, 0, 0, 0 and 0 into dataset

"my_dataset5"

INSERT INTO my_dataset5 VALUES(0, 0, 0, 0, 0, 75, 77, 0, 0, 0, 0, 0, 0, 0, 0)

select (i.e. read) data from dataset "my_dataset5" using an irregular hyperslab selection

(starting from position #3 with a count of 4 and block of 1; starting from position #5 with a

count of 3 and block of 1) and populate cursor in use with it (should be 75, 77)

SELECT FROM my_dataset5(3::4:1 AND 5::3:1)

create an HDF5 dataset named "my_dataset6" of data type float of one dimension (size 8)

CREATE DATASET my_dataset6 AS FLOAT(8)

insert (i.e. write) values 0, 0, 7.5, 0, 7.7, 0, 0 and 7.9 into dataset "my_dataset6"

INSERT INTO my_dataset6 VALUES(0, 0, 7.5, 0, 7.7, 0, 0, 7.9)

select (i.e. read) data from dataset "my_dataset6" using a point selection (positions #2, #4

and #7) and populate cursor in use with it (should be 7.5, 7.7, 7.9)

SELECT FROM my_dataset6(2; 4; 7)

create an HDF5 dataset named "my_dataset7" of data type double of two dimensions (size 4x3)

CREATE DATASET my_dataset7 AS DOUBLE(4, 3)

insert (i.e. write) values 0, 0, 0, 0, 0, 15.2, 0, 0, 0, 18.5, 0 and 0 into dataset

"my_dataset7"

INSERT INTO my_dataset7 VALUES(0, 0, 0, 0, 0, 15.2, 0, 0, 0, 18.5, 0, 0)

select (i.e. read) data from dataset "my_dataset7" using a point selection (position #1 of

the first dimension and position #2 of the second dimension, position #3 of the first dimension

and position #0 of the second dimension) and populate cursor in use with it (should be 15.2,

18.5)

SELECT FROM my_dataset7(1, 2; 3, 0)

use (i.e. open) an HDF5 file named "my_file.h5"

USE FILE my_file.h5

create an HDF5 dataset named "my_dataset8" of data type double in the HDF5 file currently in

use (i.e. file "my_file.h5")

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 241 of 341

CREATE DATASET my_dataset8 AS DOUBLE

insert (i.e. write) value 6.5 into dataset "my_dataset8"

INSERT INTO my_dataset8 VALUES(6.5)

select (i.e. read) data from dataset "my_dataset8" and populate cursor in use with it (should

be 6.5)

SELECT FROM my_dataset8

close HDF5 file currently in use (i.e. file "my_file.h5")

CLOSE FILE

insert (i.e. write) value 3.2 into dataset "my_dataset8" in file "my_file.h5"

INSERT INTO my_file.h5 my_dataset8 VALUES(3.2)

select (i.e. read) data from dataset "my_dataset8" in file "my_file.h5" and populate cursor

in use with it (should be 3.2)

SELECT FROM my_file.h5 my_dataset8

create an HDF5 dataset named "my_dataset9" of data type enumeration composed of three members

named "helium" (with value 0), "oxygen" (with value 1) and "argon" (with value 2)

CREATE DATASET my_dataset9 AS ENUMERATION(helium, oxygen, argon)

insert (i.e. write) value 1 (i.e. "oxygen") into dataset "my_dataset9"

INSERT INTO my_dataset9 VALUES(oxygen)

select (i.e. read) data from dataset "my_dataset9" and populate cursor in use with it (should

be 1 – i.e. "oxygen")

SELECT FROM my_dataset9

create an HDF5 attribute named "my_attribute2" of data type enumeration of one dimension

(size 4) composed of three members named "red" (with value 0), "green" (with value 50) and

"blue" (with value 51)

CREATE ATTRIBUTE my_attribute2 AS ENUMERATION(red, green AS 50, blue)(4)

insert (i.e. write) values 51 (i.e. "blue"), "red" (i.e. 0), "green" (i.e. 50) and "blue"

(i.e. 51) into attribute "my_attribute2"

INSERT INTO my_attribute2 VALUES(51, red, green, blue)

select (i.e. read) data from attribute "my_attribute2" and populate cursor in use with it

(should be 51 – i.e. "blue", 0 – i.e. "red", 50 – i.e. "green", 51 – i.e. "blue")

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 242 of 341

SELECT FROM my_attribute2

create a chunked (size 2) HDF5 dataset named "my_dataset10" of data type int of one dimension

(size 6)

CREATE CHUNKED(2) DATASET my_dataset10 AS INT(6)

insert (i.e. write) values 60, 61, 62, 63, 64 and 65 into dataset "my_dataset10"

INSERT INTO my_dataset10 VALUES(60, 61, 62, 63, 64, 65)

select (i.e. read) data directly from chunk #0 of dataset "my_dataset10" (should be 60, 61)

SELECT DIRECTLY FROM my_dataset10

select (i.e. read) data directly from chunk #1 of dataset "my_dataset10" (should be 62, 63)

SELECT DIRECTLY FROM my_dataset10(1)

select (i.e. read) data directly from chunk #2 of dataset "my_dataset10" (should be 64, 65)

SELECT DIRECTLY FROM my_dataset10(2)

// declare variables

char script[1024];

double data[3];

int i;

// create an HDF5 dataset named "my_dataset11" of data type double of one dimension (size 3)

with initial values of 21.1, 18.8 and 75.6

hdfql_execute("CREATE DATASET my_dataset11 AS DOUBLE(3) VALUES(21.1, 18.8, 75.6)");

// register variable "data" for subsequent use (by HDFql)

hdfql_variable_register(data);

// prepare script to select (i.e. read) data from dataset "my_dataset11" and populate variable

"data" with it

sprintf(script, "SELECT FROM my_dataset11 INTO MEMORY %d", hdfql_variable_get_number(data));

// execute script

hdfql_execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)

hdfql_variable_unregister(data);

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 243 of 341

// display content of variable "data" (should be 21.1, 18.8, 75.6)

for(i = 0; i < 3; i++)

{

 printf("%f\n", data[i]);

}

// declare variables

char script[1024];

HDFQL_VARIABLE_LENGTH data[3];

int x;

int y;

int count;

// create an HDF5 dataset named "my_dataset12" of data type variable-length double of one

dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset12 AS VARDOUBLE(3)");

// insert (i.e. write) values into dataset "my_dataset12"

hdfql_execute("INSERT INTO my_dataset12 VALUES((3.2, 1.3), (0, 0.2), (9.1, 7.4, 6.5))");

// register variable "data" for subsequent use (by HDFql)

hdfql_variable_register(data);

// prepare script to select (i.e. read) data from dataset "my_dataset12" and populate variable

"data" with it

sprintf(script, "SELECT FROM my_dataset12 INTO MEMORY %d", hdfql_variable_get_number(data));

// execute script

hdfql_execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)

hdfql_variable_unregister(data);

// display content of variable "data" (should be 3.2, 1.3, 0, 0.2, 9.1, 7.4, 6.5)

for(x = 0; x < 3; x++)

{

 count = data[x].count;

 for(y = 0; y < count; y++)

 {

 printf("%f\n", *((double *) data[x].address + y));

 }

}

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 244 of 341

// release memory allocated (by HDFql) in variable "data"

for(x = 0; x < 3; x++)

{

 free(data[x].address);

}

// declare variables

char script[1024];

char *data[3];

int x;

// create an HDF5 dataset named "my_dataset13" of data type variable-length char of one

dimension (size 3)

hdfql_execute("CREATE DATASET my_dataset13 AS VARCHAR(3)");

// insert (i.e. write) values into dataset "my_dataset13"

hdfql_execute("INSERT INTO my_dataset13 VALUES(\"Hierarchical\", \"Data\", \"Format\")");

// register variable "data" for subsequent use (by HDFql)

hdfql_variable_register(data);

// prepare script to select (i.e. read) data from dataset "my_dataset13" and populate variable

"data" with it

sprintf(script, "SELECT FROM my_dataset13 INTO MEMORY %d", hdfql_variable_get_number(data));

// execute script

hdfql_execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)

hdfql_variable_unregister(data);

// display content of variable "data" (should be "Hierarchical", "Data", "Format")

for(x = 0; x < 3; x++)

{

 printf("%s\n", data[x]);

}

// release memory allocated (by HDFql) in variable "data"

for(x = 0; x < 3; x++)

{

 free(data[x]);

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 245 of 341

}

// declare structure

struct coordinate

{

 double latitude;

 double longitude;

};

// declare variables

char script[1024];

struct coordinate location;

// create an HDF5 attribute named "my_attribute3" of data type compound composed of two members

named "latitude" (of data type double) and "longitude" (of data type double), and with an

initial value of 15.9803486587 for member "latitude" and 48.6352028395 for member "longitude"

hdfql_execute("CREATE ATTRIBUTE my_attribute3 AS COMPOUND(latitude AS DOUBLE, longitude AS

DOUBLE) VALUES(15.9803486587, 48.6352028395)");

// prepare script to select (i.e. read) data from dataset "my_attribute3" and populate variable

"location" with it

sprintf(script, "SELECT FROM my_attribute3 INTO MEMORY %d",

hdfql_variable_transient_register(&location));

// execute script

hdfql_execute(script);

// display content of variable "location" (should be "Latitude is 15.9803486587 and longitude

is 48.6352028395")

printf("Latitude is %f and longitude is %f\n", location.latitude, location.longitude);

// declare structure

struct data

{

 char name[7];

 int index;

};

// declare variables

char script[1024];

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 246 of 341

struct data cities[3];

int number;

int i;

// create an HDF5 dataset named "my_dataset14" of data type compound of one dimension (size 3)

composed of two members named "name" (of data type char) and "index" (of data type int), and

with initial values of "Toronto" and 10 for the first position, "Nairobi" and 12 for the second

position, and "Caracas" and 11 for the third position

hdfql_execute("CREATE DATASET my_dataset14 AS COMPOUND(name AS CHAR(7), index AS INT)(3)

VALUES((Toronto, 10), (Nairobi, 12), (Caracas, 11))");

// register variable "cities" for subsequent use (by HDFql)

number = hdfql_variable_register(cities);

// prepare script to select (i.e. read) data from dataset "my_dataset14" and populate variable

"cities" with it

sprintf(script, "SELECT FROM my_dataset14 INTO MEMORY %d SIZE %d OFFSET(%d, %d)", number,

sizeof(struct data), offsetof(struct data, name), offsetof(struct data, index));

// execute script

hdfql_execute(script);

// unregister variable "cities" as it is no longer used/needed (by HDFql)

hdfql_variable_unregister(cities);

// display content of variable "cities" (should be "The city of Toronto has index 10", "The

city of Nairobi has index 12", "The city of Caracas has index 11")

for(i = 0; i < 3; i++)

{

 printf("The city of %s has index %d\n", cities[i].name, cities[i].index);

}

// assume that 1) the following program is launched in parallel using four MPI processes (e.g.

"mpiexec –n 4 my_program"), 2) an HDF5 file named "my_file.h5" containing a dataset named

"my_dataset15" of data type int of one dimension (size 4) already exists, and 3) the dataset

stores the values 0, 10, 20 and 30 in positions #0, #1, #2 and #3 respectively

// declare variables

char script[1024];

int rank;

// use (i.e. open) an HDF5 file named "my_file.h5" in parallel

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 247 of 341

hdfql_execute("USE FILE my_file.h5 IN PARALLEL");

// get number (i.e. rank) of the MPI process (should be between 0 and 3)

rank = hdfql_mpi_get_rank();

// prepare script to select (i.e. read) in parallel positions #0 (by MPI process rank 0), #1

(by MPI process rank 1), #2 (by MPI process rank 2) and #3 (by MPI process rank 3) from dataset

"my_dataset15" using a point selection

sprintf(script, "SELECT FROM my_dataset15(%d) IN PARALLEL", rank);

// execute script

hdfql_execute(script);

// move the cursor in use to the first position within the result set

hdfql_cursor_first(NULL);

// display value selected (i.e. read) by each MPI process (should display message "Value read

by MPI process rank X is Y" four times, where X is 0 and Y is 0, X is 1 and Y is 10, X is 2 and

Y is 20, or X is 3 and Y is 30 (not necessarily in this order))

printf("Value read by MPI process rank %d is %d\n", rank, *hdfql_cursor_get_int(NULL));

6.7 DATA INTROSPECTION LANGUAGE (DIL)

HDFql has certain operations that retrieve information about the internals of HDF5 files but also about HDFql itself and the

runtime environment. These operations are part of the Data Introspection Language (DIL) and they all begin with the

keyword SHOW. Moreover, these operations support both POST-PROCESSING and REDIRECTING options to further

transform and redirect the result of operations according to the programmer’s needs. Typically, a DIL operation has the

following syntactical form:

SHOW operation_name [post_processing_option [post_processing_option]*] [output_redirecting_option]

6.7.1 SHOW FILE VALIDITY

Syntax

SHOW FILE VALIDITY file_name [, file_name]*

[post_processing_option [post_processing_option]*]

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 248 of 341

[output_redirecting_option]

Description

Show (i.e. get) validity of a file named file_name (i.e. whether it is a valid HDF5 file or not). Multiple files’ validities can be

checked at once by separating these with a comma (,). If file_name was not found or its validity could not be checked (due

to unknown/unexpected reasons), no subsequent files are checked, and an error is raised.

Parameter(s)

file_name – mandatory string that specifies the name of the file whose validity is to be obtained. Multiple files are

separated with a comma (,).

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The validity of a file as an HDFQL_INT, which can either be HDFQL_YES or HDFQL_NO depending on whether the file is a

valid HDF5 file or not.

Example(s)

create an HDF5 file named "my_file.h5"

CREATE FILE my_file.h5

show (i.e. get) validity of file "my_file.h5" (should be 0 – i.e. HDFQL_YES)

SHOW FILE VALIDITY my_file.h5

show (i.e. get) validity of a file named "not_an_hdf_file.xml" (should be -1 – i.e. HDFQL_NO)

(assume that the file "not_an_hdf_file.xml" exists and contains XML text)

SHOW FILE VALIDITY not_an_hdf_file.xml

show (i.e. get) validity of both files "my_file.h5" and "not_an_hdf_file.xml" at once (should

be 0, -1)

SHOW FILE VALIDITY my_file.h5, not_an_hdf_file.xml

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 249 of 341

6.7.2 SHOW USE DIRECTORY

Syntax

SHOW USE DIRECTORY

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) working directory currently in use.

Parameter(s)

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The working directory currently in use as an HDFQL_VARCHAR.

Example(s)

set working directory currently in use to "/"

USE DIRECTORY /

show (i.e. get) current working directory (should be "/")

SHOW USE DIRECTORY

create a directory named "my_directory"

CREATE DIRECTORY my_directory

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 250 of 341

set working directory currently in use to "my_directory" (more precisely "/my_directory")

USE DIRECTORY my_directory

show (i.e. get) current working directory (should be "/my_directory")

SHOW USE DIRECTORY

create two directories named "my_subdirectory0" and "my_subdirectory1" (both directories will

be created in directory "/my_directory")

CREATE DIRECTORY my_subdirectory0, my_subdirectory1

set directory currently in use to "my_subdirectory0" (more precisely

"/my_directory/my_subdirectory0")

USE DIRECTORY my_subdirectory0

show (i.e. get) current working directory (should be "/my_directory/my_subdirectory0")

SHOW USE DIRECTORY

set directory currently in use to "my_subdirectory1" located one level up (more precisely

"/my_directory/my_subdirectory1")

USE DIRECTORY ../my_subdirectory1

show (i.e. get) current working directory (should be "/my_directory/my_subdirectory1")

SHOW USE DIRECTORY

set directory currently in use two levels up (should be "/")

USE DIRECTORY ../..

show (i.e. get) current working directory (should be "/")

SHOW USE DIRECTORY

6.7.3 SHOW USE FILE

Syntax

SHOW USE FILE [file_name]

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 251 of 341

Description

Show (i.e. get) HDF5 file currently in use or check if a certain HDF5 file is used (i.e. opened). If file_name is not used an

error is raised.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file to check if it is used (i.e. opened). If file_name is not

specified, the name of the (HDF5) file currently in use is returned. Otherwise, if it is specified, file_name is checked if it is

used amongst all files that are being used.

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The HDF5 file currently in use or the HDF5 file being checked if it is used as an HDFQL_VARCHAR, or nothing (in case no file

is in use).

Example(s)

show (i.e. get) HDF5 file currently in use (i.e. open) (should be empty)

SHOW USE FILE

use (i.e. open) four HDF5 files named "my_file0.h5", "my_file1.h5", "my_file2.h5" and

"my_file3.h5"

USE FILE my_file0.h5, my_file1.h5, my_file2.h5, my_file3.h5

show (i.e. get) HDF5 file currently in use (i.e. open) (should be "my_file3.h5")

SHOW USE FILE

check if a file named "my_file1.h5" is used (i.e. opened) (should be "my_file1.h5" - i.e. it

is used (i.e. opened))

SHOW USE FILE my_file1.h5

close HDF5 file currently in use (i.e. file "my_file3.h5")

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 252 of 341

CLOSE FILE

show (i.e. get) HDF5 file currently in use (i.e. open) (should be my_"file2.h5")

SHOW USE FILE

close HDF5 file "my_file1.h5"

CLOSE FILE my_file1.h5

show (i.e. get) HDF5 file currently in use (i.e. open) (should be "my_file2.h5")

SHOW USE FILE

close HDF5 file currently in use (i.e. file "my_file2.h5")

CLOSE FILE

show (i.e. get) HDF5 file currently in use (i.e. open) (should be "my_file0.h5")

SHOW USE FILE

close HDF5 file currently in use (i.e. file "my_file0.h5")

CLOSE FILE

show (i.e. get) HDF5 file currently in use (i.e. open) (should be empty)

SHOW USE FILE

6.7.4 SHOW ALL USE FILE

Syntax

SHOW ALL USE FILE

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) all HDF5 files in use (i.e. open).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 253 of 341

Parameter(s)

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

All HDF5 files in use (i.e. open) as an HDFQL_VARCHAR or nothing (in case no files are in use).

Example(s)

show (i.e. get) all HDF5 files in use (i.e. open) (should be empty)

SHOW ALL USE FILE

use (i.e. open) three HDF5 files named "my_file0.h5", "my_file1.h5" and "my_file2.h5"

USE FILE my_file0.h5, my_file1.h5, my_file2.h5

show (i.e. get) all HDF5 files in use (i.e. open) (should be "my_file2.h5", "my_file1.h5",

"my_file0.h5")

SHOW ALL USE FILE

close all HDF5 files in use (i.e. open)

CLOSE ALL FILE

show (i.e. get) all HDF5 files in use (i.e. open) (should be empty)

SHOW ALL USE FILE

6.7.5 SHOW USE GROUP

Syntax

SHOW USE GROUP

[post_processing_option [post_processing_option]*]

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 254 of 341

[output_redirecting_option]

Description

Show (i.e. get) HDF5 group currently in use.

Parameter(s)

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The HDF5 group currently in use as an HDFQL_VARCHAR or nothing (in case no file is in use).

