Hierarchica age (HDFql)

April 2021

Copyright (C) 2016-2021

This document is part of the Hierarchical Data Format query language (HDFgl). For more information about HDFq|,

please visit the website http://www.hdfgl.com.

Disclaimer

Every effort has been made to ensure that this document is as accurate as possible. The information contained in this
document is provided without any express, statutory or implied warranties. The founders of HDFqgl shall have neither
liability nor responsibility to any person or entity with respect to any loss or damage arising from the information in

this document or the usage of HDFq|.

http://www.hdfql.com/

Hierarchical Data Format query language (HDFql) Reference Manual

TABLE OF CONTENTS

1. INTRODUCTION. . cciittiirniitnsiranscrnessrasssrssssrsesssssssrssssssesssssstossssssssssssstossssssssssnsssensssssssssnsssanssssnsss 1
2. INSTALLATION. ... iiiiiiiiieiitiiiteiieesiaetaiieesiesstasstatsessesssasssassesssassssssssssssssassssssssssesssassssssssssasssnsssns 3
2.1 WINDOWS ...ttt e e e et e e et e ettt et ettt et taab s s s e s e eeeeeeeeeeeeeeaae e e s e ee s bbassa s asasseesaeaeeeaeseeaseesssnnsssnnnnnn 4

P2 N 1\ 10) GO OO OO OO P PR PRRUPRRTSTOPRN 4

2.3 IMACOS ...ttt et h et E e bt h e sa et e bt e be e sh et ea Rt e bt e e b et ehee e bt e nheesheeeaneereenaeenaes 5

3. USAGE....cuiiiiuiiituiiiniiiensienisiasierseisreessrasserssssrasssrassessssssssstessssssesssssstessstsssssassstesssssssssansssansosassssnns 6
75 O OO O T TP TP P SO PPTOPPORPRTUPPOPPTRON 6

K T O T T PSP PP P PPOPPPPPRPPPPPRIN 10

33 AV A ettt b e eh et et ekt e e bt e e ae e bt e bt e ehe e e at e e bt e b e e ehe e e bt e beeeheeeabe e beenbeenaees 14

3.4 PYTHON ettt e e e s e e e e e e e e e e et e ee ettt e bbb et b s e e e e e e eeeeeeaeeee et ee et e beean b b e e e e e e eeaeas 16

TR T OO OO OO USROS TSTUPRRR 18

306 FORTRAN L.ttt ettt ettt ettt et e h e s bt ea et et e s bt e ebe e e st et e e b e e eae e et e e b e e ebe e s e et et e e bt e aaeesa bt eabeenbeesnbeenbeebeennees 21

70 A 2 SO OO SO PP PRRRUUPPPP 26

3.8 COMMAND-LINE INTERFACE.......ceittatterteeatteeitt et e st ettt et et e st e sat e et e e bt e sbe e s abeeabe e beesaeesabeeabeesaeesabeenbeenbeesaees 28

R O U Y 0 N 32
4.1 DESCRIPTION .. uttittetteete ettt ettt ettt e shtesaeeea bt ebeesaeesabeaabeesaeesaeeeabeebeesaeeeabeebeesheesabeeabeebeesheeeabeanneesaaesaneenne 32

4.2 SUBCURSOR.....cuteeitteite ittt ettt ettt sttt et e h et s et e b e bt e s h et s e bt e bt e she e sa bt e bt e sheesh bt et e e b e e sheesabeebeenheenaneeane 36

43 EXAIMPLES ..ottt e e e e st e e et e e e e e et e ettt ettt bbb bt e e e e e e e e e e e eeeeee et ettt ettt e bbb ann e e e e e e eaeeas 38

5. APPLICATION PROGRAMMING INTERFACE.ccciteiitiiiniiniiiniieeiiniiniiieiieesisisiisisssissssssssssanss 44
5.1 CON S T AN TS Lttt e e e e e e et e et e e e ettt et ettt e ee bt e s aaaeeeeeeeeeeeaeeeeeaeeeebassbaas e e e s seeeeeeaeeeeeeaeeeeenees 44

5.2 FUNGCTIONS. ..ttt ettt ettt ettt h e e ettt ekt e s bt e et e et e e bt e eae e et e e bt e ebe e e abeem ke e beeeabesabeeabeebeeenbeenbeanbeenaeas 52
5.2.1 HDFQL_EXECUTE ...cuutiiiieeteettesie ettt ettt sttt et ettt st e sb e saee st et esae e sab e e bt e nneesatesaneeneenbeesaneeane 58

5.2.2 HDFQL_EXECUTE_GET_STATUS ... ttetteite ettt ettt ettt ettt b e be e s ate e be e bt e st e enbeenbeesaeesaeeenbeenae 59

5.2.3 HDFQL_ERROR_GET_LINEetiiiiieiiiieitee ettt sttt et e s e s esere e st e sabe e e s e emneeemneesanes 60

5.24 HDFQL_ERROR_GET_POSITIONovovvuieieeeereereeeeteeesessesaeeeseseseseesesesssaesssesesssssassessssassssesssssssssenanes 61

Version 2.4.0

Hierarchical Data Format query language (HDFql) Reference Manual

Version 2.4.0

5.2.5

5.2.6

5.2.7

5.2.8

5.2.9

5.2.10

5.2.11

5.2.12

5.2.13

5.2.14

5.2.15

5.2.16

5.2.17

5.2.18

5.2.19

5.2.20

5.2.21

5.2.22

5.2.23

5.2.24

5.2.25

5.2.26

5.2.27

5.2.28

5.2.29

5.2.30

5231

5.2.32

HDFQL_ERROR_GET _IMESSAGEeveoeeeeeeeeeeeseeseee e eeeee s eeeeeeseeesees e see s es s se e eee s es e 62
HDFQL_CURSOR_INITIALIZEo.veoovoveeeeeeeeeeeseee s ssesse s sse s se s ss s s ese s ssses s ss s snssneas 63
HDFQL_CURSOR _USE.......eeeeeeeeeeeeeseeeeseees e seeessess e s s sse s se s ss s s sseesse s ese s ss s ss s eeeeenen 64
HDFQL_CURSOR_USE_DEFAULTvuovveeeeeeeeesseeesessessess e ssesssees s es e ssees s ssess s seees s s s 65
HDFQL_CURSOR_CLEARvvovereeeseeeosseeseesseessessessessssssessssssssssasssessesssssessssesessssssssnsesssssesnsnsens 66
HDFQL_CURSOR_CLONEcoveveoeeeeeeeeeeeeseeseeeseesseessessesse s seeeeeess s s s eesse s ese e ss s ss s eeeneon 67
HDFQL_CURSOR_GET_DATA_TYPE......ovuioeeeoeeeseeeeessessessessesseesseeseees s see s 68
HDFQL_CURSOR_GET_COUNTcoveeeeeeeeeeeeeeeeeee s eseee e seeseeees e seees s es e es s se e eeese s eneeeea 70
HDFQL_SUBCURSOR_GET_COUNT w....coveveeeeeeeeeeeeee e ssees e eesse s sees s eesse s 71
HDFQL_CURSOR_GET_POSITION.........ovurveeeeseeseessesseessesssessesssesssessessssssessssssssessssssesssssesssssesnsens 72
HDFQL_SUBCURSOR_GET_POSITIONcoerveeeeeeeseeeeseeesessessessesseeseessessesseessess e ssees s eesse e 73
HDFQL_CURSOR_FIRST w....oveoeeoeeoeeeeseeeesseessesseessesseessessessse s ssssssssssesssssssse s ese s sseessesssseesesnnens 74
HDFQL_SUBCURSOR_FIRSTeeveoveeeeeeeeseeseeseeessesseessesseessesseesseeeseseeessesseessesseeesese s sseeseess s seeeenen 75
HDFQL_CURSOR_LAST ... eeeeeee e se s ss e s e ese s ss s es s 77
HDFQL_SUBCURSOR_LASToooveorveeesesesseseesseessessessesssessessssssssssesssesssssssssssssssessssssssssssssnsesssnsens 78
HDFQL_CURSOR_INEXTeoveieeeeeeeeeseseeessees e sseessesseessessesse s ssees e s eessess e sse s esees s ees s sesessesnsesean 79
HDFQL_SUBCURSOR_NEXToooveoiveeeeeesseseeseessessessessesssesssssssessesssssesssssessssssesssssssessesssssesssssens 80
HDFQL_CURSOR_PREVIOUSeoveveeeeeeeeeeeseeeeeesseessesseeesese e sseessese s s sseeseeseessese e ssees s s seeeenen 81
HDFQL_SUBCURSOR_PREVIOUS..........oveveeeeeeeseeeesseessess e seeeseesseessess s s esees e essse s 83
HDFQL_CURSOR_ABSOLUTEuovvuveieeeeeeeesesseesessesseessessssssssssesssssssssssessssesessssssssnsssssssssssnsens 84
HDFQL_SUBCURSOR_ABSOLUTEouveeerieeeeeseeesees st ssseseesseess s see s ssees s ss s es e 85
HDFQL_CURSOR_RELATIVEoveoivieeeeeeeeseeeeees s ssesesesseessesse s sse s esess s ssess s sesnnens 87
HDFQL_SUBCURSOR_RELATIVEeveoeeeeeeeeeeeeeeeeees e esese e seeseeeeseesse s see s seesees e se s seeeeseeseesneeneas 88
HDFQL_CURSOR_GET_TINYINT w..eovoveeeeeeeeeeeeeeteese s sse s sees e sse s es e se s 90
HDFQL_SUBCURSOR_GET_TINYINTvuveeeeeeieeeseeesessesseseseesssseesssssessssssssssesessssessesssassssesessnnens 91
HDFQL_CURSOR_GET_UNSIGNED_TINYINTverreeeeeeeeeeseeesseseeeseeessesseessess e esessesseeseess s sseeeens 92
HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINTvuveevereeeeeeeeeeeeeseesseessessesse s sseeseessseseesnsseeas 93
HDFQL_CURSOR_GET_SMALLINT ... eee e e es s se e eeene e 95
i

Hierarchical Data Format query language (HDFql) Reference Manual

Version 2.4.0

5.2.33

5.2.34

5.2.35

5.2.36

5.2.37

5.2.38

5.2.39

5.2.40

5.2.41

5.2.42

5.2.43

5.2.44

5.2.45

5.2.46

5.2.47

5.2.48

5.2.49

5.2.50

5.2.51

5.2.52

5.2.53

5.2.54

5.2.55

5.2.56

5.2.57

5.2.58

5.2.59

5.2.60

HDFQL_SUBCURSOR_GET _SIMALLINT.......eeveeeeeeeeeeeeeseeeee s eseeseeseeeseess e sse s ese s ss s 9%
HDFQL_CURSOR_GET_UNSIGNED_SMALLINTcvvuveeeeeeeeeeeeeeesseeseesseessess s ssees e sseesse s 97
HDFQL_SUBCURSOR_GET_UNSIGNED_SMALLINTeoveveeeeeeeeeseeeseeeseesseeseeeseseesseesessesee s 98
HDFQL_CURSOR_GET_INT ..oooeoeeeeeeeeseeeesesseeseees e seees e sseesse s es s s eseessees s es s s s s sneees 100
HDFQL_SUBCURSOR_GET_INTocvoeeeieeeeseeeeesessesssessesessssssssssessessssssessssesessssssssssesssssessssnenes 101
HDFQL_CURSOR_GET_UNSIGNED_INTveoeeeieeseeeeeseeeeeeseeeesesseesseeseeseeseeseese s esneeees 102
HDFQL_SUBCURSOR_GET_UNSIGNED _INToveveeeereeeesseesessessesseesseeseesseessesssesse s ssessssnenes 104
HDFQL_CURSOR_GET_BIGINT ..o seeeeeesseeseeeseeesesseeesees e s s s eeeseese s esess e eneeees 105
HDFQL_SUBCURSOR_GET BIGINTc.ovuverieereeeeeseeseseseeeseesseessessessesseesseessasseessesseesse s sseessssenes 106
HDFQL_CURSOR_GET_UNSIGNED_BIGINTovereeeereaeeessessessessesseesseeseesssessesssessesssssessssnenes 107
HDFQL_SUBCURSOR_GET_UNSIGNED_BIGINTcveuvereeeeeeeeeeeeeesesseeeseesesseeseessesse s sseesee s 109
HDFQL_CURSOR_GET_FLOAToooviieieeeeeseeeeeesseessess s sseeseesssesesssssesnsessesssessesssesssessesn s e 110
HDFQL_SUBCURSOR_GET FLOATeoeeeeeeeeeeeeeeseeeeeeseeeeeeseeee s e esess s s esees e es s eee s s 111
HDFQL_CURSOR_GET_DOUBLEoeoiveeeeeeeeseeseees e seeesee s es s s s esees s s s snenes 112
HDFQL_SUBCURSOR_GET_DOUBLEouuoveeeeeeeseeseseseeeseesssssesssssesssesseessesssessessssssesssssesssssenes 113
HDFQL_CURSOR_GET_CHAReoveeeeeeeeeeeeeeeeeeeseees s eesee e sees s en s 115
HDFQL_VARIABLE_REGISTER.........ovuveereeeeseeseeseessesssesssessesssssssssssesssessessssssesssesssessesnsssesssssenes 116
HDFQL_VARIABLE_ TRANSIENT REGISTEReoeoveeeeeeeeeeeseeeseeseeesesseesseeseeseeseesesse s esessesseeees 119
HDFQL_VARIABLE_UNREGISTERceurveeeoeeeeeseesseeseesseessesseessessesseesesse s sseessesssessess e sse s sseses 120
HDFQL_VARIABLE_UNREGISTER_ALLoveoveeeieeeseeseseeseseeseessesssssesssessessssesassessssssesssssessssnenes 121
HDFQL_VARIABLE_GET _NUMBERcvvuveieeeeeeeseeeeeesseeseesseessesseesse s sseeseesseeseesseesse s s s 123
HDFQL_VARIABLE_GET_DATA_TYPE w...oooeeeeeeeeseeee s sses s ene s seesn s 124
HDFQL_VARIABLE_ GET COUNT ..o esee s se e sees s eee e 125
HDFQL_VARIABLE_GET_SIZEoveoeoeeeeeeeeeeeeeeeeee e s sn s 126
HDFQL_VARIABLE_GET_DIMENSION_COUNTvververeeneeeeeseesssessesseeseesseessessseseessssssessssnenes 127
HDFQL_VARIABLE_GET_DIMENSIONoeeiveeeeeeseeeeesseeeeesseesseeseessessesseesessees e ss s ss e es s 128
HDFQL_IMPI_GET _SIZE ...eoveeeoeeeeeseeeeee e seess s sse s s s s s s snenes 130
HDFQL_ IMPL_GET_RANK ..ot eeeee e seeee s eee e eee s e esess e es s et eee s eseese e eeeeseeneeees 131
jiii