Example(s)

use (i.e. open) an HDF5 file named "my_file.h5"

USE FILE my_file.h5

show (i.e. get) current working group (should be "/")

SHOW USE GROUP

create an HDF5 group named "my_group"

CREATE GROUP my_group

set group currently in use to "my_group" (more precisely "/my_group")

USE GROUP my_group

show (i.e. get) current working group (should be "/my_group")

SHOW USE GROUP

create two HDF5 groups named "my_subgroup0" and "my_subgroup1" (both groups will be created

in group "/my_group")

CREATE GROUP my_subgroup0, my_subgroup1

set group currently in use to "my_subgroup0" (more precisely "/my_group/my_subgroup0")

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 255 of 341

USE GROUP my_subgroup0

show (i.e. get) current working group (should be "/my_group/my_subgroup0")

SHOW USE GROUP

set group currently in use to "." (the group currently in use will not change as "." refers

to the current working group itself)

USE GROUP .

show (i.e. get) current working group (should be "/my_group/my_subgroup0")

SHOW USE GROUP

set group currently in use to "my_subgroup1" located one level up (more precisely

"/my_group/my_subgroup1")

USE GROUP ../my_subgroup1

set group currently in use two levels up (should be "/")

USE GROUP ../..

6.7.6 SHOW [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK]

Syntax

SHOW [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK] [[file_name] object_name]

[LIKE regular_expression [DEEP deep_value [, deep_value]*]]

[WHERE condition]

[ORDER CREATION]

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) HDF5 objects (i.e. groups, datasets, attributes, (soft) links or external links) within an HDF5 group or dataset

named object_name or check the existence of an object named object_name. If object_name is not specified, all objects

are returned – to return only objects of type group, dataset, attribute, (soft) link or external link, specify the keyword

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 256 of 341

GROUP, DATASET, ATTRIBUTE, [SOFT] LINK or EXTERNAL LINK respectively. Otherwise, if it is specified and the keyword

LIKE is not specified, one of the following behaviors applies:

 If it ends with “/”, object_name will be treated as a group or dataset, and all groups, datasets or attributes stored in

object_name are returned.

 If it does not end with “/”, object_name will be checked for its existence. If it does exist, object_name is returned;

otherwise, if it does not exist, an error is raised.

If the keyword LIKE is specified, only objects with names complying with a regular expression named regular_expression

will be returned (in HDFql, regular expressions are the ones specified by PCRE which closely follow PERL5 syntax – please

refer to http://www.pcre.org and http://perldoc.perl.org/perlre.html for additional information). As a general rule, in case

regular_expression is composed of spaces, special characters or reserved keywords (e.g. SELECT), it should be surrounded

by double-quotes (“). Otherwise, if it is not surrounded by double-quotes, objects will not be returned and an error is

raised. If regular_expression includes “**”, recursive search is performed (i.e. HDFql will search in all existing groups and

subgroups for objects). To limit the recursiveness, the keyword DEEP may be specified along with a value deep_value

representing the maximum recursiveness limit.

A special type of ordering can be performed using the keyword ORDER CREATION allowing HDF5 objects (i.e. groups,

datasets, attributes, (soft) links or external links) to be returned according to their time of creation48 – in contrast to the

default behavior which returns objects in an ascending order.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file which stores the objects (i.e. groups, datasets,

attributes, (soft) links or external links) to show (i.e. get) or check for their existence. If file_name is specified, the file is

opened on the fly, the objects are obtained or checked for their existence and, afterwards, the file is closed. Otherwise, if

it is not specified, the objects to obtain or check for their existence are stored in the file currently in use.

object_name – optional string that specifies the name of the HDF5 group or dataset to show (i.e. get) existing objects (i.e.

groups, datasets, attributes, (soft) links or external links) within object_name or check the existence of an object named

object_name.

regular_expression – optional string that specifies the regular expression which only names of objects that comply with it

are returned. If regular_expression includes “**”, recursive search is performed.

48 This assumes that the HDF5 group or dataset storing the objects was created with the option of tracking objects by their time of creation. Otherwise, if

the group or dataset was not created with the option of tracking objects by their time of creation, the keyword ORDER CREATION is ignored (i.e. has no

effect). Please refer to the CREATE GROUP and CREATE DATASET operations for additional information.

http://www.pcre.org/
http://perldoc.perl.org/perlre.html

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 257 of 341

deep_value – optional integer that specifies the maximum recursiveness limit (i.e. how deep recursive search is

performed).

condition – to be defined.

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The HDF5 objects (i.e. groups, datasets, attributes, (soft) links or external links) within an HDF5 group or dataset or the

existence of an object as an HDFQL_VARCHAR.

Example(s)

set group currently in use to "/" (i.e. the root of the HDF5 file)

USE GROUP /

create two HDF5 groups named "my_group0" and "my_group1" (both groups will be created in

group "/")

CREATE GROUP my_group0, my_group1

create one HDF5 dataset named "my_dataset0" of data type unsigned short (it will be created

in group "/")

CREATE DATASET my_dataset0 AS UNSIGNED SMALLINT

create one HDF5 dataset named "my_dataset1" of data type short (it will be created in group

"/my_group0")

CREATE DATASET my_group0/my_dataset1 AS SMALLINT

create two HDF5 attributes named "my_attribute0" and "my_attribute1" of data type long long

(both attributes will be created in group "/")

CREATE ATTRIBUTE my_attribute0, my_attribute1 AS BIGINT

create one HDF5 attribute named "my_attribute2" of data type char (it will be created in

group "/my_group0")

CREATE ATTRIBUTE my_group0/my_attribute2 AS TINYINT

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 258 of 341

create one HDF5 attribute named "my_attribute3" of data type unsigned char (it will be

created in dataset "/my_dataset0")

CREATE ATTRIBUTE my_dataset0/my_attribute3 AS UNSIGNED TINYINT

show (i.e. get) all HDF5 objects existing in group "/" (should be "my_group0", "my_group1",

"my_dataset0", "my_attribute0", "my_attribute1")

SHOW

show (i.e. get) all HDF5 groups existing in group "/" (should be "my_group0", "my_group1")

SHOW GROUP

show (i.e. get) all HDF5 datasets existing in group "/" (should be "my_dataset0")

SHOW DATASET

check if HDF5 object "my_groupX" exists (should raise an error)

SHOW my_groupX

check if HDF5 object "my_group0" exists (should be "my_group0")

SHOW my_group0

show (i.e. get) all HDF5 objects existing within group "my_group0" (should be "my_dataset1",

"my_attribute2")

SHOW my_group0/

show (i.e. get) all HDF5 attributes existing within group "my_group0" (should be

"my_attribute2")

SHOW ATTRIBUTE my_group0/

show (i.e. get) all HDF5 objects existing within dataset "my_dataset0" (should be

"my_attribute3")

SHOW my_dataset0/

create an HDF5 group named "my_group1" that tracks the objects’ (i.e. groups and datasets)

creation order within the group

CREATE GROUP my_group1 ORDER TRACKED

create two HDF5 groups named "my_subgroup1" and "my_subgroup0" (both groups will be created

in group "/my_group1")

CREATE GROUP my_group1/my_subgroup1, my_group1/my_subgroup0

create two HDF5 datasets named "my_dataset1" and "my_dataset0" of data type float (both

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 259 of 341

datasets will be created in group "/my_group1")

CREATE DATASET my_group1/my_dataset1, my_group1/my_dataset0 AS FLOAT

show (i.e. get) all HDF5 objects existing within group "my_group1" (should be "my_dataset0",

"my_dataset1", "my_subgroup0", "my_subgroup1")

SHOW my_group1/

show (i.e. get) all HDF5 objects existing within group "my_group1" ordered by their time of

creation (should be "my_subgroup1", "my_subgroup0", "my_dataset1", "my_dataset0")

SHOW my_group1/ ORDER CREATION

create an HDF5 dataset named "my_dataset1" of data type double that tracks the attributes’

creation order within the dataset

CREATE DATASET my_dataset1 AS DOUBLE ATTRIBUTE ORDER TRACKED

create two HDF5 attributes named "my_attribute2" and "my_attribute0" of data type int (both

attributes will be created in dataset "/my_dataset1")

CREATE ATTRIBUTE my_dataset1/my_attribute2, my_dataset1/my_attribute0 AS INT

create an HDF5 attribute named "my_attribute1" of data type short (it will be created in

dataset "/my_dataset1")

CREATE ATTRIBUTE my_dataset1/my_attribute1 AS SMALLINT

show (i.e. get) all HDF5 objects existing within dataset "my_dataset1" (should be

"my_attribute0", "my_attribute1", "my_attribute2")

SHOW my_dataset1/

show (i.e. get) all HDF5 objects existing within dataset "my_dataset1" ordered by their time

of creation (should be" my_attribute2", "my_attribute0", "my_attribute1")

SHOW my_dataset1/ ORDER CREATION

create an HDF5 group named "my_group2"

CREATE GROUP my_group2

create two HDF5 groups named "my_subgroup0" and "my_subgroup1" (both groups will be created

in group "/my_group2")

CREATE GROUP my_group2/my_subgroup0, my_group2/my_subgroup1

create three HDF5 groups in one go named "my_group3" (in root group "/"), "my_subgroup0" (in

group "my_group3") and "my_subsubgroup0" (in group "my_group3/my_subgroup0")

CREATE GROUP my_group3/my_subgroup0/my_subsubgroup0

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 260 of 341

create an HDF5 dataset named "my_dataset2" (in root group "/") of data type double

CREATE DATASET my_dataset2 AS DOUBLE

create an HDF5 dataset named "my_dataset0" (in group "my_group2") of data type int

CREATE DATASET my_group2/my_dataset0 AS INT

create an HDF5 dataset named "my_dataset1" (in group "my_group2") of data type short

CREATE DATASET my_group2/my_dataset1 AS SMALLINT

create an HDF5 dataset named "my_dataset0" (in group "my_group3") of data type float

CREATE DATASET my_group3/my_dataset0 AS FLOAT

create an HDF5 dataset named "my_dataset0" (in group "my_group3/my_subgroup0") of data type

char

CREATE DATASET my_group3/my_subgroup0/my_dataset0 AS TINYINT

create an HDF5 attribute named "my_attribute3" (in group "/") of data type long long

CREATE ATTRIBUTE my_attribute3 AS BIGINT

create an HDF5 attribute named "my_attribute4" (in group "/") of data type unsigned int

CREATE ATTRIBUTE my_attribute4 AS UNSIGNED INT

create two HDF5 attributes in one go that are both named "my_attribute0" (one in group

"my_group2" and the other in "my_group3") of data type variable float

CREATE ATTRIBUTE my_group2/my_attribute0, my_group3/my_attribute0 AS VARFLOAT

create an HDF5 attribute named "my_attribute0" (in dataset "my_dataset2") of data type

variable char

CREATE ATTRIBUTE my_dataset2/my_attribute0 AS VARCHAR

show (i.e. get) all HDF5 objects from group "/" that has "3" in their names (should be

"my_attribute3", "my_group3")

SHOW LIKE 3

show (i.e. get) all HDF5 attributes from group "/" that has "3" in their names (should be

"my_attribute3")

SHOW ATTRIBUTE LIKE 3

show (i.e. get) all HDF5 objects recursively starting from group "/" (should be

"my_attribute3", "my_attribute4", "my_dataset2", "my_dataset2/my_attribute0", "my_group2",

"my_group2/my_attribute0", "my_group2/my_dataset0", "my_group2/my_dataset1",

"my_group2/my_subgroup0", "my_group2/my_subgroup1", "my_group3", "my_group3/my_attribute0",

"my_group3/my_dataset0", "my_group3/my_subgroup0", "my_group3/my_subgroup0/my_dataset0",

"my_group3/my_subgroup0/my_subsubgroup0")

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 261 of 341

SHOW LIKE **

show (i.e. get) all HDF5 datasets recursively starting from group "/" (should be

"my_dataset2", "my_group2/my_dataset0", "my_group2/my_dataset1", "my_group3/my_dataset0",

"my_group3/my_subgroup0/my_dataset0")

SHOW DATASET LIKE **

show (i.e. get) all HDF5 datasets recursively starting from group "/" and one level deep at

most (should be "my_dataset2", "my_group2/my_dataset0", "my_group2/my_dataset1",

"my_group3/my_dataset0")

SHOW DATASET LIKE ** DEEP 1

show (i.e. get) all HDF5 objects recursively starting from group "my_group3" (should be

"my_attribute0", "my_dataset0", "my_subgroup0", "my_subgroup0/my_dataset0",

"my_subgroup0/my_subsubgroup0")

SHOW my_group3 LIKE **

show (i.e. get) all HDF5 groups recursively starting from group "my_group3" (should be

"my_subgroup0", "my_subgroup0/my_subsubgroup0")

SHOW GROUP my_group3 LIKE **

show (i.e. get) all HDF5 objects recursively starting from group "/" that has "2" in their

names (should be "my_dataset2", "my_group2")

SHOW LIKE **/2

show (i.e. get) all HDF5 groups recursively starting from group "/" that has "1" or "2" in

their names (should be "my_group2", "my_group2/my_subgroup1")

SHOW GROUP LIKE **/1|2

show (i.e. get) all HDF5 objects recursively starting from group "/" that starts with "sub"

in their names (should be "my_group2/my_subgroup0", "my_group2/my_subgroup1",

"my_group3/my_subgroup0", "my_group3/my_subgroup0/my_subsubgroup0")

SHOW LIKE **/^my_sub

use (i.e. open) an HDF5 file named "my_file.h5"

USE FILE my_file.h5

create an HDF5 group named "my_group3" in the HDF5 file currently in use (i.e. file

"my_file.h5")

CREATE GROUP my_group3

create two HDF5 datasets named "my_dataset3" and "my_dataset4" of data type double both in

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 262 of 341

the HDF5 file currently in use (i.e. file "my_file.h5")

CREATE DATASET my_dataset3, my_dataset4 AS DOUBLE

show (i.e. get) all HDF5 objects existing in group "/" of the HDF5 file currently in use

(i.e. file "my_file.h5") (should be "my_group3", "my_dataset3", "my_dataset4")

SHOW /

close HDF5 file currently in use (i.e. file "my_file.h5")

CLOSE FILE

show (i.e. get) all HDF5 objects existing in group "/" of file "my_file.h5" (should be

"my_group3", "my_dataset3", "my_dataset4")

SHOW my_file.h5 /

6.7.7 SHOW TYPE

Syntax

SHOW TYPE [file_name] object_name [, [file_name] object_name]*

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) type of an object named object_name. Multiple objects’ types can be obtained at once by separating these

with a comma (,). If object_name was not found or its type could not be checked (due to unknown/unexpected reasons),

no subsequent objects are checked, and an error is raised.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file which stores the object to show (i.e. get) the type. If

file_name is specified, the file is opened on the fly, the type of the object is obtained and, afterwards, the file is closed.

Otherwise, if it is not specified, the object (whose type is to be obtained) is stored in the file currently in use.

object_name – name of the object whose type is to be obtained. Multiple objects are separated with a comma (,).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 263 of 341

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The type of an object as an HDFQL_INT, which can either be HDFQL_GROUP, HDFQL_DATASET, HDFQL_ATTRIBUTE,

HDFQL_GROUP | HDFQL_SOFT_LINK, HDFQL_DATASET | HDFQL_SOFT_LINK, HDFQL_GROUP | HDFQL_EXTERNAL_LINK, or

HDFQL_DATASET | HDFQL_EXTERNAL_LINK depending on whether the object is a group, dataset, attribute, group and

(soft) link at the same time, dataset and (soft) link at the same time, group and external link at the same time, or dataset

and external link at the same time, respectively.

Example(s)

create an HDF5 group named "my_object0"

CREATE GROUP my_object0

create an HDF5 dataset named "my_object1" of data type double

CREATE DATASET my_object1 AS DOUBLE

create an HDF5 attribute named "my_object2" of data type float

CREATE ATTRIBUTE my_object2 AS FLOAT

create an HDF5 soft link named "my_object3" to object "my_object0"

CREATE SOFT LINK my_object3 TO my_object0

create an HDF5 external link named "my_object4" to object "my_object" (assumed to be a

dataset) in file "my_file.h5"

CREATE EXTERNAL LINK my_object4 TO my_file.h5 my_object

show (i.e. get) type of object "my_object0" (should be 4 – i.e. HDFQL_GROUP)

SHOW TYPE my_object0

show (i.e. get) type of object "my_object1" (should be 8 – i.e. HDFQL_DATASET)

SHOW TYPE my_object1

show (i.e. get) type of object "my_object2" (should be 16 – i.e. HDFQL_ATTRIBUTE)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 264 of 341

SHOW TYPE my_object2

show (i.e. get) type of both objects "my_object0" and "my_object2" at once (should be 4, 16)

SHOW TYPE my_object0, my_object2

show (i.e. get) type of object "my_object3" (should be 36 – i.e. HDFQL_GROUP |

HDFQL_SOFT_LINK)

SHOW TYPE my_object3

show (i.e. get) type of object "my_object4" (should be 136 – i.e. HDFQL_DATASET |

HDFQL_EXTERNAL_LINK)

SHOW TYPE my_object4

6.7.8 SHOW DATA TYPE

Syntax

SHOW [DATASET | ATTRIBUTE] DATA TYPE [file_name] object_name

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) data type of an HDF5 dataset or attribute or of its members named object_name. In case a dataset and an

attribute with identical names (object_name) are stored in the same location (i.e. group) and neither the keyword

DATASET nor ATTRIBUTE is specified, the data type returned belongs to the dataset. To explicitly get the data type of

object_name according to its type, the keyword DATASET or ATTRIBUTE must be specified. If object_name ends with “/”

and is of data type HDFQL_ENUMERATION or HDFQL_COMPOUND, the data types of members of object_name are

returned instead.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file which stores the dataset or attribute to show (i.e. get)

the data type. If file_name is specified, the file is opened on the fly, the data type of the dataset or attribute is obtained

and, afterwards, the file is closed. Otherwise, if it is not specified, the dataset or attribute (whose data type is to be

obtained) is stored in the file currently in use.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 265 of 341

object_name – mandatory string that specifies the name of the HDF5 dataset or attribute whose data type is to be

obtained, or of its members in case it ends with “/” and the dataset or attribute is of data type HDFQL_ENUMERATION or

HDFQL_COMPOUND.

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The data type of an HDF5 dataset or attribute or of its members as an HDFQL_INT, which can either be HDFQL_TINYINT,

HDFQL_UNSIGNED_TINYINT, HDFQL_SMALLINT, HDFQL_UNSIGNED_SMALLINT, HDFQL_INT, HDFQL_UNSIGNED_INT,

HDFQL_BIGINT, HDFQL_UNSIGNED_BIGINT, HDFQL_FLOAT, HDFQL_DOUBLE, HDFQL_CHAR, HDFQL_VARTINYINT,

HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT,

HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE,

HDFQL_VARCHAR, HDFQL_OPAQUE, HDFQL_BITFIELD, HDFQL_ENUMERATION, HDFQL_COMPOUND, HDFQL_REFERENCE

or HDFQL_UNDEFINED (please refer to Table 6.3 for additional information about data types).

Example(s)

create an HDF5 dataset named "my_dataset0" of data type double

CREATE DATASET my_dataset0 AS DOUBLE

show (i.e. get) data type of dataset "my_dataset0" (should be 512 – i.e. HDFQL_DOUBLE)

SHOW DATA TYPE my_dataset0

create an HDF5 dataset named "my_dataset1" of data type float

CREATE DATASET my_dataset1 AS FLOAT

show (i.e. get) data type of dataset "my_dataset1" (should be 256 – i.e. HDFQL_FLOAT)

SHOW DATA TYPE my_dataset1

create an HDF5 dataset named "my_common" of data type short

CREATE DATASET my_common AS SMALLINT

create an HDF5 attribute named "my_common" of data type int

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 266 of 341

CREATE ATTRIBUTE my_common AS INT

show (i.e. get) data type of dataset "my_common" (should be 4 – i.e. HDFQL_SMALLINT)

SHOW DATA TYPE my_common

show (i.e. get) data type of dataset "my_common" (should be 4 – i.e. HDFQL_SMALLINT)

SHOW DATASET DATA TYPE my_common

show (i.e. get) data type of attribute "my_common" (should be 16 – i.e. HDFQL_INT)

SHOW ATTRIBUTE DATA TYPE my_common

create an HDF5 dataset named "my_dataset2" of data type enumeration composed of four members

named "dog" (with value 0), "cat" (with value 1), "cow" (with value 2) and "owl" (with value 3)

CREATE DATASET my_dataset2 AS ENUMERATION(dog, cat, cow, owl)

show (i.e. get) data type of dataset "my_dataset2" (should be 16777216 – i.e.