Hierarchical Data Format query language (HDFql) Reference Manual

6. LANGUAGE.......cittuiiiiiititiiiiiiiiiiiiiiiirieeeeaeiisneeessasssiiisteessssssiisstetsssssssssstensssssssssseessssssssssses 133
6.1 DATATYPES oo 137
6.1.1 LI 1 PPN 138

6.1.2 UNSIGNED TINYINT woeviiiiiiiiiiieie e 139

6.1.3 SIMALLINT e 140

6.1.4 UNSIGNED SMALLINT ..ot 140

6.1.5 N T e s 141

6.1.6 UNSIGNED INT Lottt s aaa s 142

6.1.7 BIGINT . e 142

6.1.8 UNSIGNED BIGINT ..ttt 143

6.1.9 FLOAT e 144

6.1.10 DOUBLE ..o 144

B.1.11 CHAR ..o e aa e 145

6.1.12 VARTINYINT Looriiiiiiiii i ba e aaes 145

6.1.13 UNSIGNED VARTINYINT ..ottt na e 146

6.1.14 VARSMALLINT .ottt ba e 147

6.1.15 UNSIGNED VARSMALLINT ...eettiiiiiiiii et 148

6.1.16 VARINT ..o ra e 148

6.1.17 UNSIGNED VARINT c.ootiiiiii i 149

6.1.18 VARBIGINT ..oeriiiieecec e e et s e aae e e aaes 150

6.1.19 UNSIGNED VARBIGINT ..ottt 150

LTt 0 B L 0 7 N 151

6.1.21 VARDOUBLE ...ttt 152

6.1.22 VARCHAR ..o 152

6.1.23 OPAQUE......ooiiiiie e et aaee 153

6.1.24 ENUMERATION ...oiiiiiiiiiiiiiiiiiicc e aba e s 154

6.1.25 COMPOUND.....cottiiiii it e e s s aaae e e s aaes 154

6.2 POST-PROCESSING. ...ttt bbb e s a b e e e s s aba e e e s naae s 155

Version 2.4.0 iv

Hierarchical Data Format query language (HDFql) Reference Manual

6.3

6.4

6.5

6.6

Version 2.4.0

6.2.1 ORDER e e 155
6.2.2 LIRS 158
6.2.3 BOTTOM it bbb a e s b b e s ab b e e e s naae s 160
6.2.4 FROM TO oo aaae s 162
6.2.5 STEP e e 164
REDIRECTING ...ttt a e s a e e e s s a e e e s s b b s e e s s bbb e e e s s arae s 166
6.3.1 FROM .. 166
6.3.2 INTO e e 174
DATA DEFINITION LANGUAGE (DDL) ..ceuviiiieitieiiie ittt sttt sttt s s ne e s 181
6.4.1 CREATE DIRECTORY ...ttt 182
6.4.2 L8 I 1 PN 183
6.4.3 CREATE GROUP ...t 185
6.4.4 CREATE DATASET ottt aaa e 188
6.4.5 CREATE ATTRIBUTE ..ottt 196
6.4.6 CREATE [SOFT | HARDI LINK ..c.ttiuieiirieeiisiteeestt ettt s 201
6.4.7 CREATE EXTERNAL LINK....ciiiiiiiiiiiiii e 204
6.4.8 ALTER DIMENSION L..ooiiiiiiiiiiiiiiii et 206
6.4.9 RENAME DIRECTORY ...oiiiiiiiiiiiiiiiiie ittt 208
6.4.10 RENAME FILE. ..ottt e 209
6.4.11 RENAME [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK] ..cccveerveeniirieeieenieene 210
6.4.12 COPY FILE ..eeiiiiiiiiiiii i 212
6.4.13 COPY [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK] ..cvervieierireerineereneenes 213
6.4.14 DROP DIRECTORY ...coiiiiiiiiiiiiiiiie ittt ba e e s ba s e e anes 215
6.4.15 DROP FILE ..coiiiiiiiiiiii it 216
6.4.16 DROP [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK] ..covveriieiieniinieeieenieene 217
DATA MANIPULATION LANGUAGE (DIVIL) ..eeviiiiiiiiieiieniie sttt sttt st s s 219
6.5.1 INSERT <o 219
DATA QUERY LANGUAGE (DQL) +..uvteteeririeiienieesiie ettt st sttt ettt sttt shee st sneesneesreesateeneesbeeseneeneennes 233

Hierarchical Data Format query language (HDFql) Reference Manual

6.7

Version 2.4.0

6.6.1] = X PPN 233
DATA INTROSPECTION LANGUAGE (DIL) ...uviiviiiiiiiiiiiiiesiie ittt sttt 247
6.7.1 SHOW FILE VALIDITY ittt 247
6.7.2 SHOW USE DIRECTORY ...ttt 248
6.7.3 SHOW USE FILE .. 250
6.7.4 SHOW ALL USE FILE ..ot 252
6.7.5 SHOW USE GROUP ...ttt 253
6.7.6 SHOW [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK] ..c.eevoveeiieniirieeieenennns 255
6.7.7 SHOW TYPE ..o e 262
6.7.8 SHOW DATA TYPE .o 264
6.7.9 SHOW MEMBER ...ttt e 267
6.7.10 SHOW MASK ...t e e s s aa e e 269
6.7.11 SHOW ENDIANNESSooiiiiiiiiii e 271
6.7.12 SHOW CHARSET ..ottt s s aaes 273
6.7.13 SHOW STORAGE TYPE ...oeiiioii s 276
6.7.14 SHOW STORAGE ALLOCATIONottiiiiiiiiiii ettt 277
6.7.15 SHOW STORAGE DIMENSIONccoiiiiiiiiiiiiiiii it 279
6.7.16 SHOW DIMENSIONciiiiiiiiiiiii it ra e 281
6.7.17 SHOW ORDER ...ttt s ba e 283
6.7.18 SHOW TAG ...oiiiitieie e s e e e s e e e s e b e e e s aae e e e eanes 285
6.7.19 SHOW OFFSET ..ottt ba e saaes 288
6.7.20 SHOW FILLTYPE ..oriiiiiiiii ettt s aae e e anes 290
6.7.21 SHOW FILL VALUE ...ttt ra e 291
6.7.22 SHOW FILE SIZEooiiiiiiiiiiiitiie e 293
6.7.23 SHOW USERBLOCK SIZE........outtiiiiiiiiiiiiiiiiiiiiiiiiinc e 295
6.7.24 SHOW USERBLOCKuuiiiiiiiiiiii it ba e 296
6.7.25 SHOW [DATASET | ATTRIBUTE] SIZEccutiieiiiieerenieeieeieeeenre et 298
6.7.26 SHOW HDFQL VERSIONcciiiiiiiiiiiiiiii ittt nn e 300
Vi

Hierarchical Data Format query language (HDFql) Reference Manual

6.8

Version 2.4.0

6.7.27 SHOW HDF5 VERSIONcoiiiiiiiiiiiiiiiiii i na e 300
6.7.28 SHOW MPIVERSIONouiiiiiiiiiiiiiiiic et 301
6.7.29 SHOW DIRECTORY ...ttt ab e s ba e s anes 302
L 1Y 0 1 RN 304
6.7.31 SHOW EXECUTE STATUS ...ttt e 306
6.7.32 SHOW LIBRARY BOUNDS ..ottt 307
6.7.33 SHOW CACHE ..ottt s s aa e sanee 310
6.7.34 SHOW ATOMIC.....oiiiiiiiiiiiiiiice e a e s s ba e e s s ba s e e e s 311
6.7.35 SHOW EXTERNAL LINK PREFIX ...cciiiiiiiiiiiiiiiiiiiiiiii e 313
6.7.36 SHOW FLUSHoeeiiiii s 314
6.7.37 SHOW THREAD......coiiiiiiiiii i a e ba e anes 316
6.7.38 SHOW PLUGIN PATH ..ottt 317
6.7.39 SHOW DEBUGooiiiiiiiiiiic it a e s s ra e anes 318
MISCELLANEOUS ..o aaae s 319
6.8.1 LT L 1 320
6.8.2 USE FILE oo s 321
6.8.3 USE GROUP ...t 323
6.8.4 FLUSH L e e 326
6.8.5 L 0] | RN 327
6.8.6 L 0] R RN 328
6.8.7 CLOSE GROUP ...ttt s 329
6.8.8 SET LIBRARY BOUNDS.....oiiiiiiiiiii it 330
6.8.9 SET CACHE ..o e aaa e 332
6.8.10 SET ATOMIC ..ottt s e s s aba e e s aaes 335
6.8.11 SET EXTERNAL LINK PREFIX....oitiiiiiiiiiiiiiiiiiiiiiiiiicen i 336
6.8.12 SET FLUSH ..coiiiiiiii e 338
6.8.13 SETTHREAD oottt s 339
6.8.14 SET PLUGIN PATH ...ciiiiiiiiiiiiiiie it aa e 340

vii

Hierarchical Data Format query language (HDFql) Reference Manual

6.8.15 SET DEBUG ... ittt et e ettt ettt s e e e e s e e e e e eeeeeeetee e et e aaaeb s bans s e e e s eeeeeeaaaaanaees 341
GLOSSARY .eiiiiiiiiiiieiiiiieiiieiieeiiaiiieiieeiieestastsitesstssstsssesssesstasstassssssssstasstassssssssstasstasssassssssasstassrnnsns 343
Application Programming INTEITACE (API)......coouii ittt ettt e ettt e et e s sae e e sbee e sabeeesateesaneas 343
ATEIIDULE . ..ttt ettt et e sttt e s a bt e bt e e e bt e e sabe e e sa bt e e bt e e e bt e e e be e e eab e e e ahb e e e bb e e sabaeeeabeeenbteesabnes 343
L1 o PRSP 343
D=) = 11X PPN 343
DL [N a0 TP PP PP PPPTPRPRRPPRt 344
ENAIANNESS ettt ettt e e e ettt e e b et e e e e h bt e e e e bbbt e e e e ahbb e e e e e bbe e e e e anbbeeeeeanrneeeeenanee 344
(G0 0]« RPN UPPUPRR 344
Hierarchical Data FOrMat (HDF)coooioiiiiieeieeee et e et e ettt e e e e e e e e e e e e aasaeeeeeaeeeeeeesesaassaaereeaaeeeeeenanns 344
[V70T 5] =1 o OSSO ST OPRPS 344
=T 0 0T o<1 PO TP RSP OT S PPRRPPROPRRS 345
Message Passing INTEITACE (IMPI)eii ittt ettt sttt e ettt e sttt e sab e e e bt e e ebteesbeeesbeeesaseesaneeesans 345
(071=1 -1 { (0] o IO OP P PPPUPR 345
PAralle]l HDFS (PHDFS) .ueiiiiiiiiieeeeiieee s eitte e e e eetite e e s sttt e e esattaeeessasaaeeeeesstaeeeeassaeeeeassssaeseasssseeeanssaeeesansssesesanssaneeeannnes 345
03 o] fo Yol XY 1 V- PSP PUPTPRTRRRPRt 345
2T [T =Tt [~ SRR 346
RESUIL SET...teeeeiiittie ettt ettt ettt e e s ettt e e e b bt e e e s e bttt e e e e abbe e e e e enb bt e e e aasbe e e e e eanbeeeeeaanbbeeeeeanbbteeesanrneeeeenanee 346
RESUIE SUDSEL ...ttt sttt ettt e sttt e st e sttt e ettt e ettt e sa bt e e sabeeeabbeesabetesabetesnneeeanbeesneeenane 346
SUDCUISOT ..ttt ettt et e et e s et e s b et e s b e e e s aa e e s eme e e s neeesaneeesaneeesnreesnneesannes 346

Version 2.4.0 viii

Hierarchical Data Format query language (HDFql) Reference Manual

LIST OF TABLES

Table 5.1 — HDFQI CONSTANTS IN C...uueeeiiiiiiieeeee e e e ettt e e e e e e e et e e e e e aeeaeees s ssattraaeeeeaaeesesaassssssssaaaeaaasessiasansssssnnneaaaaeeaans 49
Table 5.2 — HDFql constants in C and their corresponding definitions in CH+oceuiiiiiiiiiieiiii e 49
Table 5.3 — HDFql constants in C and their corresponding definitions iNJavacccveeeieiiiieecccccc e 50
Table 5.4 — HDFql constants in C and their corresponding definitions in Pythonccoooiiiiiiiiiiiiiiiiiceccececcceeeeee e, 50
Table 5.5 —HDFqgl constants in C and their corresponding definitions in CHcccooiiiiiiiiiiiiie e 51
Table 5.6 — HDFql constants in C and their corresponding definitions in FOrtranccccccoveeeiiiiiiiiiiecee e 51
Table 5.7 — HDFqgl constants in C and their corresponding definitions iN R...........ccoiiiiiiiiiiiiiiii e 52
Table 5.8 — HDFQI FUNCLIONS IN €eeeiiiiiiiieeeee ettt e e e e e e e et e e e e e e e e e e e e e s attbtaaeeeeeeeeseesansssssssaaaeaaaeesssassnsssssaanaaaaaeenans 55
Table 5.9 — HDFql functions in C and their corresponding definitions in CH+...........uviiiiiiiiiiiiieecceeee e 55
Table 5.10 — HDFql functions in C and their corresponding definitions iN Javacccceeeeeei e, 56
Table 5.11 — HDFql functions in C and their corresponding definitions in Python..........cccccoeeeiiiiiiiiiiiecc e 56
Table 5.12 — HDFql functions in C and their corresponding definitions in CH.............c.cevieieeiiicecccce e, 57
Table 5.13 — HDFql functions in C and their corresponding definitions in FOrtranccccccoeeeiiiiiiiiiiieeee e, 57
Table 5.14 — HDFql functions in C and their corresponding definitions iN R...........cooiiiiiiiiiiiiiiii e 57
Table 6.1 — HDFql operations text formatting CONVENTIONSc..uuuiiiiiiiiiiee et e e e e e e e e e e e e e e e e e e e aaraaaaaaeeaeens 133
TabIE 6.2 — HDF QI OP@IatioNSviiiiiiiiiiiieeieee e e e e e et rre e s e e e e e eeeeeeaaeaeeee e e e ea s s s s et b b a e aaa e aaaaeseaaaaaaaaassessssessssssnnes 136
Lo R Rl o [0 oo | I =) IRV TSR 138
Table 6.4 — HDFQl poSt-proCessing OPLIONSccoiiiiiiiiieeieiiee et et et e ab b seeeeseeaaaaasaaasessssessssssnnes 155
Table 6.5 — HDFQl redir€Cting OPTiONSuuiiiieiieeeecccctiiie et e e e e ettt e e e e e e e s s sttt e e e e e eeeeesasssnnsssnasaeeaeaeeessaaannsssnnneaeeees 166

Version 2.4.0 ix

Hierarchical Data Format query language (HDFql) Reference Manual

LIST OF FIGURES

Figure 3.1 — lllustration of the command-line interface “HDFQICLI”uueiiiiieeeeeiiccieeeee e e e e e neaaree s 31
Figure 4.1 — Linearization of a two dimensional dataset into a (one dimensional) CUrSOr.........ccceevvviieeeecciiee e, 36
Figure 4.2 — Cursor populated with data from dataset “my_datasetl”cceeiieiiiiiiiiiiiiie e 38
Figure 4.3 — Cursor populated with data from dataset “my_datasetl” ...t 39
Figure 4.4 — Cursor populated with data from dataset “my_dataset2”c.coioiiiiiiiiii e 40
Figure 4.5 — Cursor and its subcursor populated with data from dataset “my_dataset3”........ccccoeeeeiiiiiiiieeei e, 41
Figure 4.6 — Cursor and its subcursors populated with data from dataset “my_datasetd”cccoviiiiiiiiieeiiniieeeeieee, 42
Figure 4.7 — Cursor and its subcursors populated with data from dataset “my_dataset5”cooeeccciiiieeeiie e, 43

Version 2.4.0 X

1. INTRODUCTION

HDFql stands for “Hierarchical Data Format query language” and is the first tool that enables users to manage HDF5! files
through a high-level language. This language was designed to be simple to use and similar to SQL thus dramatically
reducing the learning effort. HDFgl can be seen as an alternative to the C API (which contains more than 400 low-level
functions that are far from easy to use!) and to existing wrappers for C++, Java, Python, C#, Fortran and R for manipulating
HDF5 files. In addition, and whenever possible, it automatically employs parallelism to speed-up operations hiding its

inherent complexity from the user.

As an example, imagine that one needs to create an HDF5 file named “my_file.h5” and, inside it, a group named
“my_group” containing a one dimensional (size 3) dataset named “my_dataset” of data type integer. Additionally, the

dataset is compressed using ZLIB and initialized with values 4, 8 and 6. In HDFq]l, this can easily be implemented as follows:

create and use file my file.hb

create dataset my group/my dataset as int(3) enable zlib values(4, 8, ©)

In contrast, using the C APl on the same example is quite cumbersome:

hid t file;

hid t group;
hid t dataspace;
hid t property;
hid t dataset;
hsize t dimension;
int value[3];

file = H5Fcreate("my file.hS§

group = H5Gcreate(file,
dimension = 3;
dataspace = H5Screate simple (!, &dimension, NULL);

property = HS5Pcreate (H5P DATASET CREATE);

! Hierarchical Data Format is the name of a set of file formats and libraries designed to store large amounts of numerical data. It is supported by The HDF
Group, whose mission is to ensure continued development of HDF technologies and the continued accessibility of data currently stored in HDF. Please
refer to the website http://www.hdfgroup.org for additional information.

Version 2.4.0 Page 1 of 346

http://www.hdfgroup.org/

Hierarchical Data Format query language (HDFql) Reference Manual

H5Pset chunk (property, 1, &dimension);
H5Pset deflate (property, 9);
dataset = H5Dcreate(group, "my dataset'", H5T NATIVE INT, dataspace, H5P DEFAULT, property,

H5P DEFAULT) ;

value[0] = 4;
value[l] = &;
value[?] = 6;

H5Dwrite (dataset, H5T NATIVE INT, H5S ALL, H5S ALL, H5P DEFAULT, &value);

Version 2.4.0 Page 2 of 346

2. INSTALLATION

The official website of the Hierarchical Data Format query language (HDFql) is http://www.hdfgl.com. Here, the most

recent documentation and examples that illustrate how to solve disparate use-cases using HDFgl can be found. In

addition, in the download area (http://www.hdfgl.com/#download) all versions of HDFql ever publicly released are

available. These versions are packaged as ZIP files, with each one meant for a particular platform (i.e. Windows, Linux or

macQOS), architecture (i.e. 32 bit or 64 bit), compiler (Microsoft Visual Studio or Gnu Compiler Collection (GCC)) and —

optionally — MPI library (i.e. MPICH or Open MPI). When decompressed, such ZIP files typically have the following

organization in terms of directories and files contained within:

HDFgl-x.y.z

+ example (directory that contains C, C++, Java, Python, C#, Fortran and R examples)
|

+ include (directory that contains HDFgl C and C++ header files)

+ 1ib (directory that contains HDFql C static and shared libraries)

+ bin (directory that contains HDFgl command-line interface and a proper launcher)

+ plugin (directory that contains plugins used by HDFqgl)

+ wrapper (directory that contains HDFql wrappers)

|

| + cpp (directory that contains HDFql C++ wrapper)

| |

| + java (directory that contains HDFql Java wrapper)

|

| + python (directory that contains HDFql Python wrapper)
| |

| + csharp (directory that contains HDFgl C# wrapper)

|

| + fortran (directory that contains HDFgql Fortran wrapper)
|

|

|

+ R (directory that contains HDFgl R wrapper)

+ doc (directory that contains HDFql reference manual)

Version 2.4.0 Page 3 of 346

http://www.hdfql.com/
http://www.hdfql.com/#download

Hierarchical Data Format query language (HDFql) Reference Manual

- LICENSE.txt (file that contains information about HDFqgl license)

- RELEASE.txt (file that contains information about HDFgl releases)

- README. txt (file that contains succinct information about HDFql)

The following sections provide concise instructions on how to install HDFql in the different platforms that it currently

supports — namely Windows, Linux and macOS.

2.1 WINDOWS

e Download the appropriate ZIP file according to the HDFql version, architecture and compiler of interest from
http://www.hdfgl.com/#download. For instance, if the HDFgl version of interest is 1.0.0 and it is to be used in a
machine running Windows 32 bit and, eventually, be linked against C or C++ code using the Microsoft Visual Studio

2010 compiler then the file to download is “HDFql-1.0.0_Windows32_VS-2010.zip”.

e Unzip the downloaded file using Windows Explorer in-build capabilities or a free tool such as 7-Zip (http://www.7-

zip.org).

2.2 LINUX

e Download the appropriate ZIP file according to the HDFqgl version, architecture, compiler and (optional) MPI library of
interest from http://www.hdfql.com/#download. For instance, if the HDFgl version of interest is 1.4.0 and it is to be
used in a machine running Linux 64 bit and, eventually, be linked against C, C++, or Fortran code using the GCC 4.9.x
compiler with no need to work with HDF5 files in parallel (using an MPI library) then the file to download is “HDFql-

1.4.0_Linux64_GCC-4.9.zip”".

e Unzip the downloaded file using the Archive Manager or the KArchive (if in GNOME or KDE respectively), or by
opening a terminal and executing “unzip <downloaded_zip_file>". If the unzip utility is not installed, it can be done by

executing from a terminal:

e |n a Red Hat-based distribution:

Version 2.4.0 Page 4 of 346

http://www.hdfql.com/#download
http://www.7-zip.org/
http://www.7-zip.org/
http://www.hdfql.com/#download

Hierarchical Data Format query language (HDFql) Reference Manual

sudo yum install unzip

e |n a Debian-based distribution:

sudo apt-get install unzip

2.3 MACOS

e Download the appropriate ZIP file according to the HDFgl version, architecture, compiler and (optional) MPI library of
interest from http://www.hdfgl.com/#download. For instance, if the HDFgl version of interest is 2.4.0 and it is to be
used in a machine running macOS 64 bit and, eventually, be linked against C, C++, or Fortran code using the GCC 4.9.x
compiler with the need of working with HDF5 files in parallel using MPICH 3.2.x MPI library then the file to download
is “HDFql-2.4.0_Darwin64_GCC-4.9_MPICH-3.2.zip”".

e Unzip the downloaded file using the Archive Utility or by opening a terminal and executing “unzip

<downloaded_zip_file>". If the unzip utility is not installed, it can be done by executing from a terminal:

sudo port install unzip

Version 2.4.0 Page 5 of 346

http://www.hdfql.com/#download

3. USAGE

After following the instructions provided in the chapter INSTALLATION, HDFql is ready for usage. It can be used
programmatically in C, C++ and Fortran through static and shared libraries; in Java, Python, C# and R through wrappers;
and finally, through a command-line interface named “HDFqICLI”. Moreover, in Linux and macOS, programs written in
these programming languages may manipulate HDF5 files both in serial and in parallel* 2, as distributions of HDFql built
with the serial HDF5 library and the parallel HDF5 (PHDF5) library are available for these platforms. The subsequent

sections provide guidance on usage and basic troubleshooting information to solve issues that may arise.

31 C

HDFgl can be used in the C programming language through static and shared libraries. These libraries are stored in the

directory “lib”. The following short program illustrates how HDFql can be used in such language.

// include HDFql C header file (make sure it can be found by the C compiler)
#include <stdlib.h>
#include <stdio.h>

#include "HDFgl.h"

int main(int argc, char *argv[])

{
// display HDFgl version in use
printf ("H

! Through MPICH (or, alternativately, one of its ABI compatible derivative libraries such as Intel MPI, Cray MPT, MVAPICH2, Parastation MPI) or Open
MPI. Both MPICH and Open MPI are freely available, high performance and widely portable implementations of the Message Passing Interface (MPI), a
standard for message-passing for distributed memory applications used in parallel computing. Please refer to the website https://www.mpich.org and
https://www.open-mpi.org for additional information.

2 This option is not allowed in Windows as HDFgl does not support the parallel HDF5 (PHDF5) library in this platform currently.

Version 2.4.0 Page 6 of 346

https://www.mpich.org/
https://www.open-mpi.org/

Hierarchical Data Format query language (HDFql) Reference Manual

// create an HDF5 dataset named "my dataset" of data type int

hdfql_execute ("CREATE DATASET my_dataset AS INT VALUES (10)");

// select (i.e. read) data from dataset "my dataset" and populate cursor with it

hdfgl execute("SELECT FROM my dataset");

// move cursor to the first position within the result set

hdfql cursor first(NULL);

// display content of cursor

printf("Dataset value: ¢d\n", *hdfql cursor get int(NULL))

Assuming that the program is stored in a file named “example.c”, it must first be compiled before it can be launched from

a terminal. To compile the program against the HDFql C static library:

e In Windows? using Microsoft Visual Studio, by executing from a terminal:

cl.exe example.c /I<hdfqgl include directory> <hdfgl 1lib directory>\HDFql.lib /link /LTCG
/NODEFAULTLIB:libcmt.1ib

e InLinux and macOS using Gnu Compiler Collection (GCC), by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

gcc example.c -fopenmp -I<hdfql include directory> <hdfgl 1ib directory>/1ibHDFQql.a
-Im -1dl1

e With an HDFgl MPI-based distribution:

gcc example.c -fopenmp -I<hdfgl include directory> <hdfql 1ib directory>/1ibHDFql.a

3 When compiling a program against the HDFql C static library in Windows, the functions “hdfql_initialize” and “hdfql_finalize” must be explicitly called
by the program when starting and finishing respectively (otherwise an error may occur such as a segmentation fault). Of note, these functions do not
need to be called when compiling the program against the HDFqgl C shared library as this is automatically done by the library itself.

Version 2.4.0 Page 7 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

-L<mpi 1ib directory> -Impi -Im -1dl

To compile the same program against the HDFql C shared library:

e In Windows using Microsoft Visual Studio, by executing from a terminal:

cl.exe example.c /I<hdfql include directory> <hdfqgl 1ib directory>\HDFql dill.lib

e In Linux and macOS using GCC, by executing from a terminal:

e With an HDFgl non MPI-based distribution:

gcc example.c -I<hdfql include directory> -L<hdfqgl 1lib directory> -1HDFql -1m -1dl1

e With an HDFgl MPI-based distribution:

gcc example.c -I<hdfgl include directory> -L<hdfgl 1ib directory> -
L<mpi 1ib directory> -1HDFql -Impi -1m -1dl

In case the program does not compile, most likely a C compiler is not installed. If a C compiler is missing, the solution is:

e In Windows, download and install a free version of Microsoft Visual Studio from the website

https://www.visualstudio.com/downloads.

e InLinux, install the GCC C compiler by executing from a terminal:

e In a Red Hat-based distribution:

sudo yum install gcc

e |n a Debian-based distribution:

sudo apt-get install gcc

Version 2.4.0 Page 8 of 346

https://www.visualstudio.com/downloads

Hierarchical Data Format query language (HDFql) Reference Manual

e In macOS§, install the GCC C compiler by executing from a terminal (if xcode-select does not support the parameter “--

|n

install” (due to being outdated), download and install the Command-Line Tools package from the website

http://developer.apple.com/downloads which includes GCC instead):

xcode-select --install

In case the compiled program does not launch, most likely the HDFql C shared library and/or the MPI shared library was

not found (these are needed to launch the program). The solution is:

e In Windows, add the directory where the file “HDFql_dll.dll” is located to the environment variable “PATH” by

executing from a terminal:

set PATH=<hdfgl 1ib directory>;3%PATH%

e In Linux, add the directories where the files “libHDFgl.so” and (optionally) “libmpi.so” are located to the environment

variable “LD_LIBRARY_PATH” by executing from a terminal:

e With an HDFgl non MPI-based distribution:

export LD LIBRARY PATH=<hdfql 1ib directory>:S$SLD LIBRARY PATH

e With an HDFgl MPI-based distribution:

export LD LIBRARY PATH=<hdfgl 1lib directory>:<mpi 1ib directory>:$LD LIBRARY PATH

e In macOS, add the directories where the files “libHDFql.dylib” and (optionally) “libmpi.dylib” are located to the

environment variable “DYLD_LIBRARY_PATH"* by executing from a terminal:

e With an HDFgl non MPI-based distribution:

4 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the
environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemintegrityProte
ction/ConfiguringSystemIntegrityProtection.html for additional information).

Version 2.4.0 Page 9 of 346

http://developer.apple.com/downloads
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql) Reference Manual

export DYLD LIBRARY PATH=<hdfgl lib directory>:$DYLD LIBRARY PATH

With an HDFgl MPI-based distribution:

export

DYLD LIBRARY PATH=<hdfgl lib directory>:<mpi_ lib directory>:$DYLD LIBRARY PATH

3.2 C++

HDFqgl can be used in the C++ programming language through static and shared libraries. These libraries are stored in the

directory “cpp” found under the directory “wrapper”. The following short program illustrates how HDFqgl can be used in

such language.