HDFQL_ENUMERATION)

SHOW DATA TYPE my_dataset2

show (i.e. get) data types of members of dataset "my_dataset2" (should be 1 – i.e.

HDFQL_TINYINT, 1 – i.e. HDFQL_TINYINT, 1 – i.e. HDFQL_TINYINT, 1 – i.e. HDFQL_TINYINT)

SHOW DATA TYPE my_dataset2/

create an HDF5 attribute named "my_attribute0" of data type enumeration composed of two

members named "car" (with value 1000) and "plane" (with value 2000)

CREATE ATTRIBUTE my_attribute0 AS ENUMERATION(car AS 1000, plane AS 2000)

show (i.e. get) data types of members of attribute "my_attribute0" (should be 4 – i.e.

HDFQL_SMALLINT, 4 – i.e. HDFQL_SMALLINT)

SHOW DATA TYPE my_attribute0/

create an HDF5 dataset named "my_dataset3" of data type compound composed of three members

named "name" (of data type variable-length char), "age" (of data type unsigned int) and

"weight" (of data type float)

CREATE DATASET my_dataset3 AS COMPOUND(name AS VARCHAR, age AS UNSIGNED INT, weight AS FLOAT)

show (i.e. get) data type of dataset "my_dataset3" (should be 33554432 – i.e. HDFQL_COMPOUND)

SHOW DATA TYPE my_dataset3

show (i.e. get) data types of members of dataset "my_dataset3" (should be 2097152 – i.e.

HDFQL_VARCHAR, 32 – i.e. HDFQL_UNSIGNED_INT, 256 – i.e. HDFQL_FLOAT)

SHOW DATA TYPE my_dataset3/

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 267 of 341

create an HDF5 attribute named "my_attribute1" of data type compound composed of three

members named "id" (of data type long long), "description" (of data type variable-length char)

and "position" (of data type compound composed of two members named "x" (of data type short)

and "y" (of data type short))

CREATE ATTRIBUTE my_attribute1 AS COMPOUND(id AS BIGINT, description AS VARCHAR, position AS

COMPOUND(x AS SMALLINT, y AS SMALLINT))

show (i.e. get) data types of members of attribute "my_attribute1" (should be 64 – i.e.

HDFQL_BIGINT, 2097152 – i.e. HDFQL_VARCHAR, 33554432 – i.e. HDFQL_COMPOUND, 4 – i.e.

HDFQL_SMALLINT, 4 – i.e. HDFQL_SMALLINT)

SHOW DATA TYPE my_attribute1/

6.7.9 SHOW MEMBER

Syntax

SHOW [DATASET | ATTRIBUTE] MEMBER [file_name] object_name

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) members of an HDF5 dataset or attribute named object_name. If object_name was not found or its

members could not be checked (due to its data type not being HDFQL_ENUMERATION or HDFQL_COMPOUND, or for

unknown/unexpected reasons), an error is raised. In case a dataset and an attribute with identical names (object_name)

are stored in the same location (i.e. group) and neither the keyword DATASET nor ATTRIBUTE is specified, the members

returned belongs to the dataset. To explicitly get the members of object_name according to its type, the keyword

DATASET or ATTRIBUTE must be specified.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file which stores the dataset or attribute to show (i.e. get)

the members. If file_name is specified, the file is opened on the fly, the members of the dataset or attribute are obtained

and, afterwards, the file is closed. Otherwise, if it is not specified, the dataset or attribute (whose members are to be

obtained) is stored in the file currently in use.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 268 of 341

object_name – mandatory string that specifies the name of the HDF5 dataset or attribute whose members are to be

obtained.

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The members of an HDF5 dataset or attribute as an HDFQL_INT, which can either be HDFQL_TINYINT,

HDFQL_UNSIGNED_TINYINT, HDFQL_SMALLINT, HDFQL_UNSIGNED_SMALLINT, HDFQL_INT, HDFQL_UNSIGNED_INT,

HDFQL_BIGINT, HDFQL_UNSIGNED_BIGINT, HDFQL_FLOAT, HDFQL_DOUBLE, HDFQL_CHAR, HDFQL_VARTINYINT,

HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT,

HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE,

HDFQL_VARCHAR, HDFQL_OPAQUE, HDFQL_BITFIELD, HDFQL_ENUMERATION, HDFQL_COMPOUND, HDFQL_REFERENCE

or HDFQL_UNDEFINED (please refer to Table 6.3 for additional information about data types).

Example(s)

create an HDF5 dataset named "my_dataset0" of data type enumeration composed of three members

named "Paris" (with value 0), "Rome" (with value 1) and "Oslo" (with value 2)

CREATE DATASET my_dataset0 AS ENUMERATION(Paris, Rome, Oslo)

show (i.e. get) members of dataset "my_dataset0" (should be "Paris", 0, "Rome", 1, "Oslo", 2)

SHOW MEMBER my_dataset0

create an HDF5 dataset named "my_dataset1" of data type enumeration composed of three members

named "red" (with value 0), "green" (with value 5) and "blue" (with value 6)

CREATE DATASET my_dataset1 AS ENUMERATION(red, green AS 5, blue)

show (i.e. get) members of dataset "my_dataset1" (should be "red", 0, "green", 5, "blue", 6)

SHOW MEMBER my_dataset1

create an HDF5 attribute named "my_attribute0" of data type enumeration composed of two

members named "car" (with value 1000) and "plane" (with value 2000)

CREATE ATTRIBUTE my_attribute0 AS ENUMERATION(car AS 1000, plane AS 2000)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 269 of 341

show (i.e. get) members of attribute "my_attribute0" (should be "car", 1000, "plane", 2000)

SHOW MEMBER my_attribute0

create an HDF5 dataset named "my_dataset2" of data type compound composed of three members

named "name" (of data type variable-length char), "age" (of data type unsigned int) and

"weight" (of data type float)

CREATE DATASET my_dataset2 AS COMPOUND(name AS VARCHAR, age AS UNSIGNED INT, weight AS FLOAT)

show (i.e. get) members of dataset "my_dataset2" (should be "name", "age", "weight")

SHOW MEMBER my_dataset2

create an HDF5 attribute named "my_attribute1" of data type compound composed of four members

named "id" (of data type long long), "description" (of data type variable-length char),

"position" (of data type compound composed of two members named "x" (of data type short) and

"y" (of data type short)) and "temperature" (of data type enumeration composed of three members

named "cold" (with value 0), "warm" (with value 1) and "hot" (with value 10))

CREATE ATTRIBUTE my_attribute1 AS COMPOUND(id AS BIGINT, description AS VARCHAR, position AS

COMPOUND(x AS SMALLINT, y AS SMALLINT), temperature AS ENUMERATION(cold, warm, hot AS 10))

show (i.e. get) members of attribute "my_attribute1" (should be "id", "description",

"position", "position.x", "position.y", "temperature")

SHOW MEMBER my_attribute1

6.7.10 SHOW MASK

Syntax

SHOW MASK [file_name] dataset_name[(chunk_number [, chunk_number]*)] [, [file_name]

dataset_name[(chunk_number [, chunk_number]*)]]*

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) (filter) mask of an HDF5 dataset named dataset_name. Multiple datasets’ masks can be obtained at once by

separating these with a comma (,). If dataset_name was not found or its mask could not be checked (due to

unknown/unexpected reasons), no subsequent datasets are checked, and an error is raised.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 270 of 341

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file which stores the dataset to show (i.e. get) the (filter)

mask. If file_name is specified, the file is opened on the fly, the mask of the dataset is obtained and, afterwards, the file is

closed. Otherwise, if it is not specified, the dataset (whose mask is to be obtained) is stored in the file currently in use.

dataset_name – mandatory string that specifies the name of the HDF5 dataset whose (filter) mask is to be obtained.

Multiple datasets are separated with a comma (,).

chunk_number – optional integer that specifies the number of the chunk to show (i.e. get) its (filter) mask. Multiple chunk

numbers are separated with a comma (,). If chunk_number is specified it must either be between 0 and the storage

dimension in question - 1 (otherwise an error will be raised) or negative (in this case its value will be the last position of

the storage dimension in question minus the value of chunk_number). Otherwise, if it is not specified, its default value is 0

(i.e. first chunk of the storage dimension in question).

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The (filter) mask of an HDF5 dataset as an HDFQL_UNSIGNED_INT.

Example(s)

create a chunked (size 2) HDF5 dataset named "my_dataset" of data type int of one dimension

(size 6)

CREATE CHUNKED(2) DATASET my_dataset AS INT(6)

insert (i.e. write) values 60 and 61 directly into chunk #0 of dataset "my_dataset" using a

(filter) mask equal to 8

INSERT DIRECTLY MASK 8 INTO my_dataset VALUES(60, 61)

insert (i.e. write) values 62 and 63 directly into chunk #1 of dataset "my_dataset" using a

(filter) mask equal to 255 (i.e. 0xFF)

INSERT DIRECTLY MASK 0xFF INTO my_dataset(1) VALUES(62, 63)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 271 of 341

insert (i.e. write) values 64 and 65 directly into chunk #2 of dataset "my_dataset" using a

(filter) mask equal to 0 (i.e. default value)

INSERT DIRECTLY INTO my_dataset(2) VALUES(64, 65)

select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it (should

be 60, 61, 62, 63, 64, 65)

SELECT FROM my_dataset

show (i.e. get) (filter) mask of chunks #0, #1 and #2 of dataset "my_dataset" and populate

cursor in use with it (should be 8, 255, 0)

SHOW MASK my_dataset(0), my_dataset(1), my_dataset(2)

6.7.11 SHOW ENDIANNESS

Syntax

SHOW [DATASET | ATTRIBUTE] ENDIANNESS [file_name] object_name

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) endianness of an HDF5 dataset or attribute or of its members named object_name. In case a dataset and an

attribute with identical names (object_name) are stored in the same location (i.e. group) and neither the keyword

DATASET nor ATTRIBUTE is specified, the endianness returned belongs to the dataset. To explicitly get the endianness of

object_name according to its type, the keyword DATASET or ATTRIBUTE must be specified. If object_name ends with “/”

and is of data type HDFQL_COMPOUND, the endiannesses of members of object_name are returned instead.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file which stores the dataset or attribute to show (i.e. get)

the endianness. If file_name is specified, the file is opened on the fly, the endianness of the dataset or attribute is

obtained and, afterwards, the file is closed. Otherwise, if it is not specified, the dataset or attribute (whose endianness is

to be obtained) is stored in the file currently in use.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 272 of 341

object_name – mandatory string that specifies the name of the HDF5 dataset or attribute whose endianness is to be

obtained, or of its members in case it ends with “/” and the dataset or attribute is of data type HDFQL_COMPOUND.

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The endianness of an HDF5 dataset or attribute as an HDFQL_INT, which can either be HDFQL_LITTLE_ENDIAN,

HDFQL_BIG_ENDIAN, HDFQL_MIXED_ENDIAN or HDFQL_UNDEFINED depending on whether the endianness is little, big,

mixed (in case the data type of the dataset or attribute is HDFQL_COMPOUND and the endiannesses of its members are

mixed) or undefined (i.e. endianness is not applicable to the dataset or attribute) respectively.

Example(s)

create an HDF5 dataset named "my_dataset0" of data type int using the native endian

representation (of the machine)

CREATE DATASET my_dataset0 AS INT

show (i.e. get) endianness of dataset "my_dataset0" (should be 1 or 2 – i.e.

HDFQL_LITTLE_ENDIAN or HDFQL_BIG_ENDIAN – depending on whether the dataset was created in a

little or big endian machine respectively)

SHOW ENDIANNESS my_dataset0

create an HDF5 dataset named "my_dataset1" of data type long long using the little endian

representation

CREATE DATASET my_dataset1 AS LITTLE ENDIAN BIGINT

show (i.e. get) endianness of dataset "my_dataset1" (should be 1 – i.e. HDFQL_LITTLE_ENDIAN)

SHOW ENDIANNESS my_dataset1

create an HDF5 attribute named "my_attribute0" of data type compound composed of three

members named "m0" (of data type char), "m1" (of data type int using the little endian

representation) and "m2" (of data type float using the big endian representation)

CREATE ATTRIBUTE my_attribute0 AS COMPOUND(m0 AS CHAR, m1 AS LITTLE ENDIAN INT, m2 AS BIG

ENDIAN FLOAT)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 273 of 341

show (i.e. get) endianness of attribute "my_attribute0" (should be 4 – i.e.

HDFQL_MIXED_ENDIAN)

SHOW ENDIANNESS my_attribute0

show (i.e. get) endianness of members of attribute "my_attribute0" (should be -1 – i.e.

HDFQL_UNDEFINED, 1 – i.e. HDFQL_LITTLE_ENDIAN, 2 – i.e. HDFQL_BIG_ENDIAN)

SHOW ENDIANNESS my_attribute0/

create an HDF5 dataset named "my_common" of data type short using the big endian

representation

CREATE DATASET my_common AS BIG ENDIAN SMALLINT

create an HDF5 attribute named "my_common" of data type int using the little endian

representation

CREATE ATTRIBUTE my_common AS LITTLE ENDIAN INT

show (i.e. get) endianness of dataset "my_common" (should be 2 – i.e. HDFQL_BIG_ENDIAN)

SHOW ENDIANNESS my_common

show (i.e. get) endianness of dataset "my_common" (should be 2 – i.e. HDFQL_BIG_ENDIAN)

SHOW DATASET ENDIANNESS my_common

show (i.e. get) endianness of attribute "my_common" (should be 1 – i.e. HDFQL_LITTLE_ENDIAN)

SHOW ATTRIBUTE ENDIANNESS my_common

6.7.12 SHOW CHARSET

Syntax

SHOW [DATASET | ATTRIBUTE] CHARSET [file_name] object_name

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) charset of an HDF5 dataset or attribute or of its members named object_name. In case a dataset and an

attribute with identical names (object_name) are stored in the same location (i.e. group) and neither the keyword

DATASET nor ATTRIBUTE is specified, the charset returned belongs to the dataset. To explicitly get the charset of

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 274 of 341

object_name according to its type, the keyword DATASET or ATTRIBUTE must be specified. If object_name ends with “/”

and is of data type HDFQL_COMPOUND, the data types of members of object_name are returned instead.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file which stores the dataset or attribute to show (i.e. get)

the charset. If file_name is specified, the file is opened on the fly, the charset of the dataset or attribute is obtained and,

afterwards, the file is closed. Otherwise, if it is not specified, the dataset or attribute (whose charset is to be obtained) is

stored in the file currently in use.

object_name – mandatory string that specifies the name of the HDF5 dataset or attribute whose charset is to be obtained,

or of its members in case it ends with “/” and the dataset or attribute is of data type HDFQL_COMPOUND.

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The charset of an HDF5 dataset or attribute as an HDFQL_INT, which can either be HDFQL_ASCII, HDFQL_UTF8 or

HDFQL_UNDEFINED depending on whether the charset is ASCII, UTF8 or undefined (i.e. the dataset or attribute is neither

of data type HDFQL_CHAR nor HDFQL_VARCHAR) respectively.

Example(s)

create an HDF5 dataset named "my_dataset0" of data type char

CREATE DATASET my_dataset0 AS CHAR

show (i.e. get) charset of dataset "my_dataset0" (should be 1 – i.e. HDFQL_ASCII)

SHOW CHARSET my_dataset0

create an HDF5 dataset named "my_dataset1" of data type char of one dimension (size 20) using

the UTF8 representation

CREATE DATASET my_dataset1 AS UTF8 CHAR(20)

show (i.e. get) charset of dataset "my_dataset1" (should be 2 – i.e. HDFQL_UTF8)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 275 of 341

SHOW CHARSET my_dataset1

create an HDF5 attribute named "my_attribute0" of data type compound composed of three

members named "m0" (of data type char), "m1" (of data type int) and "m2" (of data type

variable-length char using the UTF8 representation)

CREATE ATTRIBUTE my_attribute0 AS COMPOUND(m0 AS CHAR, m1 AS INT, m2 AS UTF8 VARCHAR)

show (i.e. get) charset of attribute "my_attribute0" (should be -1 – i.e. HDFQL_UNDEFINED)

SHOW CHARSET my_attribute0

show (i.e. get) charset of members of attribute "my_attribute0" (should be 1 – i.e.

HDFQL_ASCII, -1 – i.e. HDFQL_UNDEFINED, 2 – i.e. HDFQL_UTF8)

SHOW CHARSET my_attribute0/

create an HDF5 dataset named "my_common" of data type short using the UTF8 representation

CREATE DATASET my_common AS UTF8 CHAR

create an HDF5 attribute named "my_common" of data type variable-length char using the ASCII

representation

CREATE ATTRIBUTE my_common AS ASCII VARCHAR

show (i.e. get) charset of dataset "my_common" (should be 2 – i.e. HDFQL_UTF8)

SHOW CHARSET my_common

show (i.e. get) data type of dataset "my_common" (should be 2 – i.e. HDFQL_UTF8)

SHOW DATASET CHARSET my_common

show (i.e. get) charset of attribute "my_common" (should be 1 – i.e. HDFQL_ASCII)

SHOW ATTRIBUTE CHARSET my_common

6.7.13 SHOW STORAGE TYPE

Syntax

SHOW STORAGE TYPE [file_name] dataset_name [, [file_name] dataset_name]*

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 276 of 341

Description

Show (i.e. get) storage type (layout) of an HDF5 dataset named dataset_name. Multiple datasets’ storage types can be

obtained at once by separating these with a comma (,). If dataset_name was not found or its storage type could not be

checked (due to unknown/unexpected reasons), no subsequent datasets are checked, and an error is raised.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file which stores the dataset to show (i.e. get) the storage

type (layout). If file_name is specified, the file is opened on the fly, the storage type of the dataset is obtained and,

afterwards, the file is closed. Otherwise, if it is not specified, the dataset (whose storage type is to be obtained) is stored in

the file currently in use.

dataset_name – mandatory string that specifies the name of the HDF5 dataset whose storage type (layout) is to be

obtained. Multiple datasets are separated with a comma (,).

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The storage type (layout) of an HDF5 dataset as an HDFQL_INT, which can either be HDFQL_CONTIGUOUS,

HDFQL_COMPACT or HDFQL_CHUNKED depending on whether the storage is contiguous, compact or chunked

respectively.

Example(s)

create an HDF5 dataset named "my_dataset0" of data type unsigned int

CREATE DATASET my_dataset0 AS UNSIGNED INT

show (i.e. get) storage type (layout) of dataset "my_dataset0" (should be 1 – i.e.

HDFQL_CONTIGUOUS)

SHOW STORAGE TYPE my_dataset0

create an HDF5 dataset named "my_dataset1" of data type int of two dimensions (size 5x7)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 277 of 341

CREATE CONTIGUOUS DATASET my_dataset1 AS INT(5, 7)

show (i.e. get) storage type (layout) of dataset "my_dataset1" (should be 1 – i.e.

HDFQL_CONTIGUOUS)

SHOW STORAGE TYPE my_dataset1

create an HDF5 dataset named "my_dataset2" of data type double of one dimension (size 8)

CREATE COMPACT DATASET my_dataset2 AS DOUBLE(8)

show (i.e. get) storage type (layout) of dataset "my_dataset2" (should be 2 – i.e.