// include HDFql C++ header file (make sure it can be found by the C++ compiler)

#include
#include
#include

#include

<cstdlib>
<cstdio>
<iostream>

"HDFgl.hpp"

int main(int argc, char *argv[])

{

// display HDFql version in use
std: :cout << "HDFqgl version: " << HDFgl::Version << std::endl;
// create an HDF5 file named "my file.h5" and use (i.e. open) it
HDFql::execute ("CREATE AND USE FILE my file.h5");
// create an HDF5 dataset named "my dataset" of data type int
HDFql::execute ("CREATE DATASET my dataset AS INT VALUES (10)");
// select (i.e. read) data from dataset "my dataset" and populate cursor with it
HDFql: :execute ("SELECT FROM my dataset");
// move cursor to the first position within the result set
HDFql::cursorFirst(),;
// display content of cursor
std::cout << "Dataset value: " << *HDFqgl::cursorGetInt() << std::endl;

Version 2.4.0 Page 10 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

return EXIT SUCCESS;

Assuming that the program is stored in a file named “example.cpp”, it must first be compiled before it can be launched

from a terminal. To compile the program against the HDFql C++ static library:

e In Windows® using Microsoft Visual Studio, by executing from a terminal:

\
cl.exe example.cpp /EHsc /I<hdfql include directory>

<hdfql cpp wrapper directory>\HDFql.lib /link /LTCG /NODEFAULTLIB:libcmt.lib

e In Linux and macOS using Gnu Compiler Collection (GCC), by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

g++ example.cpp -fopenmp -I<hdfgl include directory>
<hdfql cpp wrapper directory>/1ibHDFql.a -1dl

e With an HDFgl MPI-based distribution:

g++ example.cpp -fopenmp -I<hdfgl include directory>
<hdfql cpp wrapper directory>/1ibHDFql.a -L<mpi 1lib directory> -lmpi -1dl

To compile the same program against the HDFqgl C++ shared library:

e In Windows using Microsoft Visual Studio, by executing from a terminal:

cl.exe example.cpp /EHsc /I<hdfql include directory>

<hdfql cpp wrapper directory>\HDFql dl1.1ib

e In Linux and macOS using GCC, by executing from a terminal:

5> When compiling a program against the HDFgl C++ static library in Windows, the functions “HDFgl::initialize” and “HDFql::finalize” must be explicitly
called by the program when starting and finishing respectively (otherwise an error may occur such as a segmentation fault). Of note, these functions do
not need to be called when compiling the program against the HDFqgl C++ shared library as this is automatically done by the library itself.

Version 2.4.0 Page 11 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

e With an HDFqgl non MPI-based distribution:

g++ example.cpp -I<hdfqgl include directory> -L<hdfqgl cpp wrapper directory> -1HDFql
-1d1

e With an HDFgl MPI-based distribution:

g++ example.cpp -I<hdfql include directory> -L<hdfql cpp wrapper directory> -
L<mpi 1ib directory> -1HDFql -Impi -1dI

In case the program does not compile, most likely a C++ compiler is not installed. If a C++ compiler is missing, the solution

is:

e In Windows, download and install a free version of Microsoft Visual Studio from the website

https://www.visualstudio.com/downloads.
e InLinux, install the GCC C++ compiler by executing from a terminal:

e |n a Red Hat-based distribution:

sudo yum install gcc-c++

e In a Debian-based distribution:

sudo apt-get install g++

e In macOS§, install the GCC C++ compiler by executing from a terminal (if xcode-select does not support the parameter
“—-install” (due to being outdated), download and install the Command-Line Tools package from the website

http://developer.apple.com/downloads which includes GCC instead):

xcode-select --install

In case the compiled program does not launch, most likely the HDFgl C++ shared library and/or the MPI shared library was

not found (these are needed to launch the program). The solution is:

Version 2.4.0 Page 12 of 346

https://www.visualstudio.com/downloads
http://developer.apple.com/downloads

Hierarchical Data Format query language (HDFql) Reference Manual

e In Windows, add the directory where the file “HDFqgl_dll.dll” is located to the environment variable “PATH” by

executing from a terminal:

set PATH=<hdfqgl cpp wrapper directory>;sPATHS

e In Linux, add the directories where the files “libHDFgl.so” and (optionally) “libmpi.so” are located to the environment

variable “LD_LIBRARY_PATH” by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

export LD LIBRARY PATH=<hdfgl cpp wrapper directory>:$LD LIBRARY PATH

e With an HDFgl MPI-based distribution:

export

LD LIBRARY PATH=<hdfql cpp wrapper directory>:<mpi 1lib directory>:$LD LIBRARY PATH

e In macOS, add the directories where the files “libHDFql.dylib” and (optionally) “libmpi.dylib” are located to the

environment variable “DYLD_LIBRARY_PATH”® by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

export DYLD LIBRARY PATH=<hdfql cpp wrapper directory>:$DYLD LIBRARY PATH

e With an HDFgl MPI-based distribution:

export
DYLD LIBRARY PATH=<hdfql cpp wrapper directory>:<mpi 1ib directory>:$DYLD LIBRARY PA

6 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the
environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProte
ction/ConfiguringSystemIntegrityProtection.html for additional information).

Version 2.4.0 Page 13 of 346

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql)

Reference Manual

TH

3.3 JAVA

HDFgl can be used in the Java programming language through a wrapper named “HDFql.java”. This wrapper is stored in

the directory “java” found under the directory “wrapper”. The following short program illustrates how HDFql can be used

in such language.

// import HDFgl package (make sure it can be found by the Java compiler/JVM)

import as.hdfqgl.*;

public class Example

{

public static void main(String args[])

{

// display HDFgl version in use

System.out.println ("HDFql version: " + HDFgl.VERSI

// create an HDF5 file named "my file.h5" and use (i.e. open) it

HDFgl.execute ("CREATE AND USE FILE my file.h5");

// create an HDF5 dataset named "my dataset" of data type int

HDFgl.execute ("CREATE DATASET my dataset AS INT VALUES(10)");

// select (i.e. read) data from dataset "my dataset" and populate cursor with it

HDFgl.execute ("SELECT FROM my dataset");

// move cursor to the first position within the result set

HDFql.cursorFirst(),;

// display content of cursor

System.out.println("Dataset value: " 4 HDFql.cursorGetInt())

Assuming that the program is stored in a file named “Example.java”, it must first be compiled before it can be launched

from a terminal. The program can be compiled as follows:

Version 2.4.0

Page 14 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

javac -classpath <hdfql java wrapper directory> Example.java

In case the program does not compile, most likely the Java Development Kit (JDK) is not installed. If the JDK is missing, the

solution is to download and install it from the website http://www.oracle.com/technetwork/java/javase/downloads.

The compiled program may be launched as follows:

java Example

In case the compiled program does not launch, most likely the HDFql Java wrapper and/or the MPI shared library was not

found (these are needed to launch the program). The solution is:

e In Windows, add the directories where the files “HDFqgl.java” (i.e. the wrapper) and “HDFql.dll" are located to the

environment variables “CLASSPATH” and “PATH” by executing from a terminal:

set CLASSPATH=<hdfgl java wrapper directory>;.;%CLASSPATH?%
set PATH=<hdfgl java wrapper directory>\as\hdfql;$PATH$%

e InLinux, add the directories where the files “HDFqgl.java”, “libHDFql.so” and (optionally) “libmpi.so” are located to the

environment variables “CLASSPATH” and “LD_LIBRARY_PATH” by executing from a terminal:

e With an HDFgl non MPI-based distribution:

export CLASSPATH=<hdfql java wrapper directory>:.:$SCLASSPATH
export LD LIBRARY PATH=<hdfgl java wrapper directory>/as/hdfql:$LD LIBRARY PATH

e With an HDFgl MPI-based distribution:

export CLASSPATH=<hdfql java wrapper directory>:.:$CLASSPATH

export

LD LIBRARY PATH=<hdfgl java wrapper directory>/as/hdfql:<mpi 1lib directory>:$LD LIBR
ARY PATH

Version 2.4.0 Page 15 of 346

http://www.oracle.com/technetwork/java/javase/downloads

Hierarchical Data Format query language (HDFql) Reference Manual

e In macOS, add the directories where the files “HDFql.java”, “libHDFql.dylib” and (optionally) “libmpi.dylib” are located
to the environment variables “CLASSPATH” and “DYLD_LIBRARY_PATH”’ by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

export CLASSPATH=<hdfql java wrapper directory>:.:$SCLASSPATH
export DYLD LIBRARY PATH=<hdfql java wrapper directory>/as/hdfql:$DYLD LIBRARY PATH

e With an HDFgl MPI-based distribution:

export CLASSPATH=<hdfql java wrapper directory>:.:$CLASSPATH

export

DYLD LIBRARY PATH=<hdfgl java wrapper directory>/as/hdfql:<mpi lib directory>:$DYLD
LIBRARY PATH

3.4 PYTHON

HDFqgl can be used in the Python programming language through a wrapper named “HDFql.py”. This wrapper is stored in
the directory “python” found under the directory “wrapper”. The following short script illustrates how HDFqgl can be used

in such language.

import HDFgl module (make sure it can be found by the Python interpreter)
import HDFql

display HDFgl version in use

print ("HDFqgl version: $%s" % HDFgl.V

create an HDF5 file named "my file.h5" and use (i.e. open) it

HDFql.execute ("CREATE AND USE FILE my file.h5")

create an HDF5 dataset named "my dataset" of data type int

HDFqgl.execute ("CREATE DATASET my dataset AS INT VALUES (10)")

7 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the
environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProte
ction/ConfiguringSystemIntegrityProtection.html for additional information). Alternatively, the Java library path property “java.library.path” should be
set with the path where the HDFgl shared library “libHDFgl.dylib” is located when launching the program (e.g. java -
Djava.library.path=<hdfql_java_wrapper_directory>/as/hdfql my_program).

Version 2.4.0 Page 16 of 346

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql) Reference Manual

select (i.e. read) data from dataset "my dataset" and populate cursor with it

HDFgl.execute ("SELECT FROM my dataset")

move cursor to the first position within the result set

HDFql.cursor first()

display content of cursor

]

print("Dataset value: %d" % HDFqgl.cursor get int())

Assuming that the script is stored in a file named “example.py” it can be launched by executing the following from a

terminal:

python example.py

In case the script does not launch, most likely (1) the Python interpreter is not installed or (2) the HDFgl Python wrapper
and/or the MPI shared library was not found (these are needed to launch the script). To fix the former issue, download

and install the Python interpreter from the website http://www.python.org/download. To fix the latter issue:

e In Windows, add the directory where the file “HDFql.py” (i.e. the wrapper) is located to the environment variable

“PYTHONPATH” by executing from a terminal:

set PYTHONPATH=<hdfql python wrapper directory>;$PYTHONPATH?%

e In Linux, add the directories where the files “HDFql.py” and (optionally) “libmpi.so” are located to the environment

variables “PYTHONPATH” and “LD_LIBRARY_PATH"” by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

export PYTHONPATH=<hdfgl python wrapper directory>:$PYTHONPATH

e With an HDFgl MPI-based distribution:

export PYTHONPATH=<hdfqgl python wrapper directory>:$PYTHONPATH
export LD LIBRARY PATH=<mpi lib directory>:$LD LIBRARY PATH

Version 2.4.0 Page 17 of 346

http://www.python.org/download

Hierarchical Data Format query language (HDFql) Reference Manual

e In macO0S, add the directories where the files “HDFgl.py” and (optionally) “libmpi.dylib” are located to the

environment variables “PYTHONPATH” and “DYLD_LIBRARY_PATH”® by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

export PYTHONPATH=<hdfgl python wrapper directory>:$PYTHONPATH

e With an HDFgl MPI-based distribution:

export PYTHONPATH=<hdfgl python wrapper directory>:$PYTHONPATH

export DYLD LIBRARY PATH=<mpi lib directory>:$DYLD LIBRARY PATH

Besides these steps, a scientific computing package named NumPy for Python must be installed when working with user-
defined variables (please refer to the function hdfql_variable_register for additional information). This package can be

found at http://www.scipy.org/scipylib/download.html along with instructions on how to install and use it.

3.5 C#

HDFgl can be used in the C# programming language through a wrapper named “HDFql.cs”. This wrapper is stored in the
directory “csharp” found under the directory “wrapper”. The following short program illustrates how HDFgl can be used in

such language.

// use HDFgl namespace (make sure it can be found by the C# compiler)
using AS.HDFql;

public class Example

{
public static void Main(string []args)

{

8 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the
environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProte
ction/ConfiguringSystemIntegrityProtection.html for additional information).

Version 2.4.0 Page 18 of 346

http://www.scipy.org/scipylib/download.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql) Reference Manual

// display HDFgl version in use

System.Console.WriteLine ("HDFqgl version: {0}", HDFql.Version);

// create an HDF5 file named "my file.h5" and use (i.e. open) it
HDFql.Execute ("CREATE AND USE FILE myﬁfile.hﬁ”);

// create an HDF5 dataset named "my dataset" of data type int
HDFql.Execute ("CREATE DATASET my dataset AS INT VALUES (10)");

// select (i.e. read) data from dataset "my dataset" and populate cursor with it

HDFql.Execute ("SELECT FROM my dataset");

// move cursor to the first position within the result set

HDFql.CursorFirst(),;

// display content of cursor

System.Console.WriteLine ("Dataset value: {0}", HDFql.CursorGetInt())

Assuming that the program is stored in a file named “Example.cs”, it must first be compiled before it can be launched from

a terminal. In Windows, the program can be compiled as follows:

e Using Microsoft .NET Framework, by executing from a terminal:

csc.exe Example.cs <hdfql csharp wrapper directory>*.cs

e Using Mono, by executing from a terminal:

mcs.bat Example.cs <hdfql csharp wrapper directory>*.cs

In Linux and macOS, the program can be compiled using Mono by executing from a terminal (of note, Microsoft .NET

Framework does not support these platforms):

mcs Example.cs <hdfql csharp wrapper directory>/*.cs

Version 2.4.0 Page 19 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

In case the program does not compile, most likely a C# compiler is not installed. If a C# compiler is missing, the solution is:

e In Windows, download and install either Microsoft .NET Framework or Mono from the websites

https://www.microsoft.com/net/download/framework or http://www.mono-project.com/download, respectively.

e InLinux and macOS, download and install Mono from the website http://www.mono-project.com/download.