HDFQL_COMPACT)

SHOW STORAGE TYPE my_dataset2

create an HDF5 dataset named "my_dataset3" of data type float of three dimensions (size

3x5x20)

CREATE CHUNKED DATASET my_dataset3 AS FLOAT(3, 5, 20)

show (i.e. get) storage type (layout) of dataset "my_dataset3" (should be 4 – i.e.

HDFQL_CHUNKED)

SHOW STORAGE TYPE my_dataset3

6.7.14 SHOW STORAGE ALLOCATION

Syntax

SHOW STORAGE ALLOCATION [file_name] dataset_name [, [file_name] dataset_name]*

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) storage allocation of an HDF5 dataset named dataset_name. Multiple datasets’ storage allocation can be

obtained at once by separating these with a comma (,). If dataset_name was not found or its storage allocation could not

be checked (due to unknown/unexpected reasons), no subsequent datasets are checked, and an error is raised.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file which stores the dataset to show (i.e. get) the storage

allocation. If file_name is specified, the file is opened on the fly, the storage allocation of the dataset is obtained and,

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 278 of 341

afterwards, the file is closed. Otherwise, if it is not specified, the dataset (whose storage allocation is to be obtained) is

stored in the file currently in use.

dataset_name – mandatory string that specifies the name of the HDF5 dataset whose storage allocation is to be obtained.

Multiple datasets are separated with a comma (,).

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The storage allocation of an HDF5 dataset as an HDFQL_INT, which can either be HDFQL_EARLY, HDFQL_INCREMENTAL or

HDFQL_LATE depending on whether the storage allocation is early, incremental or late respectively.

Example(s)

create an HDF5 dataset named "my_dataset0" of data type unsigned int

CREATE DATASET my_dataset0 AS UNSIGNED INT

show (i.e. get) storage allocation of dataset "my_dataset0" (should be 4 – i.e. HDFQL_LATE)

SHOW STORAGE ALLOCATION my_dataset0

create an HDF5 dataset named "my_dataset1" of data type int of two dimensions (size 5x7)

CREATE CONTIGUOUS DATASET my_dataset1 AS INT(5, 7)

show (i.e. get) storage allocation of dataset "my_dataset1" (should be 4 – i.e. HDFQL_LATE)

SHOW STORAGE ALLOCATION my_dataset1

create an HDF5 dataset named "my_dataset2" of data type double of one dimension (size 8)

CREATE COMPACT DATASET my_dataset2 AS DOUBLE(8)

show (i.e. get) storage allocation of dataset "my_dataset2" (should be 1 – i.e. HDFQL_EARLY)

SHOW STORAGE ALLOCATION my_dataset2

create an HDF5 dataset named "my_dataset3" of data type float of three dimensions (size

3x5x20)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 279 of 341

CREATE CHUNKED DATASET my_dataset3 AS FLOAT(3, 5, 20)

show (i.e. get) storage allocation of dataset "my_dataset3" (should be 2 – i.e.

HDFQL_INCREMENTAL)

SHOW STORAGE ALLOCATION my_dataset3

6.7.15 SHOW STORAGE DIMENSION

Syntax

SHOW STORAGE DIMENSION [file_name] dataset_name

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) storage dimensions of an HDF5 dataset named dataset_name.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file which stores the dataset to show (i.e. get) the storage

dimensions. If file_name is specified, the file is opened on the fly, the storage dimensions of the dataset are obtained and,

afterwards, the file is closed. Otherwise, if it is not specified, the dataset (whose storage dimensions are to be obtained) is

stored in the file currently in use.

dataset_name – mandatory string that specifies the name of the HDF5 dataset whose storage dimensions are to be

obtained.

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 280 of 341

Return

The storage dimensions of an HDF5 dataset as an HDFQL_BIGINT or nothing (in case the dataset is not chunked – i.e. its

storage type is not HDFQL_CHUNKED).

Example(s)

create an HDF5 dataset named "my_dataset0" of data type unsigned int

CREATE DATASET my_dataset0 AS UNSIGNED INT

show (i.e. get) storage dimensions of dataset "my_dataset0" (should be empty)

SHOW STORAGE DIMENSION my_dataset0

create an HDF5 dataset named "my_dataset1" of data type int of two dimensions (size 5x7)

CREATE DATASET my_dataset1 AS INT(5, 7)

show (i.e. get) storage dimensions of dataset "my_dataset1" (should be empty)

SHOW STORAGE DIMENSION my_dataset1

create an HDF5 dataset named "my_dataset2" of data type double of one dimension (size 8)

CREATE CHUNKED DATASET my_dataset2 AS DOUBLE(8)

show (i.e. get) storage dimensions of dataset "my_dataset2" (should be 8)

SHOW STORAGE DIMENSION my_dataset2

create an HDF5 dataset named "my_dataset3" of data type float of three dimensions (size

3x5x20)

CREATE CHUNKED(1, 2, 10) DATASET my_dataset3 AS FLOAT(3, 5, 20)

show (i.e. get) storage dimensions of dataset "my_dataset3" (should be 1, 2, 10)

SHOW STORAGE DIMENSION my_dataset3

6.7.16 SHOW DIMENSION

Syntax

SHOW [DATASET | ATTRIBUTE] [MAX] DIMENSION [file_name] object_name

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 281 of 341

Description

Show (i.e. get) dimensions of an HDF5 dataset or attribute named object_name. In case a dataset and an attribute with

identical names (object_name) are stored in the same location (i.e. group) and neither the keyword DATASET nor

ATTRIBUTE is specified, the dimensions returned belong to the dataset. To explicitly get the dimensions of object_name

according to its type, the keyword DATASET or ATTRIBUTE must be specified. By default, the returned dimensions refer to

the ones that a dataset or an attribute currently has; to return the maximum dimensions that a dataset or an attribute

may grow to, the keyword MAX must be specified. If the maximum dimension is unlimited, the returned value is

HDFQL_UNLIMITED.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file which stores the dataset or attribute to show (i.e. get)

the dimensions. If file_name is specified, the file is opened on the fly, the dimensions of the dataset or attribute are

obtained and, afterwards, the file is closed. Otherwise, if it is not specified, the dataset or attribute (whose dimensions are

to be obtained) is stored in the file currently in use.

object_name – mandatory string that specifies the name of the HDF5 dataset or attribute whose dimensions are to be

obtained.

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The dimensions of an HDF5 dataset or attribute as an HDFQL_BIGINT or nothing (in case the dataset or attribute is a scalar

– i.e. is not an array).

Example(s)

create an HDF5 dataset named "my_dataset0" of data type unsigned int

CREATE DATASET my_dataset0 AS UNSIGNED INT

show (i.e. get) dimensions of dataset "my_dataset0" (should be empty)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 282 of 341

SHOW DIMENSION my_dataset0

show (i.e. get) maximum dimensions of dataset "my_dataset0" (should be empty)

SHOW MAX DIMENSION my_dataset0

create an HDF5 dataset named "my_dataset1" of data type unsigned int

CREATE DATASET my_dataset1 AS UNSIGNED INT(5)

show (i.e. get) dimensions of dataset "my_dataset1" (should be 5)

SHOW DIMENSION my_dataset1

show (i.e. get) maximum dimensions of dataset "my_dataset1" (should be 5)

SHOW MAX DIMENSION my_dataset1

create an HDF5 dataset named "my_dataset2" of data type double of one dimension (size 15)

CREATE DATASET my_dataset2 AS DOUBLE(15)

show (i.e. get) dimensions of dataset "my_dataset2" (should be 15)

SHOW DIMENSION my_dataset2

show (i.e. get) maximum dimensions of dataset "my_dataset2" (should be 15)

SHOW MAX DIMENSION my_dataset2

create an HDF5 attribute named "my_attribute0" of data type int of one dimension (size 1)

CREATE ATTRIBUTE my_attribute0 AS INT(1)

show (i.e. get) dimensions of attribute "my_attribute0" (should be 1)

SHOW DIMENSION my_attribute0

show (i.e. get) maximum dimensions of attribute "my_attribute0" (should be 1)

SHOW MAX DIMENSION my_attribute0

create an HDF5 attribute named "my_attribute1" of data type short of two dimensions (size

2x3)

CREATE ATTRIBUTE my_attribute1 AS SMALLINT(2, 3)

show (i.e. get) dimensions of attribute "my_attribute1" (should be 2, 3)

SHOW DIMENSION my_attribute1

show (i.e. get) maximum dimensions of attribute "my_attribute1" (should be 2, 3)

SHOW MAX DIMENSION my_attribute1

create an HDF5 dataset named "my_dataset3" of data type float of three dimensions (first

dimension with size 2 and extendible up to 10; second dimension with size 5; third dimension

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 283 of 341

with size 20 and extendible to an unlimited size)

CREATE CHUNKED DATASET my_dataset3 AS FLOAT(3 TO 10, 5, 20 TO UNLIMITED, UNLIMITED)

show (i.e. get) dimensions of dataset "my_dataset3" (should be 3, 5, 20, 1)

SHOW DIMENSION my_dataset3

show (i.e. get) maximum dimensions of dataset "my_dataset3" (should be 10, 5, -1, -1)

SHOW MAX DIMENSION my_dataset3

6.7.17 SHOW ORDER

Syntax

SHOW [ATTRIBUTE] ORDER [file_name] object_name [, [file_name] object_name]*

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) (creation) order strategy of an HDF5 group or dataset named object_name. Multiple objects’ order

strategies can be obtained at once by separating these with a comma (,). If object_name was not found or its order

strategy could not be checked (due to unknown/unexpected reasons), no subsequent objects are checked, and an error is

raised. By default, the returned order strategy refers to objects (i.e. groups, datasets, (soft) links or external links) within a

group; to return the order strategy of attributes within a group or dataset, the keyword ATTRIBUTE must be specified.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file which stores the group or dataset to show (i.e. get) the

(creation) order strategy. If file_name is specified, the file is opened on the fly, the order strategy of the group or dataset

is obtained and, afterwards, the file is closed. Otherwise, if it is not specified, the group or dataset (whose order strategy is

to be obtained) is stored in the file currently in use.

object_name – mandatory string that specifies the name of the HDF5 group or dataset whose (creation) order strategy is

to be obtained. Multiple groups or datasets are separated with a comma (,).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 284 of 341

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The (creation) order strategy of an HDF5 group or dataset as an HDFQL_INT, which can either be HDFQL_TRACKED,

HDFQL_INDEXED or HDFQL_UNDEFINED depending on whether the order is tracked, indexed or undefined (i.e. the group

or dataset was created without any order strategy) respectively.

Example(s)

create an HDF5 group named "my_group0"

CREATE GROUP my_group0

show (i.e. get) (creation) order strategy of objects within group "my_group0" (should be -1 –

i.e. HDFQL_UNDEFINED)

SHOW ORDER my_group0

show (i.e. get) (creation) order strategy of attributes within group "my_group0" (should be -

1 – i.e. HDFQL_UNDEFINED)

SHOW ATTRIBUTE ORDER my_group0

create an HDF5 group named "my_group1" that tracks both the objects’ (i.e. groups and

datasets) and the attributes’ creation order within the group

CREATE GROUP my_group1 ORDER TRACKED ATTRIBUTE ORDER INDEXED

show (i.e. get) (creation) order strategy of objects within group "my_group1" (should be 1 –

i.e. HDFQL_TRACKED)

SHOW ORDER my_group1

show (i.e. get) (creation) order strategy of attributes within group "my_group1" (should be 2

– i.e. HDFQL_INDEXED)

SHOW ATTRIBUTE ORDER my_group1

create an HDF5 dataset named "my_dataset0" of data type int that tracks the attributes’

creation order within the dataset

CREATE DATASET my_dataset0 AS INT ATTRIBUTE ORDER TRACKED

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 285 of 341

show (i.e. get) (creation) order strategy of attributes within dataset "my_dataset0" (should

be 1 – i.e. HDFQL_TRACKED)

SHOW ATTRIBUTE ORDER my_dataset0

show (i.e. get) (creation) order strategy of attributes within both group "my_group1" and

dataset "my_dataset0" at once (should be 2, 1)

SHOW ATTRIBUTE ORDER my_group1, my_dataset0

6.7.18 SHOW TAG

Syntax

SHOW [DATASET | ATTRIBUTE] TAG [file_name] object_name

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) tag of an HDF5 dataset or attribute or of its members named object_name. In case a dataset and an

attribute with identical names (object_name) are stored in the same location (i.e. group) and neither the keyword

DATASET nor ATTRIBUTE is specified, the tag returned belongs to the dataset. To explicitly get the tag of object_name

according to its type, the keyword DATASET or ATTRIBUTE must be specified. If object_name ends with “/” and is of data

type HDFQL_COMPOUND, the tags of members of object_name are returned instead.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file which stores the dataset or attribute to show (i.e. get)

the tag. If file_name is specified, the file is opened on the fly, the tag of the dataset or attribute is obtained and,

afterwards, the file is closed. Otherwise, if it is not specified, the dataset or attribute (whose tag is to be obtained) is

stored in the file currently in use.

object_name – mandatory string that specifies the name of the HDF5 dataset or attribute whose tag is to be obtained, or

of its members in case it ends with “/” and is of data type HDFQL_COMPOUND.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 286 of 341

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The tag of an HDF5 dataset or attribute or of its members as an HDFQL_VARCHAR, which can either be a string or NULL

depending on whether the dataset or attribute or of its members is of data type HDFQL_OPAQUE or not.

Example(s)

create an HDF5 dataset named "my_dataset0" of data type int

CREATE DATASET my_dataset0 AS INT

show (i.e. get) tag of dataset "my_dataset0" (should be NULL)

SHOW TAG my_dataset0

create an HDF5 dataset named "my_dataset1" of data type opaque

CREATE DATASET my_dataset1 AS OPAQUE

show (i.e. get) tag of dataset "my_dataset1" (should be "")

SHOW TAG my_dataset1

create an HDF5 dataset named "my_dataset2" of data type opaque of one dimension (size 15)

with a tag value "my_tag1"

CREATE DATASET my_dataset2 AS OPAQUE(15) TAG my_tag1

show (i.e. get) tag of dataset "my_dataset2" (should be "my_tag1")

SHOW TAG my_dataset2

create an HDF5 attribute named "my_attribute0" of data type opaque of two dimensions (size

3x5) with a tag value "Hierarchical Data Format"

CREATE ATTRIBUTE my_attribute0 AS OPAQUE(3, 5) TAG "Hierarchical Data Format"

show (i.e. get) tag of attribute "my_attribute0" (should be "Hierarchical Data Format")

SHOW TAG my_attribute0

create an HDF5 attribute named "my_attribute1" of data type compound composed of three

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 287 of 341

members named "m0" (of data type int), "m1" (of data type opaque) and "m2" (of data type opaque

with a tag value "Test")

CREATE ATTRIBUTE my_attribute1 AS COMPOUND(m0 AS INT, m1 AS OPAQUE, m2 AS OPAQUE TAG Test)

show (i.e. get) tag of attribute "my_attribute1" (should be NULL)

SHOW TAG my_attribute1

show (i.e. get) tag of members of attribute "my_attribute1" (should be NULL, "", "Test")

SHOW TAG my_attribute1/

create an HDF5 dataset named "my_common" of data type opaque with a tag value "Dataset tag"

CREATE DATASET my_common AS OPAQUE TAG "Dataset tag"

create an HDF5 attribute named "my_common" of data type opaque of one dimension (size 10)

with a tag value "Attribute tag"

CREATE ATTRIBUTE my_common AS OPAQUE(10) TAG "Attribute tag"

show (i.e. get) tag of dataset "my_common" (should be "Dataset tag")

SHOW TAG my_common

show (i.e. get) tag of dataset "my_common" (should be "Dataset tag")

SHOW DATASET TAG my_common

show (i.e. get) tag of attribute "my_common" (should be "Attribute tag")

SHOW ATTRIBUTE TAG my_common

6.7.19 SHOW OFFSET

Syntax

SHOW [DATASET | ATTRIBUTE] OFFSET [file_name] object_name

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) member offsets of an HDF5 dataset or attribute named object_name. If object_name was not found or its

member offsets could not be checked (due to its data type not being HDFQL_COMPOUND or for unknown/unexpected

reasons), an error is raised. In case a dataset and an attribute with identical names (object_name) are stored in the same

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 288 of 341

location (i.e. group) and neither the keyword DATASET nor ATTRIBUTE is specified, the member offsets returned belong to

the dataset. To explicitly get the member offsets of object_name according to its type, the keyword DATASET or

ATTRIBUTE must be specified.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file which stores the dataset or attribute to show (i.e. get)

the member offsets. If file_name is specified, the file is opened on the fly, the member offsets of the dataset or attribute is

obtained and, afterwards, the file is closed. Otherwise, if it is not specified, the dataset or attribute (whose member

offsets are to be obtained) is stored in the file currently in use.

object_name – mandatory string that specifies the name of the HDF5 dataset or attribute whose member offsets are to be

obtained.

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The member offsets of an HDF5 dataset or attribute as an HDFQL_INT.

Example(s)

create an HDF5 dataset named "my_dataset0" of data type compound composed of three members

named "name" (of data type variable-length char with offset 0), "age" (of data type unsigned

int with offset 8) and "weight" (of data type float with offset 12)

CREATE DATASET my_dataset0 AS COMPOUND(name AS VARCHAR, age AS UNSIGNED INT, weight AS FLOAT)

show (i.e. get) member offsets of dataset "my_dataset0" (should be 0, 8, 12)

SHOW OFFSET my_dataset0

create an HDF5 dataset named "my_dataset1" of data type compound composed of two members

named "readings" (of data type int of one dimension (size 5) with offset 0) and "state" (of

data type char with offset 20)

CREATE DATASET my_dataset1 AS COMPOUND(readings AS INT(5), state AS TINYINT)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 289 of 341

show (i.e. get) member offsets of dataset "my_dataset1" (should be 0, 20)

SHOW OFFSET my_dataset1

create an HDF5 attribute named "my_attribute0" of data type compound composed of three

members named "id" (of data type long long with offset 0), "position" (of data type compound

with offset 8 and composed of two members named "x" (of data type short with offset 0) and "y"

(of data type short with offset 2)) and "temperature" (of data type enumeration with offset 12

and composed of three members named "cold", "warm" and "hot")

CREATE ATTRIBUTE my_attribute0 AS COMPOUND(id AS BIGINT, position AS COMPOUND(x AS SMALLINT, y

AS SMALLINT), temperature AS ENUMERATION(cold, warm, hot))

show (i.e. get) member offsets of attribute "my_attribute0" (should be 0, 8, 0, 2, 12)

SHOW OFFSET my_attribute0

create an HDF5 attribute named "my_attribute1" of data type compound composed of five members

named "m0" (of data type int with offset 5), "m1" (of data type compound with offset 20 and

composed of two members named "m0" (of data type float with offset 0) and "m1" (of data type

short with offset 4)), "m2" (of data type long long with offset 26), "m3" (of data type

enumeration with offset 35 and composed of two members named "on" and "off") and "m4" (of data

type double with offset 36)

CREATE ATTRIBUTE my_attribute1 AS COMPOUND(m0 AS INT OFFSET 5, m1 AS COMPOUND(m0 AS FLOAT, m1

AS SMALLINT) OFFSET 20, m2 AS BIGINT, m3 AS ENUMERATION(on, off) OFFSET 35, m4 AS DOUBLE)

show (i.e. get) member offsets of attribute "my_attribute1" (should be 5, 20, 0, 4, 26, 35,

36)

SHOW OFFSET my_attribute1

6.7.20 SHOW FILL TYPE

Syntax

SHOW FILL TYPE [file_name] dataset_name [, [file_name] dataset_name]*

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 290 of 341

Description

Show (i.e. get) fill type of an HDF5 dataset named dataset_name. Multiple datasets’ fill types can be obtained at once by

separating these with a comma (,). If dataset_name was not found or its fill type could not be checked (due to

unknown/unexpected reasons), no subsequent datasets are checked, and an error is raised.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file which stores the dataset to show (i.e. get) the fill type.