Depending on the platform, the compiled program may be launched as follows:

e In Windows, by executing from a terminal:

Example.exe

e InLinux and macOS, by executing from a terminal:

mono Example.exe

In case the compiled program does not launch, most likely the HDFql C# wrapper and/or the MPI shared library was not

found (these are needed to launch the program). The solution is:

e In Windows, add the directory where the file “HDFqgl.cs” (i.e. the wrapper) is located to the environment variable

“PATH” by executing from a terminal:

set PATH=<hdfqgl csharp wrapper directory>;3%PATH?%

e In Linux, add the directories where the files “HDFql.cs” and (optionally) “libmpi.so” are located to the environment

variable “LD_LIBRARY_PATH” by executing from a terminal:

e With an HDFgl non MPI-based distribution:

export LD LIBRARY PATH=<hdfql csharp wrapper directory>:$LD LIBRARY PATH

e With an HDFql MPI-based distribution:

Version 2.4.0 Page 20 of 346

https://www.microsoft.com/net/download/framework
http://www.mono-project.com/download
http://www.mono-project.com/download

Hierarchical Data Format query language (HDFql) Reference Manual

export

LD LIBRARY PATH=<hdfqgl csharp wrapper directory>:<mpi 1lib directory>:$LD LIBRARY PAT
H

e In macOS, add the directories where the files “HDFqgl.cs” and (optionally) “libmpi.dylib” are located to the

environment variable “DYLD_LIBRARY_PATH”® by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

export DYLD LIBRARY PATH=<hdfgl csharp wrapper directory>:$DYLD LIBRARY PATH

e With an HDFgl MPI-based distribution:

export
DYLD LIBRARY PATH=<hdfqgl csharp wrapper directory>:<mpi 1ib directory>:$DYLD LIBRARY

_PATH

3.6 FORTRAN

HDFqgl can be used in the Fortran programming language through static and shared libraries. These libraries are stored in

the directory “fortran” found under the directory “wrapper”. The following short program illustrates how HDFql can be

used in such language.

PROGRAM Example

! use HDFql module (make sure it can be found by the Fortran compiler)

USE HDFql

! declare variable

INTEGER :: state

! display HDFgl version in use

WRITE(*, *) "HDFgl version: ",

9 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the
environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProte
ction/ConfiguringSystemIntegrityProtection.html for additional information).

Version 2.4.0 Page 21 of 346

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql) Reference Manual

! create an HDF5 file named "my file.h5" and use (i.e. open) it

state = hdfql execute("CREATE AND USE FILE my file.h5")

! create an HDF5 dataset named "my dataset" of data type int

n

state = hdfql execute("CREATE DATASET my dataset AS INT VALUES (10)")

! select (i.e. read) data from dataset "my dataset" and populate cursor with it
state = hdfql execute("SELECT FROM my dataset')
! move cursor to the first position within the result set

state = hdfql cursor first()

! display content of cursor
WRITE(*, *) '"Dataset value: ", hdfqgl cursor get int()
END PROGRAM

Assuming that the program is stored in a file named “example.f90”, it must first be compiled before it can be launched

from a terminal. To compile the program against the HDFql Fortran static library:

e In Windows® using Intel Fortran Compiler (IFORT), by executing from a terminal:

ifort.exe example.f90 /module:<hdfqgl fortran wrapper directory>\static

<hdfql fortran wrapper directory>\HDFgl.lib /link /LTCG /NODEFAULTLIB:libcmt.lib

e In Linux using IFORT, by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

ifort example.f90 -fopenmp -module <hdfgl fortran wrapper directory>

<hdfql fortran wrapper directory>/1ibHDFql.a

e With an HDFgl MPI-based distribution:

10 When compiling a program against the HDFql Fortran static library in Windows, the subroutines “hdfql_initialize” and “hdfql_finalize” must be
explicitly called by the program when starting and finishing respectively (otherwise an error may occur such as a segmentation fault). Of note, these
functions do not need to be called when compiling the program against the HDFql Fortran shared library as this is automatically done by the library itself.

Version 2.4.0 Page 22 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

ifort example.f90 -fopenmp -module <hdfgl fortran wrapper directory>

<hdfql fortran wrapper directory>/11bHDFql.a -L<mpi lib directory> -Impi

e In Linux and macOS using Gnu Compiler Collection (GCC)*, by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

gfortran example.f90 -fopenmp -I<hdfql fortran wrapper directory>

<hdfql fortran wrapper directory>/1ibHDFql.a -1dl

e With an HDFgl MPI-based distribution:

gfortran example.f90 -fopenmp -I<hdfql fortran wrapper directory>
<hdfql fortran wrapper directory>/1ibHDFql.a -L<mpi 1lib directory> -Impi -1dl

To compile the same program against the HDFgl Fortran shared library:

e In Windows using IFORT, by executing from a terminal:

ifort.exe example.f90 /module:<hdfgl fortran wrapper directory>

<hdfql fortran wrapper directory>\HDFgl dll.1ib

e InLinux using IFORT, by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

ifort example.f90 -module <hdfql fortran wrapper directory> -

L<hdfgl fortran wrapper directory> -1HDFql

e With an HDFgl MPI-based distribution:

11 An incorrect warning is raised by the GCC Fortran compiler when using the HDFgl module (“Warning: Only array FINAL procedures declared for derived
type 'hdfqgl_cursor' defined at (1), suggest also scalar one”). This warning does not interfere with the final compilation result, though, and it has been
solved in the GCC Fortran compiler version 7.0.0 (please refer to https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58175 for additional information).

Version 2.4.0 Page 23 of 346

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58175

Hierarchical Data Format query language (HDFql) Reference Manual

ifort example.f90 -module <hdfgl fortran wrapper directory> -

L<hdfgl fortran wrapper directory> -L<mpi 1lib directory> -1HDFql -Impi

e In Linux and macOS using GCC*?, by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

gfortran example.f90 -I<hdfqgl fortran wrapper directory> -
L<hdfgl fortran wrapper directory> -1HDFql -1dl

e With an HDFgl MPI-based distribution:

gfortran example.f90 -I<hdfqgl fortran wrapper directory> -
L<hdfgl fortran wrapper directory> -L<mpi lib directory> -1HDFql -Impi -1dl

In case the program does not compile, most likely a Fortran compiler is not installed. If a Fortran compiler is missing, the

solution is:

e In Windows, download and install IFORT from the website https://software.intel.com/en-us/parallel-studio-

xe/choose-download/free-trial-cluster-windows-c-fortran.

e In Linux, download and install IFORT from the website https://software.intel.com/en-us/parallel-studio-xe/choose-

download/free-trial-cluster-linux-fortran.

e In Linux, install the GCC Fortran compiler by executing from a terminal:

e |n a Red Hat-based distribution:

sudo yum install gcc-gfortran

e In a Debian-based distribution:

12 An incorrect warning is raised by the GCC Fortran compiler when using the HDFgl module (“Warning: Only array FINAL procedures declared for derived
type 'hdfqgl_cursor' defined at (1), suggest also scalar one”). This warning does not interfere with the final compilation result, though, and it has been
solved in the GCC Fortran compiler version 7.0.0 (please refer to https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58175 for additional information).

Version 2.4.0 Page 24 of 346

https://software.intel.com/en-us/parallel-studio-xe/choose-download/free-trial-cluster-windows-c-fortran
https://software.intel.com/en-us/parallel-studio-xe/choose-download/free-trial-cluster-windows-c-fortran
https://software.intel.com/en-us/parallel-studio-xe/choose-download/free-trial-cluster-linux-fortran
https://software.intel.com/en-us/parallel-studio-xe/choose-download/free-trial-cluster-linux-fortran
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58175

Hierarchical Data Format query language (HDFql) Reference Manual

sudo apt-get install gfortran

e In macQS§, install the GCC Fortran compiler by executing from a terminal (if xcode-select does not support the

“

parameter “-install” (due to being outdated), download and install the Command-Line Tools package from the

website http://developer.apple.com/downloads which includes GCC instead):

xcode-select —--install

In case the compiled program does not launch, most likely the HDFql Fortran shared library and/or the MPI shared library

was not found (these are needed to launch the program). The solution is:

e In Windows, add the directory where the file “HDFqgl_dll.dll” is located to the environment variable “PATH” by

executing from a terminal:

set PATH=<hdfgl fortran wrapper directory>;%$PATH?%

e InLinux, add the directories where the files “libHDFgl.so” and (optionally) “libmpi.so” are located to the environment

variable “LD_LIBRARY_PATH” by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

export LD LIBRARY PATH=<hdfgl fortran wrapper directory>:SLD LIBRARY PATH

e With an HDFgl MPI-based distribution:

export
LD LIBRARY PATH=<hdfql fortran wrapper directory>:<mpi 1ib directory>:$LD LIBRARY PA
TH

Version 2.4.0 Page 25 of 346

http://developer.apple.com/downloads

Hierarchical Data Format query language (HDFql) Reference Manual

e In macOS, add the directories where the files “libHDFqgl.dylib” and (optionally) “libmpi.dylib” are located to the

environment variable “DYLD_LIBRARY_PATH"”*? by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

export DYLD LIBRARY PATH=<hdfql fortran wrapper directory>:$DYLD LIBRARY PATH

e With an HDFgl MPI-based distribution:

export
DYLD LIBRARY PATH=<hdfqgl fortran wrapper directory>:<mpi_lib directory>:$DYLD LIBRAR
Y PATH

3.7 R

HDFgl can be used in the R programming language through a wrapper named “HDFql.R”. This wrapper is stored in the
directory “R” found under the directory “wrapper”. The following short script illustrates how HDFgl can be used in such

language.

load HDFql R wrapper (make sure it can be found by the R interpreter)

source ("HDFgl.R")

display HDFgl version in use

"

print (paste ("HDFgl version:

create an HDF5 file named "my file.h5" and use (i.e. open) it

hdfql execute("CREATE AND USE FILE my file.h5")

create an HDF5 dataset named "my dataset" of data type int

hdfql execute ("CREATE DATASET my dataset AS INT VALUES (10)")

select (i.e. read) data from dataset "my dataset" and populate cursor with it

hdfql execute("SELECT FROM my dataset")

13 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the
environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to
https://developer.apple.com/library/archive/documentation/Security/Conceptual /System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProte
ction/ConfiguringSystemIntegrityProtection.html for additional information).

Version 2.4.0 Page 26 of 346

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql) Reference Manual

move cursor to the first position within the result set

hdfql cursor first()

display content of cursor

print(paste('"Dataset value:", hdfql cursor get int()))

Assuming that the script is stored in a file named “example.R” it can be launched by executing the following from a

terminal:

R -f example.R

In case the script does not launch, most likely (1) the R interpreter is not installed or (2) the HDFgl R wrapper and/or the
HDFql C shared library and/or the MPI shared library was not found (these are needed to launch the script). To fix the

former issue, download and install the R interpreter from the website https://cloud.r-project.org. To fix the latter issue:

e In Windows, add the directories where the files “HDFgl.R” (i.e. the wrapper) and “HDFql_dIl.dll” are located to the

environment variable “PATH” by executing from a terminal:

set PATH=<hdfqgl r wrapper directory>;<hdfql 1ib directory>;%PATH%

e In Linux, add the directories where the files “HDFql.R”, “libHDFql.so” and (optionally) “libmpi.so” are located to the

environment variable “LD_LIBRARY_PATH” by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

export

LD LIBRARY PATH=<hdfqgl r wrapper directory>:<hdfql 1ib directory>:$LD LIBRARY PATH

e With an HDFql MPI-based distribution:

export
LD LIBRARY PATH=<hdfql r wrapper directory>:<hdfql 1ib directory>:<mpi 1ib directory
>:$LD LIBRARY PATH

Version 2.4.0 Page 27 of 346

https://cloud.r-project.org/

Hierarchical Data Format query language (HDFql) Reference Manual

e In macOS, add the directories where the files “HDFql.R”, “libHDFql.dylib” and (optionally) “libmpi.dylib” are located to

the environment variable “DYLD_LIBRARY_PATH”14 by executing from a terminal:

e With an HDFqgl non MPI-based distribution:

export
DYLD LIBRARY PATH=<hdfql r wrapper directory>:<hdfql 1ib directory>:$DYLD LIBRARY PA
TH

e With an HDFgl MPI-based distribution:

export
DYLD LIBRARY PATH=<hdfgl r wrapper directory>:<hdfql 1ib directory>:<mpi 1lib directo
ry>:$DYLD LIBRARY PATH

Besides these steps, a package named bit64 for R must be installed when working with user-defined variables to store 64
bit integers as these are not natively supported by R (please refer to the function hdfgl_variable_register for additional
information). This package can be found at https://cran.r-project.org/web/packages/bit64 along with instructions on how

to install and use it.

3.8 COMMAND-LINE INTERFACE

A command-line interface named “HDFqICLI” is available and can be used for manipulating HDF5 files from a terminal. It is
stored in the directory “bin”. To launch the command-line interface, open a terminal (“cmd” if in Windows, “xterm” if in

Linux, or “Terminal” if in macQS), go to the directory “bin”, and type:

e In Windows:

HDFqQlCLI.exe

14 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the
environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProte
ction/ConfiguringSystemIntegrityProtection.html for additional information).

Version 2.4.0 Page 28 of 346

https://cran.r-project.org/web/packages/bit64
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql) Reference Manual

e InLinux and macOS:

. /HDFgICLI

The list of parameters accepted by the command-line interface can be viewed by launching it with the parameter “--help”.

At the time of writing, this list includes the following parameters:

e --help (show the list of parameters accepted by HDFqICLI and exit)

e --version (show the version of HDFqICLI and exit)

e --debug (show debug information when executing HDFql operations)

e --no-path (do not show group path currently in use in HDFqICLI prompt)

e --no-status (do not show status after executing HDFgl operations)

e --execute=X (execute HDFqgl operation(s) “X" and exit)

o --execute-file=X (execute HDFql operation(s) stored in file “X” and exit)
e --save-file=X (save executed HDFql operation(s) to file “X”)

In case the command-line interface does not launch, most likely the HDFql shared library (which is needed to launch the

interface) was not found. Depending on the platform, the solution is:

e |In Windows, to either:

e Add the directory where the file “HDFql_dIl.dIl” is located to the environment variable “PATH” by executing

from a terminal:

set PATH=<hdfgl 1ib directory>;3PATH%

e Execute the batch file named “launch.bat” which properly sets up the environment variable “PATH” and

launches the command-line interface from a terminal.

e In Linux, to either:

Version 2.4.0 Page 29 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

e Add the directory where the file “libHDFql.so” is located to the environment variable “LD_LIBRARY_PATH” by

executing from a terminal:

export LD LIBRARY PATH=<hdfgl lib directory>:SLD LIBRARY PATH

e Execute the bash script file named “launch.sh” which properly sets up the environment variable

“LD_LIBRARY_PATH” and launches the command-line interface from a terminal.

e In macOs, to either:

e Add the directory where the file “libHDFgl.dylib” is located to the environment variable

“DYLD_LIBRARY_PATH”'> by executing from a terminal:

export DYLD LIBRARY PATH=<hdfgl 1ib directory>:$DYLD LIBRARY PATH

e Execute the bash script file named “launch.sh” which properly sets up the environment variable

“DYLD_LIBRARY_PATH” and launches the command-line interface from a terminal.

15 Starting from version 10.11 (i.e. El Capitan), Apple introduced a security feature named System Integrity Protection (SIP) which may prevent setting the
environment variable “DYLD_LIBRARY_PATH” and, ultimately, launching the program. To overcome this, SIP should be disabled (please refer to
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProte
ction/ConfiguringSystemIntegrityProtection.html for additional information).