If file_name is specified, the file is opened on the fly, the fill type of the dataset is obtained and, afterwards, the file is

closed. Otherwise, if it is not specified, the dataset (whose fill type is to be obtained) is stored in the file currently in use.

dataset_name – mandatory string that specifies the name of the HDF5 dataset whose fill type is to be obtained. Multiple

datasets are separated with a comma (,).

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The fill type of an HDF5 dataset as an HDFQL_INT, which can either be HDFQL_FILL_DEFAULT, HDFQL_FILL_USER_DEFINED

or HDFQL_FILL_UNDEFINED depending on whether the fill is default, user defined or undefined respectively.

Example(s)

create an HDF5 dataset named "my_dataset0" of data type int

CREATE DATASET my_dataset0 AS INT

show (i.e. get) fill type of dataset "my_dataset0" (should be 1 – i.e. HDFQL_FILL_DEFAULT)

SHOW FILL TYPE my_dataset0

create an HDF5 dataset named "my_dataset1" of data type int with a fill value of 20

CREATE DATASET my_dataset1 AS INT FILL(20)

show (i.e. get) fill type of dataset "my_dataset1" (should be 2 – i.e.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 291 of 341

HDFQL_FILL_USER_DEFINED)

SHOW FILL TYPE my_dataset1

create an HDF5 dataset named "my_dataset2" of data type variable-length char of one dimension

(size 5) with an undefined fill value

CREATE DATASET my_dataset2 AS VARCHAR(5) FILL UNDEFINED

show (i.e. get) fill type of dataset "my_dataset2" (should be 4 – i.e. HDFQL_FILL_UNDEFINED)

SHOW FILL TYPE my_dataset2

6.7.21 SHOW FILL VALUE

Syntax

SHOW FILL VALUE [file_name] dataset_name

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) fill values of an HDF5 dataset named dataset_name.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file which stores the dataset to show (i.e. get) the fill

values. If file_name is specified, the file is opened on the fly, the fill values of the dataset are obtained and, afterwards, the

file is closed. Otherwise, if it is not specified, the dataset (whose fill values are to be obtained) is stored in the file currently

in use.

dataset_name – mandatory string that specifies the name of the HDF5 dataset whose fill values are to be obtained.

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 292 of 341

Return

The fill values of an HDF5 dataset as an HDFQL_TINYINT (in case the data type of the dataset is HDFQL_TINYINT),

HDFQL_UNSIGNED_TINYINT (in case the data type of the dataset is HDFQL_UNSIGNED_TINYINT), HDFQL_SMALLINT (in

case the data type of the dataset is HDFQL_SMALLINT), HDFQL_UNSIGNED_SMALLINT (in case the data type of the dataset

is HDFQL_UNSIGNED_SMALLINT), HDFQL_INT (in case the data type of the dataset is HDFQL_INT), HDFQL_UNSIGNED_INT

(in case the data type of the dataset is HDFQL_UNSIGNED_INT), HDFQL_BIGINT (in case the data type of the dataset is

HDFQL_BIGINT), HDFQL_UNSIGNED_BIGINT (in case the data type of the dataset is HDFQL_UNSIGNED_BIGINT),

HDFQL_FLOAT (in case the data type of the dataset is HDFQL_FLOAT), HDFQL_DOUBLE (in case the data type of the

dataset is HDFQL_DOUBLE), HDFQL_CHAR (in case the data type of the dataset is HDFQL_CHAR), HDFQL_VARTINYINT (in

case the data type of the dataset is HDFQL_VARTINYINT), HDFQL_UNSIGNED_VARTINYINT (in case the data type of the

dataset is HDFQL_UNSIGNED_VARTINYINT), HDFQL_VARSMALLINT (in case the data type of the dataset is

HDFQL_VARSMALLINT), HDFQL_UNSIGNED_VARSMALLINT (in case the data type of the dataset is

HDFQL_UNSIGNED_VARSMALLINT), HDFQL_VARINT (in case the data type of the dataset is HDFQL_VARINT),

HDFQL_UNSIGNED_VARINT (in case the data type of the dataset is HDFQL_UNSIGNED_VARINT), HDFQL_VARBIGINT (in

case the data type of the dataset is HDFQL_VARBIGINT), HDFQL_UNSIGNED_VARBIGINT (in case the data type of the

dataset is HDFQL_UNSIGNED_VARBIGINT), HDFQL_VARFLOAT (in case the data type of the dataset is HDFQL_VARFLOAT),

HDFQL_VARDOUBLE (in case the data type of the dataset is HDFQL_VARDOUBLE), HDFQL_VARCHAR (in case the data type

of the dataset is HDFQL_VARCHAR) or HDFQL_OPAQUE (in case the data type of the dataset is HDFQL_OPAQUE),

HDFQL_ENUMERATION (in case the data type of the dataset is HDFQL_ENUMERATION) or HDFQL_COMPOUND (in case

the data type of the dataset is HDFQL_COMPOUND).

Example(s)

create an HDF5 dataset named "my_dataset0" of data type int

CREATE DATASET my_dataset0 AS INT

show (i.e. get) fill values of dataset "my_dataset0" (should be 0)

SHOW FILL VALUE my_dataset0

create an HDF5 dataset named "my_dataset1" of data type int with a fill value of 20

CREATE DATASET my_dataset1 AS INT FILL(20)

show (i.e. get) fill values of dataset "my_dataset1" (should be 20)

SHOW FILL VALUE my_dataset1

create an HDF5 dataset named "my_dataset2" of data type variable-length char of one dimension

(size 5) with a fill value of "Hierarchical Data Format"

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 293 of 341

CREATE DATASET my_dataset2 AS VARCHAR(5) FILL("Hierarchical Data Format")

show (i.e. get) fill values of dataset "my_dataset2" (should be "Hierarchical Data Format")

SHOW FILL VALUE my_dataset2

create an HDF5 dataset named "my_dataset3" of data type variable-length int with fill values

of 100 and 200

CREATE DATASET my_dataset3 AS VARINT FILL(100, 200)

show (i.e. get) fill values of dataset "my_dataset3" (should be 100, 200)

SHOW FILL VALUE my_dataset3

create an HDF5 dataset named "my_dataset4" of data type enumeration composed of three members

named "Earth" (with value 0), "Moon" (with value 1) and "Mars" (with value 2), and with a fill

value of "Mars" (i.e. 2)

CREATE DATASET my_dataset4 AS ENUMERATION(Earth, Moon, Mars) FILL(Mars)

show (i.e. get) fill value of dataset "my_dataset4" (should be 2 – i.e. "Mars")

SHOW FILL VALUE my_dataset4

6.7.22 SHOW FILE SIZE

Syntax

SHOW FILE SIZE [file_name [, file_name]*]

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) size (in bytes) of a file named file_name or of the HDF5 file currently in use. Multiple files’ sizes can be

obtained at once by separating several file names with a comma (,). If file_name was not found or its size could not be

checked (due to unknown/unexpected reasons), no subsequent files are checked, and an error is raised.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 294 of 341

Parameter(s)

file_name – optional string that specifies the name of the file whose size (in bytes) is to be obtained. Multiple files are

separated with a comma (,). If file_name is not specified, the size of the (HDF5) file currently in use is returned. Otherwise,

if it is specified, its size is returned.

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The size (in bytes) of a file as an HDFQL_UNSIGNED_BIGINT.

Example(s)

create an HDF5 file named "my_file.h5"

CREATE FILE my_file.h5

show (i.e. get) size of file "my_file.h5" (should be 800)

SHOW FILE SIZE my_file.h5

use (i.e. open) HDF5 file "my_file.h5"

USE FILE my_file.h5

create an HDF5 group named "my_group"

CREATE GROUP my_group

flush the entire virtual HDF5 file (global) currently in use

FLUSH

show (i.e. get) size of the file currently in use (should be greater than 800)

SHOW FILE SIZE

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 295 of 341

6.7.23 SHOW [DATASET | ATTRIBUTE] SIZE

Syntax

SHOW [DATASET | ATTRIBUTE] SIZE [file_name] object_name [, [file_name] object_name]*

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) size (in bytes) of an HDF5 dataset or attribute named object_name. Multiple objects’ sizes can be obtained

at once by separating these with a comma (,). If object_name was not found or its size could not be checked (due to

unknown/unexpected reasons), no subsequent objects are checked, and an error is raised. In case a dataset and an

attribute with identical names (object_name) are stored in the same location (i.e. group) and neither the keyword

DATASET nor ATTRIBUTE is specified, the size returned belongs to the dataset. To explicitly get the size of object_name

according to its type, the keyword DATASET or ATTRIBUTE must be specified.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file which stores the dataset or attribute to show (i.e. get)

the size (in bytes). If file_name is specified, the file is opened on the fly, the size of the dataset or attribute is obtained and,

afterwards, the file is closed. Otherwise, if it is not specified, the dataset or attribute (whose size is to be obtained) is

stored in the file currently in use.

object_name – mandatory string that specifies the name of the HDF5 dataset or attribute whose size (in bytes) is to be

obtained. Multiple datasets or attributes are separated with a comma (,).

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The size (in bytes) of an HDF5 dataset or attribute as an HDFQL_UNSIGNED_BIGINT.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 296 of 341

Example(s)

create an HDF5 dataset named "my_dataset0" of data type float

CREATE DATASET my_dataset0 AS FLOAT

show (i.e. get) size (in bytes) of dataset "my_dataset0" (should be 4)

SHOW SIZE my_dataset0

create an HDF5 dataset named "my_dataset1" of data type long long of one dimension (size 3)

CREATE DATASET my_dataset1 AS BIGINT(3)

show (i.e. get) size (in bytes) of dataset "my_dataset1" (should be 24 – i.e. 8x3)

SHOW SIZE my_dataset1

create an HDF5 dataset named "my_common" of data type variable-length short with initial

values of 10, 20, 30, 40, 50 and 60

CREATE DATASET my_common AS VARSMALLINT VALUES(10, 20, 30, 40, 50, 60)

create an HDF5 attribute named "my_common" of data type double of two dimensions (size 2x3)

CREATE ATTRIBUTE my_common AS DOUBLE(2, 3)

show (i.e. get) size (in bytes) of dataset "my_common" (should be 12 – i.e. 2x6)

SHOW SIZE my_common

show (i.e. get) size (in bytes) of dataset "my_common" (should be 12 – i.e. 2x6)

SHOW DATASET SIZE my_common

show (i.e. get) size (in bytes) of attribute "my_common" (should be 48 – i.e. 8x2x3)

SHOW ATTRIBUTE SIZE my_common

6.7.24 SHOW HDFQL VERSION

Syntax

SHOW HDFQL VERSION

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 297 of 341

Description

Show (i.e. get) version of HDFql library. The format of the version returned is MAJOR.MINOR.REVISION.

Parameter(s)

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The version of HDFql library as an HDFQL_VARCHAR.

Example(s)

show (i.e. get) version of HDFql library (should be something similar to "2.3.0")

SHOW HDFQL VERSION

6.7.25 SHOW HDF5 VERSION

Syntax

SHOW HDF5 VERSION

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) version of the HDF5 library used by HDFql. The format of the version returned is MAJOR.MINOR.REVISION.

The HDF5 library refers to the library used to compile HDFql, and which is shipped with HDFql (and not the HDF5 library

that may be installed in the machine).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 298 of 341

Parameter(s)

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The version of the HDF5 library used by HDFql as an HDFQL_VARCHAR.

Example(s)

show (i.e. get) version of the HDF5 library used by HDFql (should be something similar to

"1.8.22")

SHOW HDF5 VERSION

6.7.26 SHOW MPI VERSION

Syntax

SHOW MPI VERSION

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) version of the MPI library used by HDFql. The information returned depends on the MPI library loaded by

HDFql at runtime (which must be previously installed in the machine). Please refer to

https://www.mpich.org/static/docs/v3.2/www3/MPI_Get_library_version.html or https://www.open-

mpi.org/doc/v2.1/man3/MPI_Get_library_version.3.php for additional information in case the MPI library used is MPICH

(or, alternatively, one of its ABI compatible derivative libraries) or Open MPI.

https://www.mpich.org/static/docs/v3.2/www3/MPI_Get_library_version.html
https://www.open-mpi.org/doc/v2.1/man3/MPI_Get_library_version.3.php
https://www.open-mpi.org/doc/v2.1/man3/MPI_Get_library_version.3.php

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 299 of 341

Parameter(s)

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The version of the MPI library used by HDFql as an HDFQL_VARCHAR or nothing (in case of using an HDFql non MPI-based

distribution or if in Windows as HDFql does not support the parallel HDF5 (PHDF5) library in this platform currently).

Example(s)

show (i.e. get) version of the MPI library used by HDFql (e.g. if the MPI library used is

Open MPI, it should be something similar to "Open MPI v2.1.3, package: Open MPI dummy@machine

Distribution, ident: 2.1.3, repo rev: v2.1.2-129-gcfd8f3f, Mar 13, 2018")

SHOW MPI VERSION

6.7.27 SHOW DIRECTORY

Syntax

SHOW DIRECTORY [directory_name]

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) directory names within a directory named directory_name or check the existence of a directory named

directory_name.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 300 of 341

Parameter(s)

directory_name – optional string that specifies the name of the directory whose directory names are to be obtained or the

name of the directory to check for its existence. If directory_name is not specified, all directory names within the current

working directory are returned. Otherwise, if it is specified, one of the following behaviors applies:

 If it ends with “/”, all directory names within directory_name are returned.

 If it does not end with “/”, directory_name will be checked for its existence as a directory. If it exists, directory_name

is returned; otherwise, if it does not exist, an error is raised.

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The directory names within a directory or the existence of a directory as an HDFQL_VARCHAR.

Example(s)

create three directories named "my_directory0", "my_directory1" and "my_directory2" within

the current working directory

CREATE DIRECTORY my_directory0, my_directory1, my_directory2

create two directories named "my_subdirectory0" and "my_subdirectory1" within the directory

"my_directory0"

CREATE DIRECTORY my_directory0/my_subdirectory0, my_directory0/my_subdirectory1

show (i.e. get) directory names within the current working directory (should be

"my_directory0", "my_directory1" and "my_directory2")

SHOW DIRECTORY

show (i.e. get) directory names within directory "my_directory0" (should be

"my_subdirectory0" and "my_subdirectory1")

SHOW DIRECTORY my_directory0/

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 301 of 341

check the existence of a directory named "my_directory0" within the current working directory

(should be "my_directory0" - i.e. it exists)

SHOW DIRECTORY my_directory0

6.7.28 SHOW FILE

Syntax

SHOW FILE [object_name]

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) file names within a directory named object_name or check the existence of a file named object_name.

Parameter(s)

object_name – optional string that specifies the name of the directory whose file names are to be obtained or the name of

the file to check for its existence. If object_name is not specified, all file names within the current working directory are

returned. Otherwise, if it is specified, one of the following behaviors applies:

 If it ends with “/”, object_name will be treated as a directory and all file names within this directory are returned.

 If it does not end with “/”, object_name will be checked for its existence as a file. If it exists, object_name is returned;

otherwise, if it does not exist, an error is raised.

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The file names within a directory or the existence of a file as an HDFQL_VARCHAR.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 302 of 341

Example(s)

create three HDF5 files named "my_file0.h5", "my_file1.h5" and "my_file2.h5" within the

current working directory

CREATE FILE my_file0.h5, my_file1.h5, my_file2.h5

create two HDF5 files named "my_file3.h5" and "my_file4.h5" within a directory named

"my_directory"

CREATE FILE my_directory/my_file3.h5, my_directory/my_file4.h5

show (i.e. get) file names within the current working directory (should be "my_file0.h5",

"my_file1.h5" and "my_file2.h5")

SHOW FILE

show (i.e. get) file names within directory "my_directory" (should be "my_file3.h5" and

"my_file4.h5")

SHOW FILE my_directory/

check the existence of a file named "my_file0.h5" within the current working directory

(should be "my_file0.h5" - i.e. it exists)

SHOW FILE my_file0.h5

6.7.29 SHOW EXECUTE STATUS

Syntax

SHOW EXECUTE STATUS

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) status of the last executed operation.

Parameter(s)

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 303 of 341

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The status of the last executed operation as an HDFQL_INT.

Example(s)

show (i.e. get) current working directory (this operation will succeed since it is

syntactically correct)

SHOW USE DIRECTORY

show (i.e. get) status of the last executed operation (should be 0 – i.e. HDFQL_SUCCESS)

SHOW EXECUTE STATUS

show (i.e. get) current working directory (this operation will fail since it is syntactically

incorrect due to a typo in "SHOWX")

SHOWX USE DIRECTORY

show (i.e. get) status of the last executed operation (should be -1 – i.e. HDFQL_ERROR_PARSE)

SHOW EXECUTE STATUS

6.7.30 SHOW LIBRARY BOUNDS

Syntax

SHOW [USE FILE] LIBRARY BOUNDS [FROM | TO]

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) library bound values for creating or opening HDF5 files. If neither the keyword FROM nor TO is specified, all

library bound values (i.e. from and to) are returned. To return a specific library bound value, the keyword FROM or TO

must be specified. In case the keyword USE FILE is not specified, the library bound values returned refers to creating or

opening files by default. Otherwise, if it is specified, the library bound values of the file currently in use are returned.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 304 of 341

Parameter(s)

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The library bound values for creating or opening HDF5 files as an HDFQL_INT.

Example(s)

show (i.e. get) library bound values from (i.e. lower bound) and to (i.e. upper bound)

(should be EARLIEST and LATEST – i.e. default values defined by the HDF5 library)

SHOW LIBRARY BOUNDS

show (i.e. get) library bound value from (i.e. lower bound) (should be EARLIEST)

SHOW LIBRARY BOUNDS FROM

show (i.e. get) library bound value to (i.e. upper bound) (should be LATEST)

SHOW LIBRARY BOUNDS TO

set library bound from (i.e. lower bound) to LATEST (the library bound to – i.e. upper bound

- remains intact) for subsequent usage (i.e. creating or opening HDF5 files)

SET LIBRARY BOUNDS FROM LATEST

show (i.e. get) library bound values from (i.e. lower bound) and to (i.e. upper bound)

(should be LATEST and LATEST)

SHOW LIBRARY BOUNDS

set both library bounds from (i.e. lower bound) and to (i.e. upper bound) to DEFAULT for

subsequent usage (i.e. creating or opening HDF5 files)

SET LIBRARY BOUNDS FROM DEFAULT TO DEFAULT

show (i.e. get) library bound values from (i.e. lower bound) and to (i.e. upper bound)

(should be EARLIEST and LATEST – i.e. default values defined by the HDF5 library)

SHOW LIBRARY BOUNDS

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 305 of 341

use (i.e. open) an HDF5 file named "my_file0.h5" with library bounds from (i.e. lower bound)

and to (i.e. upper bound) set to EARLIEST and LATEST respectively

USE FILE my_file0.h5

show (i.e. get) library bound value from (i.e. lower bound) (should be EARLIEST)

SHOW USE FILE LIBRARY BOUNDS FROM

show (i.e. get) library bound value to (i.e. upper bound) (should be LATEST)

SHOW USE FILE LIBRARY BOUNDS TO

set library bound from (i.e. lower bound) to LATEST (the library bound to – i.e. upper bound

- remains intact) for subsequent usage (i.e. creating or opening HDF5 files)

SET LIBRARY BOUNDS FROM LATEST

use (i.e. open) an HDF5 file named "my_file1.h5" with both library bounds from (i.e. lower

bound) and to (i.e. upper bound) set to LATEST respectively

USE FILE my_file1.h5

show (i.e. get) library bound values from (i.e. lower bound) and to (i.e. upper bound) of the

file currently in use (should be LATEST and LATEST)

SHOW USE FILE LIBRARY BOUNDS

use (i.e. open) an HDF5 file named "my_file2.h5" with library bounds from (i.e. lower bound)

and to (i.e. upper bound) set to EARLIEST (i.e. default value defined by the HDF5 library) and

LATEST respectively

USE FILE my_file2.h5 LIBRARY BOUNDS FROM DEFAULT

show (i.e. get) library bound values from (i.e. lower bound) and to (i.e. upper bound) of the

file currently in use (should be EARLIEST and LATEST)

SHOW USE FILE LIBRARY BOUNDS

6.7.31 SHOW CACHE

Syntax

SHOW [[USE] FILE | DATASET] CACHE [SLOTS | SIZE | PREEMPTION]

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 306 of 341

Description

Show (i.e. get) cache parameter values for accessing HDF5 files or datasets. If neither the keyword SLOTS, SIZE nor

PREEMPTION is specified, all cache parameter values (i.e. for slots, size and preemption) are returned. To return a specific

cache parameter value, the keyword SLOTS, SIZE or PREEMPTION must be specified. If neither the keyword FILE, USE FILE

nor DATASET is specified, the cache parameters returned refers to files by default (optionally, the keyword FILE may be

specified to make the purpose of this operation clearer). To explicitly return cache parameters of datasets or the file

currently in use, the keyword DATASET or USE FILE must be specified.