Version 2.4.0 Page 30 of 346

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html

Hierarchical Data Format query language (HDFql) Reference Manual

EX C:\Windows\system32\cmd.exe - HDFgICLLexe = | B[]

hdfgl>HDFglCLI.exe
C version 2.3.8 (using V5-2815 64 bit librs

more information or "exit" to return to the terminal.

>create file my_file.h5
(@ elements returned in 8.8 seconds)

»use file my_file.h5
(@ elements returned i .8 seconds)

(8 elements returned in 8.8 seconds)

reate dataset my_dataset ;
(8 elements returned in B.8 seconds)

how
my dataset

(i element returned in 8.8 seconds)

(3 elements returned in B.8 seconds)

nsert into my_dataset value 14,
(8 elements returned in B.8 seconds)

5.] B 4.c 9._776008
(3 elements returned in .8 seconds)

Figure 3.1 — Illustration of the command-line interface “HDFqICLI”

Version 2.4.0 Page 31 of 346

4. CURSOR

Generally speaking, a cursor is a control structure that is used to iterate through the results returned by a query (that was
previously executed). It can be seen as an effective means to abstract the programmer from low-level implementation
details of accessing data stored in specific structures. This chapter provides a description of cursors and subcursors in

HDFql, as well as examples and illustrations to demonstrate these two concepts in practice.

4.1 DESCRIPTION

HDFql provides cursors which offer several ways to traverse result sets according to specific needs. The following list

enumerates these ways or functionalities (please refer to their links for further information):

First (moves cursor to the first position within the result set — hdfql_cursor_first)

e Last (moves cursor to the last position within the result set — hdfql_cursor_last)

e Next (moves cursor to the next position within the result set — hdfgl_cursor_next)

e Previous (moves cursor to the previous position within the result set — hdfgl_cursor_previous)

e Absolute (moves cursor to an absolute position within the result set — hdfqgl_cursor_absolute)

e Relative (moves cursor to a relative position within the result set — hdfgl_cursor_relative)

Besides their traversal functionalities, a particular feature of cursors in HDFql is that they store result sets returned by
DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION LANGUAGE (DIL) operations. To retrieve values from result
sets, the functions starting with “hdfql_cursor_get” can be used. These and remaining functions offered by cursors can be

found in Table 5.8 (each of these begins with the prefix “hdfgl_cursor”).

When a certain operation is executed, HDFql stores the result set returned by this operation in its default cursor. This
cursor is available to the programmer and is automatically created and initialized upon loading the HDFql library by a

program. If additional (i.e. user-defined) cursors are needed, they can be created like this (in C):

Version 2.4.0 Page 32 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// create a cursor named "my cursor"

HDFQL CURSOR my cursor;

As a side note, additional cursors are created in C++, Java, Python, C#, Fortran and R as follows:

// create a cursor named "myCursor" in C++

HDFgl: :Cursor myCursor;

// create a cursor named "myCursor" in Java

HDFglCursor myCursor = new HDFqlCursor();

create a cursor named "my cursor" in Python

my cursor = HDFql.Cursor()

// create a cursor named "myCursor" in C#

HDFglCursor myCursor = new HDFqlCursor();

! create a cursor named "my cursor" in Fortran

TYPE (HDFQL CURSOR) :: my cursor

create a cursor named "my cursor" in R

my cursor <- hdfql cursor()

Before an additional cursor is used to store and eventually traverse a result set, it must be properly initialized (refer to the
function hdfql_cursor_initialize for further information). The initialization of a cursor is only required in C and performed
once, while in C++, Java, Python, C#, Fortran and R such initialization is redundant (i.e. not required) as it is done

automatically when creating a cursor. Initializing a cursor can be done like this (in C):

// initialize a cursor named "my cursor"

hdfql cursor initialize(&my cursor);

Version 2.4.0 Page 33 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Complementarly, when a cursor is no more needed and it is about to be freed/finalized, it must be properly cleared (refer
to the function hdfgl_cursor_clear for further information). The clearing of a cursor is only required in C and performed
once before freeing the pointer representing the cursor (otherwise memory leak may occur), while in C++, Java, Python,
C#, Fortran and R such step is redundant (i.e. not required) as it is done automatically when finalizing the object

representing the cursor. Clearing a cursor can be done like this (in C):

// clear a cursor named "my cursor"

hdfql cursor clear (&my cursor);

To switch between different cursors (to be used for separate needs), the function hdfql_cursor_use may be employed (in

C):

// use a cursor named "my cursor"

hdfql cursor use(&my cursor);

The following C snippet illustrates usage of the HDFql default cursor and a user-defined cursor, as well as some typical

operations performed on/by these.

// create a cursor named "my cursor"

HDFQIL CURSOR my cursor;

// create an HDF5 dataset named "my dataset(0" of data type int with an initial value of 8
hdfql_execute "CREATE DATASET myfddtasct@ AS INT VALUES(8)");

// create an HDF5 dataset named "my datasetl" of data type float with initial values of 3.2,
5.3, 7.4 and 9.5

hdfql execute("CREATE DATASET my datasetl AS FLOAT(4) VALUES(3.2, 5.3, 7.4, 9.5)");

// select (i.e. read) data from dataset "my dataset0" and populate HDFql default cursor with it

hdfql execute("SELECT FROM my dataset0");

// initialize cursor "my cursor"

hdfql cursor initialize(&my cursor);

// use cursor "my cursor"

hdfql cursor use(&my cursor);

// select (i.e. read) data from dataset "my datasetl" and populate cursor "my cursor" with it

hdfql execute("SELECT FROM my datasetl");

Version 2.4.0 Page 34 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// use HDFql default cursor
hdfql cursor use (NULL);

// display number of elements in HDFql default cursor

printf ("Number of elements in HDFql default cursor is %d\n", hdfql cursor get count (NULL));

// move HDFgl default cursor to the next position within the result set

hdfgl cursor next (NULL);

// display element of HDFgl default cursor

printf("Current element of HDFql default cursor is %d\n", *hdfql cursor get int (NULL))
// display number of elements in cursor "my cursor"
printf("Number of elements in cursor \"my cursor\" is %d\n",

hdfql cursor get count (&my cursor));

// use cursor "my cursor"

hdfql cursor use(&my cursor);

// display elements of cursor "my cursor"

while (hdfql cursor next (NULL) == HDFQL SUCCESS)
{

printf("Current element of cursor \"my cursor\" is %f\n", #*hdfqgl cursor get float (NULL));
}

The output of executing the snippet would be similar to this:

Number of elements in HDFql default cursor is 1
Current element of HDFql default cursor is 8
Number of elements in cursor "my cursor" is 4
Current element of cursor "my cursor" is 3.2
Current element of cursor "my cursor" is 5.3
Current element of cursor "my cursor" is 7.4

Current element of cursor "my cursor" is 9.5

When populating a cursor with data from a dataset or attribute with two or more dimensions, the data is always linearized
into a single dimension. The linearization process is depicted in Figure 4.1. Subsequently, if need be, it is up to the

programmer to access the data (stored in the cursor) according to its original dimensions. In this case, the SHOW

Version 2.4.0 Page 35 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

DIMENSION operation — which returns the original dimensions of a dataset or attribute — may be useful to help in the task

of going from one dimension to the original dimensions.

Dataset [3, 2]

Cursor [6]

Figure 4.1 — Linearization of a two dimensional dataset into a (one dimensional) cursor

4.2 SUBCURSOR

HDFqgl also provides subcursors — they are meant to complement (i.e. help) cursors in the task of storing data of type
HDFQL_CHAR, HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT,
HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT,
HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE and HDFQL_OPAQUE. In practice, when a result
set is of one of these data types, only the first element of the result set is stored in the cursor (as expected), while all
elements of the result set are stored in the subcursor. In other words, each position of the cursor stores the first element
of the result set and also points to a subcursor that in turn stores all the elements of the result set. The values stored in a
subcursor (which are also known as a result subset) can be accessed with the functions starting with
“hdfgl_subcursor_get” (enumerated in Table 5.8). Similar to cursors, HDFql subcursors offer several ways or functionalities

to traverse result subsets, namely:

e First (moves subcursor to the first position within the result subset — hdfql_subcursor_first)

e Last (moves subcursor to the last position within the result subset — hdfgl_subcursor_last)

e Next (moves subcursor to the next position within the result subset — hdfgl_subcursor_next)

e Previous (moves subcursor to the previous position within the result subset — hdfgl_subcursor_previous)

e Absolute (moves subcursor to an absolute position within the result subset — hdfql_subcursor_absolute)

Version 2.4.0 Page 36 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

e Relative (moves subcursor to a relative position within the result subset — hdfql_subcursor_relative)

The following C snippet illustrates usage of the HDFql subcursors, as well as some typical operations performed on/by

these.

// create an HDF5 dataset named "my dataset" of data type variable-length int of one dimension
(size 4)

hdfql execute ("CREATE DATASET my dataset AS VARINT (4)");

insert (i.e. write) values into dataset "my datase
// 1 t (1 ite) 1 into dat t "my dat t"

hdfql execute("INSERT INTO my dataset VALUES((7, 8, 5), (9), (6, 1, 2), (4, 0))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset");

// move the cursor in use to the next position within the result set
while (hdfql cursor next (NULL) == HDFQL SUCCESS)
{

// display element of the cursor in use

printf("Current element of cursor is %d\n", *hdfqgl cursor get int (NULL));

// move the subcursor in use to the next position within the result subset
while (hdfql subcursor next (NULL) == HDFQL SUCCESS)
{

// display element of the subcursor in use

printf (" Current element of subcursor is %d\n", *hdfql subcursor get int (NULL));

The output of executing the snippet would be similar to this:

Current element of cursor is 7
Current element of subcursor is 7
Current element of subcursor is 8
Current element of subcursor is 5

Current element of cursor is 9
Current element of subcursor is 9

Current element of cursor 1is 6
Current element of subcursor is 6

Current element of subcursor is 1

Version 2.4.0 Page 37 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Current element of subcursor is 2
Current element of cursor is 4
Current element of subcursor is 4

Current element of subcursor is 0

4.3 EXAMPLES

The following C snippets demonstrate how HDFql cursors and subcursors are populated with (variable) data stored in
HDF5 datasets or attributes, along with illustrations to facilitate understanding of the populating process and its final

result.

// create an HDF5 dataset named "my dataset0" of data type short
hdfql execute("CREATE DATASET my dataset(O AS SMALLINT");

// insert (i.e. write) a value into dataset "my datasetO"

hdfql execute("INSERT INTO my datasetO VALUES(7)");

// select (i.e. read) data from dataset "my dataset(0" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset0");

Dataset “my_cdatasetd” Cursor

Subcursorl

Figure 4.2 — Cursor populated with data from dataset “my_dataset0”

Version 2.4.0 Page 38 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// create an HDF5 dataset named "my datasetl" of data type float of one dimension (size 3)

hdfql execute("CREATE DATASET my datasetl AS FLOAT(3)");

// insert (i.e. write) values into dataset "my datasetl"

hdfql execute("INSERT INTO my datasetl VALUES (5.5, 8.1, 4.9)");

// select (i.e. read) data from dataset "my datasetl" and populate cursor in use with it

hdfql execute("SELECT FROM my datasetl");

Dataset “my_datasetl” Cursor

Subcursorl Subcursor2 Subcursor3

Figure 4.3 — Cursor populated with data from dataset “my_dataset1”

Version 2.4.0 Page 39 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// create an HDF5 dataset named "my dataset2" of data type double of two dimensions (size 3x2)
hdfql execute ("CREATE DATASET my dataset2 AS DOUBLE (3, 2)");

// insert (i.e. write) values into dataset "my dataset2"

hdfql execute("INSERT INTO my dataset? VALUES((3.2, 1.3), (0, 0.2), (9.1, 6.5))");

// select (i.e. read) data from dataset "my dataset2" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset2");

Dataset “my_dataset2”

Cursar

Subcursorl | Subcursor2 | Subcursor3 Subcursord | Subcursor5 | Subcursoré

Figure 4.4 — Cursor populated with data from dataset “my_dataset2”

Version 2.4.0 Page 40 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// create an HDF5 dataset named "my dataset3" of data type variable-length short
hdfql execute ("CREATE DATASET my dataset3 AS VARSMALLINT");

// insert (i.e. write) values into dataset "my dataset3"

hdfql execute("INSERT INTO my dataset3 VALUES(7, 9, 3)");

// select (i.e. read) data from dataset "my dataset3" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset3");

Dataset “my_dataset3” Cursor

Subcursorl

Figure 4.5 — Cursor and its subcursor populated with data from dataset “my_dataset3”

Version 2.4.0 Page 41 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// create an HDF5 dataset named "my dataset4" of data type variable-length float of one
dimension (size 3)

hdfql execute ("CREATE DATASET my dataset4 AS VARFLOAT(3)");

// insert (i.e. write) values into dataset "my dataset4"

hdfql execute("INSERT INTO my dataset4 VALUES((5.5), (8.1, 2.2), (4.9, 3.4, 5.6))");

// select (i.e. read) data from dataset "my dataset4" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset4");

Dataset “my_datasetd” Cursor

49,34, 56

Subcursorl Subcursor2 Subcursor3
5.5 = 8.1 2.2 49 34 5.6
(1] 1] 1 [1] 1 2

Figure 4.6 — Cursor and its subcursors populated with data from dataset “my_dataset4”

Version 2.4.0 Page 42 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// create an HDF5 dataset named "my dataset5" of data type variable-length double of two
dimensions (size 3x2)

hdfql execute ("CREATE DATASET my datasetb5 AS VARDOUBLE (3, 2)");

// insert (i.e. write) values into dataset "my dataset5"
hdfql execute("INSERT INTO my datasetb VALUES(((3.2, 8, 6.7), (1.3, 0.2)), ((0), (0.2, 1.5)),
((9.1, 2, 4, 7), (6.5)))");

// select (i.e. read) data from dataset "my datasetb" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset5");

Dataset “my_dataset5”

' 3.2 867 1.3,0.2 Cursor

1 0.2, 1.5

Subcursorl Subcursor2 Subcursor3
3.2 8 6.7 ; 13 0.2 ; 1]
0 1 2 1] 1 V]
Subcursord Subcursor5 Subcursoré

Figure 4.7 — Cursor and its subcursors populated with data from dataset “my_dataset5”

Version 2.4.0 Page 43 of 346

5. APPLICATION PROGRAMMING INTERFACE

An application programming interface (API) specifies how software components should interact with each other. In
practice, an API comes in the form of a library that includes specifications for functions, data structures, object classes,
constants and variables. A good APl makes it easier to develop a program by providing all the building blocks. This chapter

is devoted to describing HDFql APl and how to use it through practical examples in C, C++, Java, Python, C#, Fortran and R.