Parameter(s)

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The cache parameter values for accessing HDF5 files or datasets as an HDFQL_COMPOUND (when returning all cache

parameter values), HDFQL_BIGINT (when returning the slots or size cache parameter value only) or HDFQL_DOUBLE

(when returning the preemption cache parameter value only).

Example(s)

show (i.e. get) cache parameter values for accessing HDF5 files (should be 521, 1048576,

0.75)

SHOW CACHE

show (i.e. get) cache preemption value for accessing HDF5 files (should be 0.75)

SHOW CACHE PREEMPTION

show (i.e. get) cache parameter values for accessing HDF5 files (should be 521, 1048576,

0.75)

SHOW FILE CACHE

show (i.e. get) cache slots value for accessing HDF5 datasets (should be 521)

SHOW DATASET CACHE SLOTS

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 307 of 341

use (i.e. open) an HDF5 file named "my_file0.h5" with cache parameters values previously set

(i.e. with slots, size and preemption values of 521, 1048576 and 0,75 respectively)

USE FILE my_file0.h5

show (i.e. get) cache parameter values for accessing the HDF5 file currently in use (should

be 521, 1048576, 0,75)

SHOW USE FILE CACHE

use (i.e. open) an HDF5 file named "my_file1.h5" with cache slots, size and preemption values

of 1523, 262144 and 0.6 respectively

USE FILE my_file1.h5 CACHE SLOTS 1523 SIZE 262144 PREEMPTION 0.6

show (i.e. get) cache parameter values for accessing the HDF5 file currently in use (should

be 1523, 262144, 0.6)

SHOW USE FILE CACHE

use (i.e. open) an HDF5 file named "my_file2.h5" with a cache preemption value of 0.9

USE FILE my_file2.h5 CACHE PREEMPTION 0.9

show (i.e. get) cache parameter values for accessing the HDF5 file currently in use (should

be 521, 1048576, 0.9)

SHOW USE FILE CACHE

6.7.32 SHOW ATOMIC

Syntax

SHOW [USE FILE] ATOMIC

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) atomicity for accessing HDF5 files in an MPI environment. In case the keyword USE FILE is not specified, the

atomicity returned refers to files that are subsequently opened. Otherwise, if it is specified, the atomicity of the file

currently in use is returned.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 308 of 341

Parameter(s)

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The status of the atomicity for accessing HDF5 files as an HDFQL_INT, which can either be HDFQL_ENABLED or

HDFQL_DISABLED depending on whether the atomicity for accessing files is enabled or disabled respectively.

Example(s)

enable atomicity for accessing HDF5 files in an MPI environment

SET ATOMIC ENABLE

show (i.e. get) atomicity for accessing HDF5 files in an MPI environment (should be 0 – i.e.

HDFQL_ENABLED)

SHOW ATOMIC

use (i.e. open) an HDF5 file named "my_file0.h5" with atomicity for accessing it in an MPI

environment

USE FILE my_file0.h5 IN PARALLEL

show (i.e. get) atomicity of the HDF5 file currently in use in an MPI environment (should be

0 – i.e. HDFQL_ENABLED)

SHOW USE FILE ATOMIC

disable atomicity for accessing HDF5 files in an MPI environment

SET ATOMIC DISABLE

show (i.e. get) atomicity for accessing HDF5 files in an MPI environment (should be -1 – i.e.

HDFQL_DISABLED)

SHOW ATOMIC

use (i.e. open) an HDF5 file named "my_file1.h5" without atomicity for accessing it in an MPI

environment

USE FILE my_file1.h5 IN PARALLEL

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 309 of 341

show (i.e. get) atomicity of the HDF5 file currently in use in an MPI environment (should be

-1 – i.e. HDFQL_DISABLED)

SHOW USE FILE ATOMIC

use (i.e. open) an HDF5 file named "my_file2.h5" with atomicity for accessing it in an MPI

environment

USE FILE my_file2.h5 IN ATOMIC PARALLEL

show (i.e. get) atomicity of the HDF5 file currently in use in an MPI environment (should be

0 – i.e. HDFQL_ENABLED)

SHOW USE FILE ATOMIC

6.7.33 SHOW EXTERNAL LINK PREFIX

Syntax

SHOW EXTERNAL LINK PREFIX

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) prefix to prepend to file names stored in HDF5 external links.

Parameter(s)

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 310 of 341

Return

The prefix to prepend to file names stored in HDF5 external links as an HDFQL_VARCHAR or nothing (in case no prefix is

specified).

Example(s)

set external link prefix to "/target"

SET EXTERNAL LINK PREFIX /target

show (i.e. get) external link prefix (should be "/target")

SHOW EXTERNAL LINK PREFIX

set external link prefix to default (i.e. empty)

SET EXTERNAL LINK PREFIX DEFAULT

show (i.e. get) external link prefix (should be empty)

SHOW EXTERNAL LINK PREFIX

6.7.34 SHOW FLUSH

Syntax

SHOW FLUSH

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) status of the automatic flushing.

Parameter(s)

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 311 of 341

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The status of the automatic flushing as an HDFQL_INT, which can either be HDFQL_GLOBAL, HDFQL_LOCAL or

HDFQL_DISABLED depending on whether the automatic flushing of the entire virtual HDF5 file (global) or only the HDF5

file (local) currently in use is enabled or disabled respectively.

Example(s)

enable automatic flushing of the entire virtual HDF5 file (global) currently in use

SET FLUSH ENABLE

show (i.e. get) status of the automatic flushing (should be 1 – i.e. HDFQL_GLOBAL)

SHOW FLUSH

enable automatic flushing of only the HDF5 file (local) currently in use

SET FLUSH LOCAL ENABLE

show (i.e. get) status of the automatic flushing (should be 2 – i.e. HDFQL_LOCAL)

SHOW FLUSH

disable automatic flushing of the entire virtual HDF5 file (global) or only the HDF5 file

(local) currently in use

SET FLUSH DISABLE

show (i.e. get) status of the automatic flushing (should be -1 – i.e. HDFQL_DISABLED)

SHOW FLUSH

6.7.35 SHOW THREAD

Syntax

SHOW [MAX] THREAD

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 312 of 341

Description

Show (i.e. get) number of (CPU) threads to use when executing operations that support parallelism. In case the keyword

MAX is not specified, the number of (CPU) threads returned refers to the number that may have been set through the SET

THREAD operation. Otherwise, if it is specified, the maximum number of (CPU) cores that the machine possesses is

returned.

Parameter(s)

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The number of (CPU) threads to use when executing operations that support parallelism as an HDFQL_INT.

Example(s)

set number of (CPU) threads (to use when executing operations that support parallelism) to 2

SET THREAD 2

show (i.e. get) number of (CPU) threads (to use when executing operations that support

parallelism) (should be 2)

SHOW THREAD

set number of (CPU) threads (to use when executing operations that support parallelism) to 8

SET THREAD 8

show (i.e. get) number of (CPU) threads (to use when executing operations that support

parallelism) (should be 8)

SHOW THREAD

set number of (CPU) threads (to use when executing operations that support parallelism) to

the maximum number of (CPU) cores that the machine possesses

SET THREAD MAX

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 313 of 341

show (i.e. get) number of (CPU) threads (to use when executing operations that support

parallelism) (should be the maximum number of (CPU) cores that the machine possesses)

SHOW THREAD

6.7.36 SHOW PLUGIN PATH

Syntax

SHOW PLUGIN PATH

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) path where plugins (in the form of shared libraries) are searched for by HDFql.

Parameter(s)

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The path where plugins (in the form of shared libraries) are searched for by HDFql as an HDFQL_VARCHAR.

Example(s)

set path where plugins (in the form of shared libraries) are searched for by HDFql to

"/home/dummy" and "/usr/lib"

SET PLUGIN PATH /home/dummy, /usr/lib

show (i.e. get) path where plugins (in the form of shared libraries) are searched for by

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 314 of 341

HDFql (should be "/home/dummy" and "/usr/lib")

SHOW PLUGIN PATH

set path where plugins (in the form of shared libraries) are searched for by HDFql to default

SET PLUGIN PATH DEFAULT

show (i.e. get) path where plugins (in the form of shared libraries) are searched for by

HDFql (should be ".")

SHOW PLUGIN PATH

6.7.37 SHOW DEBUG

Syntax

SHOW DEBUG

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) status of the debug mechanism.

Parameter(s)

post_processing_option – optional option that transforms the result set according to the programmer’s needs such as

ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option – optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The status of the debug mechanism as an HDFQL_INT, which can either be HDFQL_ENABLED or HDFQL_DISABLED

depending on whether the debug mechanism is enabled or disabled respectively.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 315 of 341

Example(s)

enable debug mechanism (i.e. debug messages will be displayed when executing operations)

SET DEBUG ENABLE

show (i.e. get) status of the debug mechanism (should be 0 – i.e. HDFQL_ENABLED)

SHOW DEBUG

disable debug mechanism (i.e. debug messages will not be displayed when executing operations)

SET DEBUG DISABLE

show (i.e. get) status of the debug mechanism (should be -1 – i.e. HDFQL_DISABLED)

SHOW DEBUG

6.8 MISCELLANEOUS

This section assembles all remaining HDFql operations that – due to their heterogeneous nature and functionality – do not

fit in the previous sections about the language for data definition, manipulation, querying and introspection.

6.8.1 USE DIRECTORY

Syntax

USE DIRECTORY directory_name

Description

Use (i.e. open) a directory named directory_name for subsequent operations. This will change the current working

directory to directory_name thus avoiding the need to explicitly provide the full path of this directory when working within

it (i.e. subsequent operations are done relatively to this directory, unless otherwise specified). If directory_name was not

found or could not be opened (due to unknown/unexpected reasons), an error is raised.

Parameter(s)

directory_name – mandatory string that specifies the name of the directory to use for subsequent operations.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 316 of 341

Return

Nothing

Example(s)

set working directory currently in use to "/"

USE DIRECTORY /

show (i.e. get) current working directory (should be "/")

SHOW USE DIRECTORY

create a directory named "my_directory"

CREATE DIRECTORY my_directory

set working directory currently in use to "my_directory" (more precisely "/my_directory")

USE DIRECTORY my_directory

show (i.e. get) current working directory (should be "/my_directory")

SHOW USE DIRECTORY

create two directories named "my_subdirectory0" and "my_subdirectory1" (both directories will

be created in directory "/my_directory")

CREATE DIRECTORY my_subdirectory0, my_subdirectory1

set directory currently in use to "my_subdirectory0" (more precisely

"/my_directory/my_subdirectory0")

USE DIRECTORY my_subdirectory0

show (i.e. get) current working directory (should be "/my_directory/my_subdirectory0")

SHOW USE DIRECTORY

set directory currently in use to "my_subdirectory1" located one level up (more precisely

"/my_directory/my_subdirectory1")

USE DIRECTORY ../my_subdirectory1

show (i.e. get) current working directory (should be "/my_directory/my_subdirectory1")

SHOW USE DIRECTORY

set directory currently in use two levels up (should be "/")

USE DIRECTORY ../..

show (i.e. get) current working directory (should be "/")

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 317 of 341

SHOW USE DIRECTORY

6.8.2 USE FILE

Syntax

USE [READONLY] FILE file_name [, file_name]* [IN [ATOMIC] PARALLEL]

[LIBRARY BOUNDS [FROM {EARLIEST | LATEST | V18 | DEFAULT}] [TO {LATEST | V18 | DEFAULT}]]

[CACHE [SLOTS {slots_value | DEFAULT}] [SIZE {size_value | DEFAULT}] [PREEMPTION {preemption_value |

DEFAULT}]]

Description

Use (i.e. open) an HDF5 file named file_name for subsequent operations. Multiple files can be opened at once by

separating these with a comma (,). If file_name was not found or could not be opened (due to unknown/unexpected

reasons), no subsequent files are opened, and an error is raised. By default, the file is opened with read/write permissions.

To open a file with read only permission, the keyword READONLY should be specified (any subsequent attempt to write

into this file will raise an error). HDFql tracks opened files in a stack fashion (i.e. LIFO) meaning that the most recently

opened file is the one currently in use. In case the keyword IN PARALLEL49 is specified, HDFql opens the file in parallel

using all the MPI processes specified upon launching the program (that employs HDFql). In case the keyword ATOMIC is

specified, all file access operations will appear atomic, guaranteeing sequential consistency in an MPI environment (i.e. the

operations will behave as though they were performed in a serial order consistent with the program order). In case the

keyword LIBRARY BOUNDS is specified, HDFql opens the file using these bounds (instead of the library bounds that may

have been set through the operation SET LIBRARY BOUNDS). In case the keyword CACHE is specified, HDFql opens the file

using cache parametrized with the slots_value, size_value and preemption_value values (instead of the file cache

parameters that may have been set through the operation SET CACHE).

Parameter(s)

file_name – mandatory string that specifies the name of the HDF5 file to use (i.e. open) for subsequent operations.

Multiple files are separated with a comma (,).

49 This option is not allowed in Windows as HDFql does not support the parallel HDF5 (PHDF5) library in this platform currently.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 318 of 341

slots_value – optional integer that specifies the number of chunk slots in the raw data chunk cache for accessing the HDF5

file. Due to the hashing strategy, its value should ideally be a prime number. In case the keyword DEFAULT is specified, its

value is 521 (i.e. default value defined by the HDF5 library). In case the keyword SLOTS is not specified, its current value

remains intact.

size_value – optional integer that specifies the total size of the raw data chunk cache in bytes for accessing the HDF5 file.

In case the keyword DEFAULT is specified, its value is 1048576 (i.e. 1 MB – default value defined by the HDF5 library). In

case the keyword SIZE is not specified, its current value remains intact.

preemption_value – optional float that specifies the chunk preemption policy for accessing the HDF5 file. Its value must be

between 0 and 1. It indicates the weighting according to which chunks which have been fully read or written are penalized

when determining which chunks to flush from cache. In case the keyword DEFAULT is specified, its value is 0.75 (i.e.

default value defined by the HDF5 library). In case the keyword PREEMPTION is not specified, its current value remains

intact.

Return

Nothing

Example(s)

use (i.e. open) an HDF5 file named "my_file0.h5" located in the current working directory

USE FILE my_file0.h5

use (i.e. open) an HDF5 file named "my_file1.h5" located in a root directory named "data"

USE FILE /data/my_file1.h5

use (i.e. open) two HDF5 files named "my_file2.h5" and "my_file3.h5" with read only

permissions (both files are located in the current working directory)

USE READONLY FILE my_file2.h5, my_file3.h5

use (i.e. open) an HDF5 file named "my_file4.h5" located in the parent directory with the

latest version of the HDF5 library

USE FILE ../my_file4.h5 LIBRARY BOUNDS FROM LATEST TO LATEST

use (i.e. open) an HDF5 file named "my_file5.h5" located in the current working directory

with cache slots, size and preemption values of 1523, 262144 and 0.6 respectively

USE FILE my_file5.h5 CACHE SLOTS 1523 SIZE 262144 PREEMPTION 0.6

use (i.e. open) an HDF5 file named "my_file6.h5" located in the current working directory

with the earliest version of the HDF5 library and a cache preemption value of 0.9

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 319 of 341

USE FILE my_file6.h5 LIBRARY BOUNDS FROM EARLIEST CACHE PREEMPTION 0.9

use (i.e. open) an HDF5 file named "my_file7.h5" located in the current working directory in

parallel (i.e. all the MPI processes specified upon launching the program (that employs HDFql)

will collectively open the file – e.g. if the program is launched as "mpiexec –n 4 my_program",

all the four MPI processes will participate in the opening of the file)

USE FILE my_file7.h5 IN PARALLEL

use (i.e. open) an HDF5 file named "my_file8.h5" located in the current working directory in

parallel with atomicity for accessing it

USE FILE my_file8.h5 IN ATOMIC PARALLEL

6.8.3 USE GROUP

Syntax

USE GROUP group_name

Description

Use (i.e. open) an HDF5 group named group_name for subsequent operations. This will change the current working group

to group_name thus avoiding the need to explicitly provide the full path of this group when working within it (i.e.

subsequent operations are done relatively to this group, unless otherwise specified). If group_name was not found or

could not be opened (due to unknown/unexpected reasons), an error is raised. Upon using (i.e. opening) an HDF5 file, the

group currently in use is “/” (i.e. the root of the HDF5 file).

Parameter(s)

group_name – mandatory string that specifies the name of the HDF5 group to use (i.e. open) for subsequent operations.

Besides the name of the group to be used for subsequent operations, group_name may be composed of special tokens

(that are not part of the name of the group itself). These are:

 “/” to separate multiple groups. Example: “USE GROUP my_group/my_subgroup/my_subsubgroup”.

 “.” to refer to the group currently in use. Example: “USE GROUP .”.

 “..” to go up one level from the group currently in use. Example: “USE GROUP ..”.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 320 of 341

Return

Nothing

Example(s)

set group currently in use to "/" (i.e. the root of the HDF5 file)

USE GROUP /

create two HDF5 groups named "my_group0" and "my_group1" (both groups will be created in

group "/")

CREATE GROUP my_group0, my_group1

create an HDF5 dataset named "my_dataset0" of data type double (it will be created in group

"/")

CREATE DATASET my_dataset0 AS DOUBLE

set group currently in use to "my_group0" (more precisely "/my_group0")

USE GROUP my_group0

create an HDF5 dataset named "my_dataset1" of data type double (it will be created in group

"/my_group0")

CREATE DATASET my_dataset1 AS DOUBLE

create an HDF5 group named "my_subgroup0" (it will be created in group "/my_group0")

CREATE GROUP my_subgroup0

create an HDF5 dataset named "my_dataset2" of data type variable-length double (it will be

created in group "/my_group0/my_subgroup0")

CREATE DATASET my_subgroup0/my_dataset2 AS VARDOUBLE

create an HDF5 attribute named "my_attribute0" of data type float (it will be created in

group "/")

CREATE ATTRIBUTE ../my_attribute0 AS FLOAT

set group currently in use to "my_subgroup0" (more precisely "/my_group0/my_subgroup0")

USE GROUP my_subgroup0

create an HDF5 attribute named "my_attribute1" of data type char (it will be created in group

"/my_group1")

CREATE ATTRIBUTE ../../my_group1/my_attribute1 AS CHAR

create an HDF5 attribute named "my_attribute2" of data type variable-length char (it will be

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 321 of 341

created in group "/")

CREATE ATTRIBUTE /my_attribute2 AS VARCHAR

set group currently in use to "." (the group currently in use will not change - i.e. it

remains "/my_group0/my_subgroup0" – as "." refers to the current working group itself)

USE GROUP .

create an HDF5 attribute named "my_attribute3" of data type int (it will be created in group

"/my_group0/my_subgroup0")

CREATE ATTRIBUTE my_attribute3 AS INT

set group currently in use one level up (should be "/my_group0")

USE GROUP ..

create an HDF5 attribute named "my_attribute4" of data type short (it will be created in

group "/my_group0")

CREATE ATTRIBUTE my_attribute4 AS SMALLINT

6.8.4 FLUSH

Syntax

FLUSH [ALL] [GLOBAL | LOCAL]

Description

Flush the entire virtual HDF5 file (global) or the specific HDF5 file (local) currently in use. All buffered data will be written

into the disk. In case the keyword ALL is specified, all files in use (i.e. open) are flushed. If neither the keyword GLOBAL nor

LOCAL is specified, a global flush is performed by default (optionally, the keyword GLOBAL may be specified to make the

purpose of this operation clearer). To perform a local flush, the keyword LOCAL must be specified. If no file is currently

used, no flush is performed, and an error is raised.

Parameter(s)

None

Return

Nothing

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 322 of 341

Example(s)

flush the entire virtual HDF5 file (global) currently in use

FLUSH

flush the entire virtual HDF5 file (global) currently in use

FLUSH GLOBAL

flush only the HDF5 file (local) currently in use

FLUSH LOCAL

flush all the entire virtual HDF5 files (global) in use (i.e. open)

FLUSH ALL GLOBAL

6.8.5 CLOSE FILE

Syntax

CLOSE FILE [file_name [, file_name]*]

Description

Close a certain HDF5 file used (i.e. opened) or the HDF5 file currently in use. Multiple files can be closed at once by

separating these with a comma (,). If no file is currently used or if file_name is not in use (i.e. open) or it is not possible to

close it (due to unknown/unexpected reasons), no subsequent files are closed, and an error is raised. Before closing a file,

all buffered data will be written into it. After closing a file, the file in use will be the one most recently used before the

closed file.

Parameter(s)

file_name – optional string that specifies the name of the HDF5 file to close. Multiple files are separated with a comma (,).

If file_name is specified, it will be closed regardless of whether it is the file currently in use or not. Otherwise, if it is not

specified, the file currently in use will be closed. Of note, if file_name is specified it must match exactly the name of the

file when it was opened (otherwise no file will be closed and an error is raised).

Return

Nothing

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 323 of 341

Example(s)

use (i.e. open) four HDF5 files named "my_file0.h5", "my_file1.h5", "my_file2.h5" and

"my_file3.h5"

USE FILE my_file0.h5, my_file1.h5, my_file2.h5, my_file3.h5

show (i.e. get) HDF5 file currently in use (i.e. open) (should be "my_file3.h5")

SHOW USE FILE

close HDF5 file currently in use (i.e. file "my_file3.h5")

CLOSE FILE

show (i.e. get) HDF5 file currently in use (i.e. open) (should be "my_file2.h5")

SHOW USE FILE

close HDF5 file "my_file1.h5"

CLOSE FILE my_file1.h5

show (i.e. get) HDF5 file currently in use (i.e. open) (should be "my_file2.h5")

SHOW USE FILE

close HDF5 file currently in use (i.e. file "my_file2.h5")

CLOSE FILE

show (i.e. get) HDF5 file currently in use (i.e. open) (should be "my_file0.h5")

SHOW USE FILE

close HDF5 file currently in use (i.e. file "my_file0.h5")

CLOSE FILE

show (i.e. get) HDF5 file currently in use (i.e. open) (should be empty)

SHOW USE FILE

6.8.6 CLOSE ALL FILE

Syntax

CLOSE ALL FILE

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 324 of 341

Description

Close all HDF5 files in use. All buffered data will be written into the respective files before closing them. If no file is

currently used or if it is not possible to close a file (due to unknown/unexpected reasons), no subsequent files are closed,

and an error is raised.

Parameter(s)

None

Return

Nothing

Example(s)

use (i.e. open) three HDF5 files named "my_file0.h5", "my_file1.h5" and "my_file2.h5"

USE FILE my_file0.h5, my_file1.h5, my_file2.h5

show (i.e. get) all HDF5 files in use (i.e. open) (should be "my_file2.h5", "my_file1.h5",

"my_file0.h5")

SHOW ALL USE FILE

close all HDF5 files in use (i.e. open)

CLOSE ALL FILE

show (i.e. get) all HDF5 files in use (i.e. open) (should be empty)

SHOW ALL USE FILE

6.8.7 CLOSE GROUP

Syntax

CLOSE GROUP

Description

Close the HDF5 group currently in use. After closing it, the group currently in use will be “/” (i.e. the root of the HDF5 file).

If no file is currently used, no group is closed, and an error is raised.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 325 of 341

Parameter(s)

None

Return

Nothing

Example(s)

use (i.e. open) an HDF5 file named "my_file.h5"

USE FILE my_file.h5

show (i.e. get) current working group (should be "/")

SHOW USE GROUP

create an HDF5 group named "my_group"

CREATE GROUP my_group

set group currently in use to "my_group" (more precisely "/my_group")

USE GROUP my_group

show (i.e. get) current working group (should be "/my_group")

SHOW USE GROUP

create an HDF5 dataset named "my_dataset" of data type double (more precisely

"/my_group/my_dataset")

CREATE DATASET my_dataset AS DOUBLE

set group currently in use to "/" (i.e. the root of the HDF5 file)

CLOSE GROUP

show (i.e. get) current working group (should be "/")

SHOW USE GROUP

create an HDF5 dataset named "my_dataset" of data type int (more precisely "/ my_dataset")

CREATE DATASET my_dataset AS INT

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 326 of 341

6.8.8 SET LIBRARY BOUNDS

Syntax

SET LIBRARY BOUNDS [FROM {EARLIEST | LATEST | V18 | DEFAULT}] [TO {LATEST | V18 | DEFAULT}]

Description

Set library bounds50 for creating and opening HDF5 files. In other words, it sets bounds on library versions to be used when

creating objects (the object format versions are determined indirectly from the HDF5 library versions specified in the call).

All files that are subsequently created or opened (through the operations CREATE FILE or USE FILE) will use the default

bound values defined by the HDF5 library or user-defined bound values. These bounds are:

 From – lower bound on the range of possible library versions used to create the object. The library version indirectly

specifies the earliest object format version that can be used when creating objects in an HDF5 file. In case the

keyword DEFAULT is specified, its value is EARLIEST (i.e. default value defined by the HDF5 library). In case the

keyword FROM is not specified (i.e. the lower bound), its current value remains intact.

 To – upper bound on the range of possible library versions used to create the object. The library version indirectly

specifies the latest object format version that can be used when creating objects in an HDF5 file. In case the keyword

DEFAULT is specified, its value is LATEST (i.e. default value defined by the HDF5 library). In case the keyword TO is not

specified (i.e. the upper bound), its current value remains intact.

Parameter(s)

None

Return

Nothing

Example(s)

use (i.e. open) an HDF5 file named "my_file0.h5" with library bounds from (i.e. lower bound)

and to (i.e. upper bound) set to EARLIEST and LATEST respectively (default values defined by

the HDF5 library)

50 By default (i.e. upon initialization of the HDFql library), the library bounds from (i.e. lower bound) and to (i.e. upper bound) are set to EARLIEST and

LATEST respectively.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 327 of 341

USE FILE my_file0.h5

set library bound from (i.e. lower bound) to LATEST (the library bound to - i.e. upper bound

- remains intact) for subsequent usage (i.e. creating or opening HDF5 files)

SET LIBRARY BOUNDS FROM LATEST

use (i.e. open) an HDF5 file named "my_file1.h5" with both library bounds from (i.e. lower

bound) and to (i.e. upper bound) set to LATEST

USE FILE my_file1.h5

set library bound to (i.e. upper bound) to V18 (the library bound from - i.e. lower bound -

remains intact) for subsequent usage (i.e. creating or opening HDF5 files)

SET LIBRARY BOUNDS TO V18

use (i.e. open) an HDF5 file named "my_file2.h5" with library bounds from (i.e. lower bound)

and to (i.e. upper bound) set to LATEST and V18 respectively

USE FILE my_file2.h5

set both library bounds from (i.e. lower bound) and to (i.e. upper bound) to DEFAULT for

subsequent usage (i.e. creating or opening HDF5 files)

SET LIBRARY BOUNDS FROM DEFAULT TO DEFAULT

use (i.e. open) an HDF5 file named "my_file3.h5" with library bounds from (i.e. lower bound)

and to (i.e. upper bound) set to EARLIEST and LATEST respectively (default values defined by

the HDF5 library)

USE FILE my_file3.h5

6.8.9 SET CACHE

Syntax

SET [FILE | DATASET] CACHE [SLOTS {slots_value | FILE | DEFAULT}] [SIZE {size_value | FILE | DEFAULT}]

[PREEMPTION {preemption_value | FILE | DEFAULT}]

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 328 of 341

Description

Set cache parameters51 for accessing HDF5 files or datasets. All files or datasets that are subsequently opened or read

(through the operations USE FILE or SELECT respectively) will use the default cache parameter values defined by the HDF5

library or user-defined cache parameter values. These cache parameters are:

 Slots – number of chunk slots in the raw data chunk cache.

 Size – total size of the raw data chunk cache in bytes.

 Preemption – chunk preemption policy.

If neither the keyword FILE nor DATASET is specified, the setting of the cache parameters refers to files by default

(optionally, the keyword FILE may be specified to make the purpose of this operation clearer). To explicitly set the cache

parameters to datasets, the keyword DATASET must be specified.

Parameter(s)

slots_value – optional integer that specifies the number of chunk slots in the raw data chunk cache for accessing HDF5

files or datasets. Due to the hashing strategy, its value should ideally be a prime number. In case the keyword FILE is

specified, its value will be as defined in the cache slots parameter upon using (i.e. opening) the file. In case the keyword

DEFAULT is specified, its value is 521 (i.e. default value defined by the HDF5 library). In case the keyword SLOTS is not

specified, its current value remains intact.

size_value – optional integer that specifies the total size of the raw data chunk cache in bytes for accessing HDF5 files or

datasets. In case the keyword FILE is specified, its value will be as defined in the cache size parameter upon using (i.e.

opening) the file. In case the keyword DEFAULT is specified, its value is 1048576 (i.e. 1 MB – default value defined by the

HDF5 library). In case the keyword SIZE is not specified, its current value remains intact.

preemption_value – optional float that specifies the chunk preemption policy for accessing HDF5 files or datasets. Its value

must be between 0 and 1. It indicates the weighting according to which chunks which have been fully read or written are

penalized when determining which chunks to flush from cache. In case the keyword FILE is specified, its value will be as

defined in the cache preemption parameter upon using (i.e. opening) the file. In case the keyword DEFAULT is specified, its

value is 0.75 (i.e. default value defined by the HDF5 library). In case the keyword PREEMPTION is not specified, its current

value remains intact.

51 By default (i.e. upon initialization of the HDFql library), the cache parameters slots, size and preemption are set to 521, 1048576 and 0.75 respectively.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 329 of 341

Return

Nothing

Example(s)

use (i.e. open) an HDF5 file named "my_file0.h5" with cache slots, size and preemption values

of 521, 1048576 and 0.75 respectively (default values defined by the HDF5 library)

USE FILE my_file0.h5

set cache slots and preemption values to 2297 and 0.9 respectively (the cache size value

remains intact) for subsequent usage (i.e. opening HDF5 files)

SET CACHE SLOTS 2297 PREEMPTION 0.9

use (i.e. open) an HDF5 file named "my_file1.h5" with cache slots, size and preemption values

of 2297, 1048576 and 0.9 respectively

USE FILE my_file1.h5

set cache slots, size and preemption values to 1523, 262144 and 0.6 respectively for

subsequent usage (i.e. opening HDF5 files)

SET FILE CACHE SLOTS 1523 SIZE 262144 PREEMPTION 0.6

use (i.e. open) an HDF5 file named "my_file2.h5" with cache slots, size and preemption values

of 1523, 262144 and 0.6 respectively

USE FILE my_file2.h5

set cache size value to 1048576 (default value defined by the HDF5 library) and preemption

value to 0.4 (the cache slots value remains intact) for subsequent usage (i.e. opening HDF5

files)

SET FILE CACHE SIZE DEFAULT PREEMPTION 0.4

use (i.e. open) an HDF5 file named "my_file3.h5" with cache slots, size and preemption values

of 1523, 1048576 and 0.4 respectively

USE FILE my_file3.h5

select (i.e. read) an HDF5 dataset named "my_dataset0" with cache slots, size and preemption

values of 521, 1048576 and 0.75 respectively (default values defined by the HDF5 library)

SELECT FROM my_dataset0

set cache slots and preemption values to 2297 and 0.9 respectively (the cache size value

remains intact) for subsequent selection (i.e. reading HDF5 datasets)

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 330 of 341

SET DATASET CACHE SLOTS 2297 PREEMPTION 0.9

select (i.e. read) an HDF5 dataset named "my_dataset1" with cache slots, size and preemption

values of 2297, 1048576 and 0.9 respectively

SELECT FROM my_dataset1

set cache slots, size and preemption values to 1523, 262144 and 0.6 respectively for

subsequent selection (i.e. reading HDF5 datasets)

SET DATASET CACHE SLOTS 1523 SIZE 262144 PREEMPTION 0.6

select (i.e. read) an HDF5 dataset named "my_dataset2" with cache slots, size and preemption

values of 1523, 262144 and 0.6 respectively

SELECT FROM my_dataset2

set cache size value to 1048576 (default value defined by the HDF5 library) and preemption

value to 0.4 (the cache slots value remains intact) for subsequent selection (i.e. reading HDF5

datasets)

SET DATASET CACHE SIZE DEFAULT PREEMPTION 0.4

select (i.e. read) an HDF5 dataset named "my_dataset3" with cache slots, size and preemption

values of 1523, 1048576 and 0.4 respectively

SELECT FROM my_dataset3

set cache slots, size and preemption values to 3089, 2048 and 0.85 respectively for

subsequent usage (i.e. opening HDF5 files)

SET FILE CACHE SLOTS 3089 SIZE 2048 PREEMPTION 0.85

set cache slots value to 521 (default value defined by the HDF5 library), size value to 1024,

and preemption value to 0.85 (defined by the cache preemption value for HDF5 files) for

subsequent selection (i.e. reading HDF5 datasets)

SET DATASET CACHE SLOTS DEFAULT SIZE 1024 PREEMPTION FILE

select (i.e. read) an HDF5 dataset named "my_dataset4" with cache slots, size and preemption

values of 521, 1024 and 0.85 respectively

SELECT FROM my_dataset4

6.8.10 SET ATOMIC

Syntax

SET [USE FILE] ATOMIC {ENABLE | DISABLE | DEFAULT}

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 331 of 341

Description

Set atomicity52 for accessing HDF5 files in an MPI environment to enabled or disabled. All files that are subsequently

opened (through the operation USE FILE) will have access operations performed in an atomic fashion or not accordingly. If

enabled, all file access operations will appear atomic, guaranteeing sequential consistency in an MPI environment (i.e. the

operations will behave as though they were performed in a serial order consistent with the program order). If disabled, no

enforcement of atomic file access will be done. In case the keyword DEFAULT is specified, the atomicity for accessing files

is set to disabled (i.e. equivalent to specifying the keyword DISABLE). In case the keyword USE FILE is specified, subsequent

access operations of the file currently in use will be performed in an atomic fashion or not accordingly.

Parameter(s)

None

Return

Nothing

Example(s)

enable atomicity for accessing HDF5 files in an MPI environment

SET ATOMIC ENABLE

use (i.e. open) an HDF5 file named "my_file0.h5" with atomicity for accessing it in an MPI

environment

USE FILE my_file0.h5 IN PARALLEL

disable atomicity for accessing HDF5 files in an MPI environment

SET ATOMIC DISABLE

use (i.e. open) an HDF5 file named "my_file1.h5" without atomicity for accessing it in an MPI

environment

USE FILE my_file1.h5 IN PARALLEL

enable atomicity for accessing the HDF5 file currently in use (i.e. file "my_file1.h5") in an

MPI environment

SET USE FILE ATOMIC

52 By default (i.e. upon initialization of the HDFql library), the atomicity is set to disabled.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 332 of 341

use (i.e. open) an HDF5 file named "my_file2.h5" with atomicity for accessing it in an MPI

environment

USE FILE my_file2.h5 IN ATOMIC PARALLEL

6.8.11 SET EXTERNAL LINK PREFIX

Syntax

SET EXTERNAL LINK PREFIX {prefix_value | DEFAULT}

Description

Set prefix53 to prepend to file names stored in HDF5 external links. In other words, before resolving a file name stored in

an external link, the prefix prefix_value is prepended to the name. In case the keyword DEFAULT is specified, the prefix to

resolve file names is set to empty (i.e. nothing is prepended).

Parameter(s)

prefix_value – optional string that specifies the prefix to prepend to file names stored in HDF5 external links.

Return

Nothing

Example(s)

set directory currently in use to "/data"

USE DIRECTORY /data

create two HDF5 files named "my_file0.h5" and "my_file1.h5" in the directory currently in use

(i.e. directory "/data") and in a root directory named "target" respectively

CREATE FILE my_file0.h5, /target/my_file1.h5

create an HDF5 dataset named "my_dataset" (in file "my_file1.h5" located in root directory

"target") of data type float with an initial value of 7.8

CREATE DATASET /target/my_file1.h5 my_dataset AS FLOAT VALUES(7.8)

53 By default (i.e. upon initialization of the HDFql library), the prefix is set to empty (i.e. nothing is prepended).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 333 of 341

use (i.e. open) HDF5 file "my_file0.h5" located in the directory currently in use (i.e.

directory "/data")

USE FILE my_file0.h5

create an HDF5 external link named "my_link" in file "my_file0.h5" to object "my_dataset" in

file "my_file1.h5"

CREATE EXTERNAL LINK my_link TO my_file1.h5 my_dataset

select (i.e. read) data from object "my_link" and populate cursor in use with it (should

raise an error since "my_link" is a dangling link due to "my_file1.h5" being located in

directory "/target" and not in the directory currently in use)

SELECT FROM my_link

set external link prefix to "/target"

SET EXTERNAL LINK PREFIX /target

select (i.e. read) data from object "my_link" and populate cursor in use with it (should be

7.8)

SELECT FROM my_link

6.8.12 SET FLUSH

Syntax

SET FLUSH {{[GLOBAL | LOCAL] ENABLE} | DISABLE | DEFAULT}

Description

Set automatic flushing54 of the entire virtual HDF5 file (global) or only the HDF5 file (local) currently in use to enabled or

disabled. If enabled, automatic flushing (i.e. all buffered data is written into the disk) will subsequently occur whenever an

operation modifying the file is executed. If neither the keyword GLOBAL nor LOCAL is specified, automatic global flushing

is set by default (optionally, the keyword GLOBAL may be specified to make the purpose of this operation clearer). To set

automatic local flushing, the keyword LOCAL must be specified. In case the keyword DEFAULT is specified, the automatic

flushing is set to disabled (i.e. equivalent to specifying the keyword DISABLE).