5.1 CONSTANTS

A constant is an identifier whose associated value cannot typically be altered by the program during its execution. Using a
constant instead of specifying a value multiple times in the program not only simplifies code maintenance, but can also
supply a meaningful name for it. Constants in the C programming languages follow a naming convention of writing all

words in uppercase and separating each word with an underscore (_). The following table summarizes all existing HDFq|l

constants in C.

HDFql Constant in C Description Data Type Value

HDFQL_VERSION Represents the HDFgl version in use char * 2.4.0
HDFQL_YES Represents the concept “Yes” int 0
HDFQL_NO Represents the concept “No” int -1
HDFQL_ENABLED Represents the concept “Enabled” int 0
HDFQL_DISABLED Represents the concept “Disabled” int -1
HDFQL_UNLIMITED Represents the concept “Unlimited” int -1
HDFQL_UNDEFINED Represents the concept “Undefined” int -1
HDFQL_GLOBAL Represents the concept “Global” int 1
HDFQL_LOCAL Represents the concept “Local” int 2
HDFQL_TRACKED Represents the HDF5 tracked creation order int 1

Version 2.4.0 Page 44 of 346

Hierarchical Data Format query language (HDFql)

Reference Manual

strategy
Represents the HDF5 indexed creation order
HDFQL_INDEXED int 2
strategy
Represents the HDF5 contiguous storage type
HDFQL_CONTIGUOUS int 1
(layout)
Represents the HDF5 compact storage type
HDFQL_COMPACT int 2
(layout)
Represents the HDF5 chunked storage type
HDFQL_CHUNKED int 4
(layout)
HDFQL_EARLY Represents the HDF5 early storage allocation int 1
Represents the HDF5 incremental storage
HDFQL_INCREMENTAL int 2
allocation
HDFQL_LATE Represents the HDF5 late storage allocation int 4
HDFQL_DIRECTORY Represents a directory int 1
HDFQL_FILE Represents a file int 2
HDFQL_GROUP Represents the HDF5 group object type int 4
HDFQL_DATASET Represents the HDF5 dataset object type int 8
HDFQL_ATTRIBUTE Represents the HDF5 attribute object type int 16
HDFQL_SOFT_LINK Represents the HDF5 soft link object type int 32
HDFQL_EXTERNAL_LINK Represents the HDF5 external link object type int 64
HDFQL_TINYINT Represents the tiny integer data type (TINYINT) int 1
Represents the unsigned tiny integer data type
HDFQL_UNSIGNED_TINYINT int 2
(UNSIGNED TINYINT)
Represents the small integer data type
HDFQL_SMALLINT int 4
(SMALLINT)
Represents the unsigned small integer data type
HDFQL_UNSIGNED_SMALLINT int 8
(UNSIGNED SMALLINT)
HDFQL_INT Represents the integer data type (INT) int 16
Represents the unsigned integer data type
HDFQL_UNSIGNED_INT int 32
(UNSIGNED INT)

Version 2.4.0

Page 45 of 346

Hierarchical Data Format query language (HDFql)

Reference Manual

HDFQL_BIGINT Represents the big integer data type (BIGINT) int 64
Represents the unsigned big integer data type
HDFQL_UNSIGNED_BIGINT int 128
(UNSIGNED BIGINT)
HDFQL_FLOAT Represents the float data type (FLOAT) int 256
HDFQL_DOUBLE Represents the double data type (DOUBLE) int 512
HDFQL_CHAR Represents the char data type (CHAR) int 1024
Represents the variable-length tiny integer data
HDFQL_VARTINYINT int 2048
type (VARTINYINT)
Represents the unsigned variable-length tiny
HDFQL_UNSIGNED_VARTINYINT int 4096
integer data type (UNSIGNED VARTINYINT)
Represents the variable-length small integer
HDFQL_VARSMALLINT int 8192
data type (VARSMALLINT)
Represents the unsigned variable-length small
HDFQL_UNSIGNED_VARSMALLINT int 16384
integer data type (UNSIGNED VARSMALLINT)
Represents the variable-length integer data type
HDFQL_VARINT int 32768
(VARINT)
Represents the unsigned variable-length integer
HDFQL_UNSIGNED_VARINT int 65536
data type (UNSIGNED VARINT)
Represents the variable-length big integer data
HDFQL_VARBIGINT int 131072
type (VARBIGINT)
Represents the unsigned variable-length big
HDFQL_UNSIGNED_VARBIGINT int 262144
integer data type (UNSIGNED VARBIGINT)
Represents the variable-length float data type
HDFQL_VARFLOAT int 524288
(VARFLOAT)
Represents the variable-length double data type
HDFQL_VARDOUBLE int 1048576
(VARDOUBLE)
Represents the variable-length char data type
HDFQL_VARCHAR int 2097152
(VARCHAR)
HDFQL_OPAQUE Represents the opaque data type (OPAQUE) int 4194304
HDFQL_BITFIELD Represents the bitfield data type int 8388608
Represents the enumeration data type
HDFQL_ENUMERATION int 16777216
(ENUMERATION)

Version 2.4.0

Page 46 of 346

Hierarchical Data Format query language (HDFql)

Reference Manual

Represents the compound data type
HDFQL_COMPOUND int 33554432
(COMPOUND)
HDFQL_REFERENCE Represents the reference data type int 67108864
HDFQL_LITTLE_ENDIAN Represents the little endian byte ordering int 1
HDFQL_BIG_ENDIAN Represents the big endian byte ordering int 2
Represents the compound endian byte ordering
HDFQL_MIXED_ENDIAN int 4
(if endiannesses of its members are mixed)

HDFQL_ASCII Represents the ASCII character encoding int 1
HDFQL_UTF8 Represents the UTF8 character encoding int 2
HDFQL_FILL_DEFAULT Represents the default fill type int 1
HDFQL_FILL_DEFINED Represents the (user) defined fill type int 2
HDFQL_FILL_NEVER Represents the never (i.e. no) fill type int 4
HDFQL_FILL_UNDEFINED Represents the undefined fill type int 8
HDFQL_EARLIEST Represents the HDF5 library bound earliest int 1
HDFQL_LATEST Represents the HDF5 library bound latest int 2
HDFQL_VERSION_18 Represents the HDF5 library bound version 1.8 int 4
HDFQL_SUCCESS Represents an operation that succeeded int 0

Represents an operation that failed due to a
HDFQL_ERROR_PARSE int -1

parsing error
Represents an operation that failed due to

HDFQL_ERROR_NOT_SPECIFIED int -2

information not being specified (i.e. missing)

Represents an operation that failed due to an
HDFQL_ERROR_NOT_FOUND object (e.g. directory, file, group, dataset) not int -3

being found

Represents an operation that failed due to an

HDFQL_ERROR_NO_ACCESS object (e.g. directory, file, group, dataset) not int -4
being accessible

Represents an operation that failed due to an

HDFQL_ERROR_NOT_OPEN int -5
object (e.g. file) not being opened

HDFQL_ERROR_INVALID_NAME Represents an operation that failed due to the int -6

Version 2.4.0

Page 47 of 346

Hierarchical Data Format query language (HDFql)

Reference Manual

name of an object (e.g. directory, file, group,
dataset) being invalid
Represents an operation that failed due to a file
HDFQL_ERROR_INVALID_FILE int -7
being invalid (e.g. not a valid HDF5 file)
Represents an operation that failed due to not
HDFQL_ERROR_NOT_SUPPORTED int -8
being supported
Represents an operation that failed due to the
HDFQL_ERROR_NOT_ENOUGH_SPACE int -9
machine not having enough (storage) space
Represents an operation that failed due to the
HDFQL_ERROR_NOT_ENOUGH_MEMORY int -10
machine not having enough (RAM) memory
Represents an operation that failed due to an
HDFQL_ERROR_ALREADY_EXISTS object (e.g. directory, file, group, dataset) int -11
already existing
Represents an operation that failed due to its
HDFQL_ERROR_EMPTY int -12
internal structure being empty
Represents an operation that failed due to its
HDFQL_ERROR_FULL int -13
internal structure being full
Represents an operation that failed due to
HDFQL_ERROR_BEFORE_FIRST trying to position/access an element before the int -14
first one
Represents an operation that failed due to
HDFQL_ERROR_AFTER_LAST trying to position/access an element after the int -15
last one
Represents an operation that failed due to being
HDFQL_ERROR_OUTSIDE_LIMIT int -16
outside the limit
Represents an operation that failed due to a
HDFQL_ERROR_NO_ADDRESS user-defined variable having no address (i.e. is int -17
NULL)
Represents an operation that failed due to an
HDFQL_ERROR_UNEXPECTED_TYPE object (e.g. group, dataset) being of an int -18
unexpected type
Represents an operation that failed due to a
HDFQL_ERROR_UNEXPECTED_DATA_TYPE user-defined variable being of an unexpected int -19
data type
HDFQL_ERROR_UNEXPECTED_STORAGE_TYPE Represents an operation that failed due to a int -20

Version 2.4.0

Page 48 of 346

Hierarchical Data Format query language (HDFql)

Reference Manual

dataset being of an unexpected storage type
(layout)
Represents an operation that failed due to an
HDFQL_ERROR_DANGLING_LINK int -21
object being a dangling (soft or external) link
Represents an operation that failed due to a
HDFQL_ERROR_NOT_REGISTERED int -22
user-defined variable not being registered
Represents an operation that failed due to a
HDFQL_ERROR_INVALID_REGULAR_EXPRESSION int -23
regular expression being invalid
Represents an operation that failed due to a
HDFQL_ERROR_INVALID_SELECTION int -24
(hyperslab or point) selection being invalid
Represents an operation that failed due to an
HDFQL_ERROR_UNKNOWN int -99
unknown/unexpected error

Table 5.1 — HDFql constants in C

HDFql also supports other programming languages namely C++, Java, Python, C#, Fortran and R through wrappers. The

below tables provide examples on how HDFgl constants are defined in these programming languages.

In C++, the prefix “HDFQL_" of the name of constants (defined in C) is replaced by the namespace “HDFgl” and its

underscores (_) are discarded. The remainder of the name of constants follows the upper camel-case convention. The

following table lists a subset of HDFql constants as defined in C and details how these are defined/can be used in C++.

HDFql Constant in C

Corresponding Definition in C++

HDFQL_VERSION

HDFql::Version

HDFQL_SUCCESS

HDFql::Success

HDFQL_ERROR_PARSE

HDFql::ErrorParse

HDFQL_TINYINT

HDFql::Tinyint

HDFQL_UNSIGNED_BIGINT

HDFqgl::UnsignedBigint

HDFQL_UTFS

HDFql::Utf8

Table 5.2 — HDFql constants in C and their corresponding definitions in C++

Version 2.4.0

Page 49 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

In Java, the prefix “HDFQL_" of the name of constants (defined in C) is replaced by the class “HDFgl”. The remainder of the
name of constants remains exactly the same. The following table lists a subset of HDFql constants as defined in C and

details how these are defined/can be used in Java.

HDFql Constant in C Corresponding Definition in Java

HDFQL_VERSION

HDFql.VERSION

HDFQL_SUCCESS

HDFql.SUCCESS

HDFQL_ERROR_PARSE

HDFql.ERROR_PARSE

HDFQL_TINYINT

HDFql.TINYINT

HDFQL_UNSIGNED_BIGINT

HDFql.UNSIGNED_BIGINT

HDFQL_UTF8

HDFql.UTF8

Table 5.3 — HDFql constants in C and their corresponding definitions in Java

In Python, the prefix “HDFQL_" of the name of constants (defined in C) is replaced by the class “HDFql”. The remainder of
the name of constants remains exactly the same. The following table lists a subset of HDFql constants as defined in C and

details how these are defined/can be used in Python.

HDFql Constant in C Corresponding Definition in Python

HDFQL_VERSION

HDFql.VERSION

HDFQL_SUCCESS

HDFql.SUCCESS

HDFQL_ERROR_PARSE

HDFql.ERROR_PARSE

HDFQL_TINYINT

HDFql.TINYINT

HDFQL_UNSIGNED_BIGINT

HDFql.UNSIGNED_BIGINT

HDFQL_UTF8

HDFqL.UTF8

Table 5.4 — HDFqgl constants in C and their corresponding definitions in Python

Version 2.4.0

Page 50 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

In C#, the prefix “HDFQL_" of the name of constants (defined in C) is replaced by the class “HDFgl” and its underscores (_)
are discarded. The remainder of the name of constants follows the upper camel-case convention. The following table lists

a subset of HDFqgl constants as defined in C and details how these are defined/can be used in C#.

HDFql Constant in C Corresponding Definition in C#

HDFQL_VERSION HDFql.Version
HDFQL_SUCCESS HDFql.Success
HDFQL_ERROR_PARSE HDFql.ErrorParse
HDFQL_TINYINT HDFql.Tinyint
HDFQL_UNSIGNED_BIGINT HDFgl.UnsignedBigint
HDFQL_UTF8 HDFqgl.Utf8

Table 5.5 — HDFql constants in C and their corresponding definitions in C#

In Fortran, the name of constants is the same as in C and can be written in any case. The following table lists a subset of

HDFql constants as defined in C and details how these are defined/can be used in Fortran.

HDFql Constant in C Corresponding Definition in Fortran
HDFQL_VERSION HDFQL_VERSION
HDFQL_SUCCESS HDFQL_SUCCESS

HDFQL_ERROR_PARSE HDFQL_ERROR_PARSE
HDFQL_TINYINT HDFQL_TINYINT

HDFQL_UNSIGNED_BIGINT HDFQL_UNSIGNED_BIGINT
HDFQL_UTF8 HDFQL_UTF8

Table 5.6 — HDFqgl constants in C and their corresponding definitions in Fortran

In R, the name of constants is the same as in C. The following table lists a subset of HDFql constants as defined in C and

details how these are defined/can be used in R.

Version 2.4.0 Page 51 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

HDFql Constantin C Corresponding Definition in R
HDFQL_VERSION HDFQL_VERSION
HDFQL_SUCCESS HDFQL_SUCCESS

HDFQL_ERROR_PARSE HDFQL_ERROR_PARSE
HDFQL_TINYINT HDFQL_TINYINT

HDFQL_UNSIGNED_BIGINT HDFQL_UNSIGNED_BIGINT
HDFQL_UTF8 HDFQL_UTF8

Table 5.7 — HDFqgl constants in C and their corresponding definitions in R

5.2 FUNCTIONS

A function is a group of instructions that together perform a specific task, requiring direction back to the caller on
completion of the task. Any given function might be called at any point during a program's execution, including by other
functions or itself. It provides better modularity of a program and a high degree of code reusing. The following table

summarizes all existing HDFql functions in C.