54 By default (i.e. upon initialization of the HDFql library), the automatic flushing is set to disabled.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 334 of 341

Parameter(s)

None

Return

Nothing

Example(s)

enable automatic flushing of the entire virtual HDF5 file (global) currently in use

SET FLUSH ENABLE

enable automatic flushing of the entire virtual HDF5 file (global) currently in use

SET FLUSH GLOBAL ENABLE

enable automatic flushing of only the HDF5 file (local) currently in use

SET FLUSH LOCAL ENABLE

disable automatic flushing of the entire virtual HDF5 file (global) or only the HDF5 file

(local) currently in use

SET FLUSH DISABLE

6.8.13 SET THREAD

Syntax

SET THREAD {thread_number | MAX | DEFAULT}

Description

Set number of (CPU) threads55 to use when executing operations that support parallelism. In case the keyword MAX is

specified, the number of (CPU) threads to use is set to the maximum number of (CPU) cores that the machine possesses.

In case the keyword DEFAULT is specified, the number of (CPU) threads to use is set to the maximum number of (CPU)

cores that the machine possesses (i.e. equivalent to specifying the keyword MAX).

55 By default (i.e. upon initialization of the HDFql library), the number of (CPU) threads to use is set to the maximum number of (CPU) cores that the

machine possesses.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 335 of 341

Parameter(s)

thread_number – optional integer that specifies the number of (CPU) threads to use when executing operations that

support parallelism.

Return

Nothing

Example(s)

set number of (CPU) threads (to use when executing operations that support parallelism) to 2

SET THREAD 2

select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it in

ascending order using 2 (CPU) threads

SELECT FROM my_dataset ORDER ASC

set number of (CPU) threads (to use when executing operations that support parallelism) to 8

SET THREAD 8

select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it in

descending order using 8 (CPU) threads

SELECT FROM my_dataset ORDER DESC

set number of (CPU) threads (to use when executing operations that support parallelism) to

the maximum number of (CPU) cores that the machine possesses

SET THREAD MAX

select (i.e. read) data from dataset "my_dataset" and populate cursor in use with it in

ascending order using a number of (CPU) threads equivalent to the maximum number of (CPU) cores

that the machine possesses

SELECT FROM my_dataset ORDER ASC

6.8.14 SET PLUGIN PATH

Syntax

SET PLUGIN PATH {{path_name [, path_name]*} | DEFAULT}

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 336 of 341

Description

Set path56 where plugins (in the form of shared libraries) are searched for by HDFql. In other words, to be able to perform

certain actions, HDFql needs to find and dynamically load the appropriate shared library responsible for the action (e.g. to

write a result set into an Excel file, HDFql needs to find and dynamically load a shared library named “libxl” which is

responsible for handling files of this type). In case the keyword DEFAULT is specified, the path where plugins are searched

for by HDFql is set to the working directory currently in use (i.e. “.”).

Parameter(s)

path_name – mandatory string that specifies the name of the path where plugins (in the form of shared libraries) are

searched for by HDFql. Multiple paths are separated with a comma (,).

Return

Nothing

Example(s)

set path where plugins (in the form of shared libraries) are searched for by HDFql to

"/home/dummy" and "/usr/lib"

SET PLUGIN PATH /home/dummy, /usr/lib

show (i.e. get) path where plugins (in the form of shared libraries) are searched for by

HDFql (should be "/home/dummy" and "/usr/lib")

SHOW PLUGIN PATH

set path where plugins (in the form of shared libraries) are searched for by HDFql to default

SET PLUGIN PATH DEFAULT

show (i.e. get) path where plugins (in the form of shared libraries) are searched for by

HDFql (should be ".")

SHOW PLUGIN PATH

56 By default (i.e. upon initialization of the HDFql library), the path where plugins (in the form of shared libraries) are searched for by HDFql is set to the

working directory currently in use (i.e. “.”).

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 337 of 341

6.8.15 SET DEBUG

Syntax

SET DEBUG {ENABLE | DISABLE | DEFAULT}

Description

Set debug mechanism57 to enabled or disabled. If enabled, debug messages will be displayed when executing operations,

which should help the programmer to have a better understanding of the parameters HDFql is receiving, the operation

performed, and the return value of this operation. Additionally, debug messages of the HDF5 library itself are displayed in

case of an error. In case the keyword DEFAULT is specified, the debug mechanism is set to disabled (i.e. equivalent to

specifying the keyword DISABLE).

Parameter(s)

None

Return

Nothing

Example(s)

enable debug mechanism (i.e. debug messages will be displayed when executing operations)

SET DEBUG ENABLE

disable debug mechanism (i.e. debug messages will not be displayed when executing operations)

SET DEBUG DISABLE

57 By default (i.e. upon initialization of the HDFql library), the debug mechanism is set to disabled.

Version 2.3.0 __ Page 338 of 341

GLOSSARY

Application Programming Interface (API)

An Application Programming Interface (API) specifies how software components should interact with each other. In

practice, an API comes in the form of a library that includes specifications for functions, data structures, object classes,

constants and variables. A good API makes it easier to develop a program by providing all the building blocks.

Attribute

An (HDF5) attribute is a metadata object describing the nature and/or intended usage of a primary data object. A primary

data object may be a group, dataset or committed data type. Attributes are assumed to be very small as data objects go,

so storing them as standard (HDF5) datasets would be inefficient.

Cursor .

A cursor is a control structure that is used to iterate through the results returned by a query (that was previously

executed). It can be seen as an effective means to abstract the programmer from low-level implementation details of

accessing data stored in specific structures. Besides offering several ways to traverse result sets according to specific

needs, cursors in HDFql also store result sets returned by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION

LANGUAGE (DIL) operations.

Dataset

A (HDF5) dataset is an object composed of a collection of data elements and metadata that stores a description of the

data elements, data layout and all other information necessary to write and read the data. A dataset may be a

multidimensional array of data elements and it may have zero or more attributes.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 339 of 341

Data type

A data type is a classification identifying one of various types of data such as integer, floating-point or string, which

determines the possible values for that type, the operations that can be done on values of that type, the meaning of the

data, and the way values of that type can be stored. In other words, a data type is a classification of data that tells HDFql

how the user intends to use it.

Endianness

Endianness refers to the ordering of packing bytes into words when stored in memory. In big endian format, whenever

addressing memory or storing words bytewise, the most significant byte – i.e. the byte containing the most significant bit

– is stored first (has the lowest address); subsequently, the following bytes are stored in order of decreasing significance,

with the least significant byte – i.e. the one containing the least significant bit – stored last (having the highest address).

The little endian format reverses this order: the sequence addresses/stores the least significant byte first (lowest address)

and the most significant byte last (highest address).

Group .

A (HDF5) group is a container structure which can hold zero or more objects (i.e. datasets, (soft) links, external links and

other groups) and have zero or more attributes (attached to it). Every object must be a member of at least one group,

except the root group, which (as the sole exception) may not belong to any group.

Hierarchical Data Format (HDF)

The Hierarchical Data Format (HDF) is the name of a set of file formats and libraries designed to store large amounts of

numerical data. It is a versatile data model that can represent complex data objects and a wide variety of metadata. HDF is

supported by The HDF Group, whose mission is to ensure continued development of HDF technologies and the continued

accessibility of data currently stored in this file format.

Hyperslab

A hyperslab allows reading or writing a portion (subset) of a dataset (as opposed to its entirety). It can be a selection of

logically contiguous collection of points in a dataspace, or it can be a regular pattern of points or blocks in a dataspace.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 340 of 341

Member

A member is an element that composes an HDF5 dataset or attribute of data type HDFQL_ENUMERATION or

HDFQL_COMPOUND. It has a descriptive name that uniquely identifies it amongst other members at the same (nested)

level (i.e. cannot be repeated) and stores a certain value in accordance to its nature (i.e. data type).

Message Passing Interface (MPI)

The Message Passing Interface (MPI) is a standardized means of exchanging messages between multiple computers

running a parallel program across distributed memory. It was designed by a group of researchers from academia and

industry to work on a wide variety of parallel computing architectures. MPI fosters the development of a parallel software

industry, and encourages development of portable and scalable large-scale parallel applications.

Operation

An operation is an action that can be performed in HDFql such as to create an HDF5 file or read data from a dataset.

Operations can be seen as the HDFql language itself. In HDFql, many operations exist and these are categorized into DATA

DEFINITION LANGUAGE (DDL), DATA MANIPULATION LANGUAGE (DML), DATA QUERY LANGUAGE (DQL), DATA

INTROSPECTION LANGUAGE (DIL) and MISCELLANEOUS.

Parallel HDF5 (PHDF5)

The Parallel HDF5 (PHDF5) is a parallel version of HDF5 which is the name of a set of file formats and libraries designed to

store large amounts of numerical data. It leverages MPI to effectively manipulate HDF5 files in parallel across multiple

computers. In HDFql, PHDF5 can be explicitily used through the CREATE FILE, USE FILE, INSERT and SELECT operations.

Post-processing

Post-processing options enable transforming results of a query according to the programmer’s needs such as ordering or

truncating. These options are optional and may be used to create a (linear) pipeline to further process result sets returned

by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION LANGUAGE (DIL) operations.

Hierarchical Data Format query language (HDFql) ___ Reference Manual

Version 2.3.0 __ Page 341 of 341

Redirecting

Redirecting options enable reading data from the cursor in use, a (text, binary or Excel) file or memory (i.e. user-defined

variable) and writing it into an HDF5 dataset or attribute through a CREATE DATASET, CREATE ATTRIBUTE or INSERT

operation. It also enables writing result sets (i.e. data) returned by DATA QUERY LANGUAGE (DQL) and DATA

INTROSPECTION LANGUAGE (DIL) operations into the cursor in use, a (text, binary or Excel) file or memory.

Result set

A result set stores the results (of data type HDFQL_TINYINT, HDFQL_UNSIGNED_TINYINT, HDFQL_SMALLINT,

HDFQL_UNSIGNED_SMALLINT, HDFQL_INT, HDFQL_UNSIGNED_INT, HDFQL_BIGINT, HDFQL_UNSIGNED_BIGINT,

HDFQL_FLOAT, HDFQL_DOUBLE and HDFQL_VARCHAR) returned by DATA QUERY LANGUAGE (DQL) and DATA

INTROSPECTION LANGUAGE (DIL) operations.

Result subset

A result subset stores the results (of data type HDFQL_CHAR, HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT,

HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT, HDFQL_UNSIGNED_VARINT,

HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE and HDFQL_OPAQUE)

returned by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION LANGUAGE (DIL) operations.

Subcursor

A subcursor is meant to complement (i.e. help) cursors in the task of storing data of type HDFQL_CHAR,

HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT,

HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT,

HDFQL_VARDOUBLE and HDFQL_OPAQUE. In practice, when a result set is of one of these data types, only the first

element of the result set is stored in the cursor (as expected), while all elements of the result set are stored in the

subcursor. In other words, each position of the cursor stores the first element of the result set and also points to a

subcursor that in turn stores all the elements of the result set. Similar to cursors, HDFql subcursors offer several ways to

traverse result subsets.

	1. INTRODUCTION
	2. INSTALLATION
	2.1 WINDOWS
	2.2 LINUX
	2.3 MACOS

	3. USAGE
	3.1 C
	3.2 C++
	3.3 JAVA
	3.4 PYTHON
	3.5 C#
	3.6 FORTRAN
	3.7 R
	3.8 COMMAND-LINE INTERFACE

	4. CURSOR
	4.1 DESCRIPTION
	4.2 SUBCURSOR
	4.3 EXAMPLES

	5. APPLICATION PROGRAMMING INTERFACE
	5.1 CONSTANTS
	5.2 FUNCTIONS
	5.2.1 HDFQL_EXECUTE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.2 HDFQL_EXECUTE_GET_STATUS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.3 HDFQL_ERROR_GET_LINE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.4 HDFQL_ERROR_GET_POSITION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.5 HDFQL_ERROR_GET_MESSAGE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.6 HDFQL_CURSOR_INITIALIZE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.7 HDFQL_CURSOR_USE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.8 HDFQL_CURSOR_USE_DEFAULT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.9 HDFQL_CURSOR_CLEAR
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.10 HDFQL_CURSOR_CLONE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.11 HDFQL_CURSOR_GET_DATA_TYPE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.12 HDFQL_CURSOR_GET_COUNT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.13 HDFQL_SUBCURSOR_GET_COUNT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.14 HDFQL_CURSOR_GET_POSITION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.15 HDFQL_SUBCURSOR_GET_POSITION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.16 HDFQL_CURSOR_FIRST
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.17 HDFQL_SUBCURSOR_FIRST
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.18 HDFQL_CURSOR_LAST
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.19 HDFQL_SUBCURSOR_LAST
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.20 HDFQL_CURSOR_NEXT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.21 HDFQL_SUBCURSOR_NEXT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.22 HDFQL_CURSOR_PREVIOUS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.23 HDFQL_SUBCURSOR_PREVIOUS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.24 HDFQL_CURSOR_ABSOLUTE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.25 HDFQL_SUBCURSOR_ABSOLUTE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.26 HDFQL_CURSOR_RELATIVE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.27 HDFQL_SUBCURSOR_RELATIVE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.28 HDFQL_CURSOR_GET_TINYINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.29 HDFQL_SUBCURSOR_GET_TINYINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.30 HDFQL_CURSOR_GET_UNSIGNED_TINYINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.31 HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.32 HDFQL_CURSOR_GET_SMALLINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.33 HDFQL_SUBCURSOR_GET_SMALLINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.34 HDFQL_CURSOR_GET_UNSIGNED_SMALLINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.35 HDFQL_SUBCURSOR_GET_UNSIGNED_SMALLINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.36 HDFQL_CURSOR_GET_INT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.37 HDFQL_SUBCURSOR_GET_INT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.38 HDFQL_CURSOR_GET_UNSIGNED_INT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.39 HDFQL_SUBCURSOR_GET_UNSIGNED_INT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.40 HDFQL_CURSOR_GET_BIGINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.41 HDFQL_SUBCURSOR_GET_BIGINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.42 HDFQL_CURSOR_GET_UNSIGNED_BIGINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.43 HDFQL_SUBCURSOR_GET_UNSIGNED_BIGINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.44 HDFQL_CURSOR_GET_FLOAT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.45 HDFQL_SUBCURSOR_GET_FLOAT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.46 HDFQL_CURSOR_GET_DOUBLE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.47 HDFQL_SUBCURSOR_GET_DOUBLE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.48 HDFQL_CURSOR_GET_CHAR
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.49 HDFQL_VARIABLE_REGISTER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.50 HDFQL_VARIABLE_TRANSIENT_REGISTER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.51 HDFQL_VARIABLE_UNREGISTER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.52 HDFQL_VARIABLE_UNREGISTER_ALL
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.53 HDFQL_VARIABLE_GET_NUMBER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.54 HDFQL_VARIABLE_GET_DATA_TYPE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.55 HDFQL_VARIABLE_GET_COUNT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.56 HDFQL_VARIABLE_GET_SIZE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.57 HDFQL_VARIABLE_GET_DIMENSION_COUNT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.58 HDFQL_VARIABLE_GET_DIMENSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.59 HDFQL_MPI_GET_SIZE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.60 HDFQL_MPI_GET_RANK
	Syntax
	Description
	Parameters(s)
	Return
	Example(s)

	6. LANGUAGE
	6.1 DATA TYPES
	6.1.1 TINYINT
	6.1.2 UNSIGNED TINYINT
	6.1.3 SMALLINT
	6.1.4 UNSIGNED SMALLINT
	6.1.5 INT
	6.1.6 UNSIGNED INT
	6.1.7 BIGINT
	6.1.8 UNSIGNED BIGINT
	6.1.9 FLOAT
	6.1.10 DOUBLE
	6.1.11 CHAR
	6.1.12 VARTINYINT
	6.1.13 UNSIGNED VARTINYINT
	6.1.14 VARSMALLINT
	6.1.15 UNSIGNED VARSMALLINT
	6.1.16 VARINT
	6.1.17 UNSIGNED VARINT
	6.1.18 VARBIGINT
	6.1.19 UNSIGNED VARBIGINT
	6.1.20 VARFLOAT
	6.1.21 VARDOUBLE
	6.1.22 VARCHAR
	6.1.23 OPAQUE
	6.1.24 ENUMERATION
	6.1.25 COMPOUND

	6.2 POST-PROCESSING
	6.2.1 ORDER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.2.2 TOP
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.2.3 BOTTOM
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.2.4 FROM TO
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.2.5 STEP
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.3 REDIRECTING
	6.3.1 FROM
	Syntax
	Description
	Parameter(s)
	Example(s)

	6.3.2 INTO
	Syntax
	Description
	Parameter(s)
	Example(s)

	6.4 DATA DEFINITION LANGUAGE (DDL)
	6.4.1 CREATE DIRECTORY
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.2 CREATE FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.3 CREATE GROUP
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.4 CREATE DATASET
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.5 CREATE ATTRIBUTE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.6 CREATE [SOFT | HARD] LINK
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.7 CREATE EXTERNAL LINK
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.8 ALTER DIMENSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.9 RENAME DIRECTORY
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.10 RENAME FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.11 RENAME [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK]
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.12 COPY FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.13 COPY [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK]
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.14 DROP DIRECTORY
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.15 DROP FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.16 DROP [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK]
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.5 DATA MANIPULATION LANGUAGE (DML)
	6.5.1 INSERT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6 DATA QUERY LANGUAGE (DQL)
	6.6.1 SELECT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7 DATA INTROSPECTION LANGUAGE (DIL)
	6.7.1 SHOW FILE VALIDITY
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.2 SHOW USE DIRECTORY
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.3 SHOW USE FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.4 SHOW ALL USE FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.5 SHOW USE GROUP
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.6 SHOW [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK]
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.7 SHOW TYPE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.8 SHOW DATA TYPE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.9 SHOW MEMBER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.10 SHOW MASK
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.11 SHOW ENDIANNESS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.12 SHOW CHARSET
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.13 SHOW STORAGE TYPE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.14 SHOW STORAGE ALLOCATION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.15 SHOW STORAGE DIMENSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.16 SHOW DIMENSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.17 SHOW ORDER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.18 SHOW TAG
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.19 SHOW OFFSET
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.20 SHOW FILL TYPE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.21 SHOW FILL VALUE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.22 SHOW FILE SIZE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.23 SHOW [DATASET | ATTRIBUTE] SIZE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.24 SHOW HDFQL VERSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.25 SHOW HDF5 VERSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.26 SHOW MPI VERSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.27 SHOW DIRECTORY
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.28 SHOW FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.29 SHOW EXECUTE STATUS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.30 SHOW LIBRARY BOUNDS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.31 SHOW CACHE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.32 SHOW ATOMIC
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.33 SHOW EXTERNAL LINK PREFIX
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.34 SHOW FLUSH
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.35 SHOW THREAD
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.36 SHOW PLUGIN PATH
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.37 SHOW DEBUG
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8 MISCELLANEOUS
	6.8.1 USE DIRECTORY
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.2 USE FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.3 USE GROUP
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.4 FLUSH
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.5 CLOSE FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.6 CLOSE ALL FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.7 CLOSE GROUP
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.8 SET LIBRARY BOUNDS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.9 SET CACHE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.10 SET ATOMIC
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.11 SET EXTERNAL LINK PREFIX
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.12 SET FLUSH
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.13 SET THREAD
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.14 SET PLUGIN PATH
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.15 SET DEBUG
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	GLOSSARY
	Application Programming Interface (API)
	Attribute
	Cursor .
	Dataset
	Data type
	Endianness
	Group .
	Hierarchical Data Format (HDF)
	Hyperslab
	Member
	Message Passing Interface (MPI)
	Operation
	Parallel HDF5 (PHDF5)
	Post-processing
	Redirecting
	Result set
	Result subset
	Subcursor