HDFql Function in C Description
hdfql_execute Execute a script (composed of one or more operations)
hdfql_execute_get_status Get status of the last executed operation
hdfql_error_get_line Get error line of the last executed operation
hdfqgl_error_get_position Get error position of the last executed operation
hdfgl_error_get_message Get error message of the last executed operation
hdfql_cursor_initialize Initialize a cursor for subsequent use
hdfgl_cursor_use Set the cursor to be used for storing the result of operations
hdfql_cursor_use_default Set HDFql default cursor as the one to be used for storing the result of operations
hdfgl_cursor_clear Clear (i.e. empty) the cursor in use

Version 2.4.0 Page 52 of 346

Reference Manual

Hierarchical Data Format query language (HDFql)

hdfgl_cursor_clone Clone (i.e. duplicate) a cursor into another one

hdfgl_cursor_get_data_type Get data type of the cursor in use

hdfgl_cursor_get_count Get number of elements (i.e. result set size) stored in the cursor in use

hdfgl_subcursor_get_count Get number of elements (i.e. result subset size) stored in the subcursor in use

hdfqgl_cursor_get_position Get current position of cursor in use within result set

hdfql_subcursor_get_position Get current position of subcursor in use within result subset

hdfgl_cursor_first Move the cursor in use to the first position within result set

hdfgl_subcursor_first Move the subcursor in use to the first position within result subset

hdfql_cursor_last Move the cursor in use to the last position within result set

hdfgl_subcursor_last Move the subcursor in use to the last position within result subset

hdfql_cursor_next Move the cursor in use one position forward from its current position

hdfqgl_subcursor_next Move the subcursor in use one position forward from its current position

hdfqgl_cursor_previous Move the cursor in use one position backward from its current position

hdfql_subcursor_previous Move the subcursor in use one position backward from its current position

hdfqgl_cursor_absolute Move the cursor in use to an absolute position within the result set

hdfgl_subcursor_absolute Move the subcursor in use to an absolute position within the result subset

hdfgl_cursor_relative Move the cursor in use to a relative position within result set

hdfqgl_subcursor_relative Move the subcursor in use to a relative position within result subset

hdfql_cursor_get_tinyint Get current element of the cursor in use as a TINYINT

hdfgl_subcursor_get_tinyint Get current element of the subcursor in use as a TINYINT

hdfgl_cursor_get_unsigned_tinyint Get current element of the cursor in use as an UNSIGNED TINYINT

hdfgl_subcursor_get_unsigned_tinyint Get current element of the subcursor in use as an UNSIGNED TINYINT

hdfgl_cursor_get_smallint Get current element of the cursor in use as a SMALLINT

hdfqgl_subcursor_get_smallint Get current element of the subcursor in use as a SMALLINT

Get current element of the cursor in use as an UNSIGNED SMALLINT

hdfgl_cursor_get_unsigned_smallint

Page 53 of 346

Version 2.4.0

Hierarchical Data Format query language (HDFql)

Reference Manual

hdfgl_subcursor_get_unsigned_smallint

Get current element of the subcursor in use as an UNSIGNED SMALLINT

hdfgl_cursor_get_int

Get current element of the cursor in use as an INT

hdfgl_subcursor_get_int

Get current element of the subcursor in use as an INT

hdfgl_cursor_get_unsigned_int

Get current element of the cursor in use as an UNSIGNED INT

hdfgl_subcursor_get_unsigned_int

Get current element of the subcursor in use as an UNSIGNED INT

hdfql_cursor_get_bigint

Get current element of the cursor in use as a BIGINT

hdfgl_subcursor_get_bigint

Get current element of the subcursor in use as a BIGINT

hdfgl_cursor_get_unsigned_bigint

Get current element of the cursor in use as an UNSIGNED BIGINT

hdfql_subcursor_get_unsigned_bigint

Get current element of the subcursor in use as an UNSIGNED BIGINT

hdfgl_cursor_get_float

Get current element of the cursor in use as a FLOAT

hdfgl_subcursor_get_float

Get current element of the subcursor in use as a FLOAT

hdfgl_cursor_get_double

Get current element of the cursor in use as a DOUBLE

hdfqgl_subcursor_get_double

Get current element of the subcursor in use as a DOUBLE

hdfql_cursor_get_char

Get current element of the cursor in use as a VARCHAR

hdfql_variable_register

Register a variable for subsequent use

hdfqgl_variable_transient_register

Register a variable in a transient way for subsequent use

hdfqgl_variable_unregister

Unregister a variable

hdfql_variable_unregister_all

Unregister all variables

hdfql_variable_get_number

Get number of a variable

hdfql_variable_get_data_type

Get data type of a variable

hdfqgl_variable_get_count

Get number of elements (i.e. result set size) stored in a variable

hdfqgl_variable_get_size

Get size (in bytes) of a variable

hdfqgl_variable_get_dimension_count

Get number of dimensions of a variable

hdfqgl_variable_get_dimension

Get size of a certain dimension of a variable

hdfgl_mpi_get_size

Get number (i.e. size) of processes associated to the MPlI communicator

Version 2.4.0

Page 54 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

hdfql_mpi_get_rank Get number (i.e. rank) of the calling process associated to the MPI communicator

Table 5.8 — HDFql functions in C

In C++, the prefix “hdfgl_” of the name of functions (defined in C) is replaced by the namespace “HDFgl” and its
underscores (_) are discarded. The remainder of the name of functions follows the lower camel-case convention. The

following table lists a subset of HDFql functions as defined in C and details how these are defined/can be used in C++.

HDFql Function in C Corresponding Definition in C++

hdfql_execute HDFql::execute

hdfql_cursor_next HDFql::cursorNext

hdfgl_cursor_get_tinyint

HDFql::cursorGetTinyint

hdfgl_cursor_get_unsigned_int

HDFql::cursorGetUnsignedint

hdfql_subcursor_get_bigint

HDFqgl::subcursorGetBigint

hdfql_variable_get_number

HDFql::variableGetNumber

Table 5.9 — HDFqgl functions in C and their corresponding definitions in C++

In Java, the prefix “hdfql_" of the name of functions (defined in C) is replaced by the class “HDFgl” and its underscores (_)

are discarded. The remainder of the name of functions follows the lower camel-case convention. The following table lists a

subset of HDFgl functions as defined in C and details how these are defined/can be used in Java.

HDFgl Function in C

hdfql_execute

Corresponding Definition in Java

HDFgl.execute

hdfgl_cursor_next

HDFql.cursorNext

hdfgl_cursor_get_tinyint

HDFql.cursorGetTinyint

hdfgl_cursor_get_unsigned_int

HDFql.cursorGetUnsignedInt

hdfql_subcursor_get_bigint

HDFgl.subcursorGetBigint

Version 2.4.0

Page 55 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

hdfql_variable_get_number HDFgl.variableGetNumber

Table 5.10 — HDFql functions in C and their corresponding definitions in Java

In Python, the prefix “hdfgl_” of the name of functions (defined in C) is replaced by the class “HDFqgl”. The remainder of
the name of functions remains exactly the same. The following table lists a subset of HDFql functions as defined in C and
details how these are defined/can be used in Python.

HDFql Function in C Corresponding Definition in Python

hdfql_execute HDFgl.execute
hdfql_cursor_next HDFgl.cursor_next
hdfgl_cursor_get_tinyint HDFql.cursor_get_tinyint

hdfgl_cursor_get_unsigned_int

HDFql.cursor_get_unsigned_int

hdfql_subcursor_get_bigint

HDFgl.subcursor_get_bigint

hdfql_variable_get_number

HDFqgl.variable_get_number

Table 5.11 — HDFql functions in C and their corresponding definitions in Python

In C#, the prefix “hdfgl_" of the name of functions (defined in C) is replaced by the class “HDFqgl” and its underscores (_)
are discarded. The remainder of the name of functions follows the upper camel-case convention. The following table lists
a subset of HDFql functions as defined in C and details how these are defined/can be used in C#.

HDFql Function in C Corresponding Definition in C#

hdfql_execute

HDFql.Execute

hdfgl_cursor_next

HDFql.CursorNext

hdfgl_cursor_get_tinyint

HDFql.CursorGetTinyint

hdfgl_cursor_get_unsigned_int

HDFql.CursorGetUnsignedint

hdfql_subcursor_get_bigint

HDFql.SubcursorGetBigint

Version 2.4.0

Page 56 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

hdfql_variable_get_number HDFqgl.VariableGetNumber

Table 5.12 — HDFql functions in C and their corresponding definitions in C#

In Fortran, the name of functions is the same as in C and can be written using any case. The following table lists a subset of

HDFql functions as defined in C and details how these are defined/can be used in Fortran.

HDFql Function in C Corresponding Definition in Fortran

hdfql_execute

hdfgl_execute

hdfql_cursor_next

hdfgl_cursor_next

hdfql_cursor_get_tinyint

hdfgl_cursor_get_tinyint

hdfgl_cursor_get_unsigned_int

hdfqgl_cursor_get_unsigned_int

hdfgl_subcursor_get_bigint

hdfgl_subcursor_get_bigint

hdfql_variable_get_number

hdfql_variable_get_number

Table 5.13 — HDFql functions in C and their corresponding definitions in Fortran

In R, the name of functions is the same as in C. The following table lists a subset of HDFqgl functions as defined in C and

details how these are defined/can be used in R.

HDFql Function in C Corresponding Definition in R
hdfgl_execute hdfqgl_execute
hdfgl_cursor_next hdfqgl_cursor_next
hdfql_cursor_get_tinyint hdfgl_cursor_get_tinyint

hdfql_cursor_get_unsigned_int

hdfql_cursor_get_unsigned_int

hdfgl_subcursor_get_bigint

hdfqgl_subcursor_get_bigint

hdfgl_variable_get_number

hdfgl_variable_get_number

Table 5.14 — HDFql functions in C and their corresponding definitions in R

Version 2.4.0

Page 57 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.1 HDFQL_EXECUTE

Syntax

int hdfgl_execute(const char *script)

Description

Execute a script named script. A script can be composed of one or more operations — in case of multiple operations these
can either be separated with a semicolon (;) or an end of line (EOL) terminator. In HDFgl, operations are case insensitive
meaning that, for example, operation “SHOW DATASET” is equivalent to “show dataset” or any other case variation. If a
certain operation raises an error, any subsequent operations within script are not executed. Please refer to Table 6.2 for a

complete enumeration of HDFgl operations.

Parameter(s)

script — string containing one or more operations to execute. Multiple operations are either separated with a semicolon (;)

or an end of line (EOL) terminator.
Return

int — depending on the success in executing script, it can either be HDFQL_SUCCESS, HDFQL_ERROR_PARSE,
HDFQL_ERROR_NOT_SPECIFIED, HDFQL_ERROR_NOT_FOUND, HDFQL_ERROR_NO_ACCESS, HDFQL_ERROR_NOT_OPEN,
HDFQL_ERROR_INVALID_NAME, HDFQL_ERROR_INVALID_FILE, HDFQL_ERROR_NOT_SUPPORTED,
HDFQL_ERROR_NOT_ENOUGH_SPACE, = HDFQL_ERROR_NOT_ENOUGH_MEMORY, HDFQL_ERROR_ALREADY_EXISTS,
HDFQL_ERROR_EMPTY, HDFQL_ERROR_FULL, HDFQL_ERROR_BEFORE_FIRST, HDFQL_ERROR_AFTER_LAST,
HDFQL_ERROR_OUTSIDE_LIMIT, HDFQL_ERROR_NO_ADDRESS, HDFQL_ERROR_UNEXPECTED_TYPE,
HDFQL_ERROR_UNEXPECTED DATA_TYPE, HDFQL_ERROR_UNEXPECTED STORAGE_TYPE,
HDFQL_ERROR_DANGLING_LINK, HDFQL_ERROR_NOT_REGISTERED, HDFQL_ERROR_INVALID_REGULAR_EXPRESSION,
HDFQL_ERROR_INVALID_SELECTION or HDFQL_ERROR_UNKNOWN.

Example(s)

// declare variable

int status;

// execute script (composed of only one operation - i.e. SHOW USE FILE)

Version 2.4.0 Page 58 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

status = hdfqgl execute("SHOW USE FILE");

// display message about the status of executed script (i.e. successful or not)
if (status == HDFQL SUCCESS)

printf ("Execution was successfull\n");
else

printf("Execution was not successful and returned status is %d\n", status);

// execute script (composed of two operations - i.e. USE FILE my file.h5 and SHOW)

hdfql execute("USE FILE my file.h5 ; SHOW");

5.2.2 HDFQL_EXECUTE_GET_STATUS

Syntax

int hdfgl_execute_get_status(void)

Description

Get status of the last executed operation. In other words, this function returns the status of the last call of hdfgl_execute.

Parameter(s)

None
Return

int — depending on the success of the last executed operation, it can either be HDFQL_SUCCESS, HDFQL_ERROR_PARSE,
HDFQL_ERROR_NOT_SPECIFIED, HDFQL_ERROR_NOT_FOUND, HDFQL_ERROR_NO_ACCESS, HDFQL_ERROR_NOT_OPEN,
HDFQL_ERROR_INVALID_NAME, HDFQL_ERROR_INVALID_FILE, HDFQL_ERROR_NOT_SUPPORTED,
HDFQL_ERROR_NOT_ENOUGH_SPACE, HDFQL_ERROR_NOT ENOUGH_MEMORY, HDFQL_ERROR_ALREADY_ EXISTS,
HDFQL_ERROR_EMPTY, HDFQL_ERROR_FULL, HDFQL_ERROR_BEFORE_FIRST, HDFQL_ERROR_AFTER_LAST,
HDFQL_ERROR_OUTSIDE_LIMIT, HDFQL_ERROR_NO_ADDRESS, HDFQL_ERROR_UNEXPECTED_TYPE,
HDFQL_ERROR_UNEXPECTED_DATA_TYPE, HDFQL_ERROR_UNEXPECTED_STORAGE_TYPE,
HDFQL_ERROR_DANGLING_LINK, HDFQL_ERROR_NOT_REGISTERED, HDFQL_ERROR_INVALID_REGULAR_EXPRESSION,
HDFQL_ERROR_INVALID_SELECTION or HDFQL_ERROR_UNKNOWN.

Version 2.4.0 Page 59 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// declare variable

int status;

// execute script (composed of only one operation - i.e. SHOW USE DIRECTORY)

hdfql execute ("SHOW USE DIRECTORY");

// get status of last executed script (i.e. SHOW USE DIRECTORY)

status = hdfqgl execute get status();

// display message about the status of last executed script (i.e. successful or not)
if (status == HDFQL SUCCESS)

printf("Execution was successful\n");
else

printf("Execution was not successful and returned status is %d\n", status);

5.2.3 HDFQL_ERROR_GET_LINE

Syntax

int hdfgl_error_get_line(void)

Description

Get error line of the last executed operation. In other words, this function returns the number of the line (in the script)

where an error was raised during the last call of hdfgl_execute. The first line in the script is designated as number one (1).
Parameter(s)

None

Return

int — number of the line (in the script) where an error has occurred during the last executed operation. If the last executed

operation was sucessful, the number of the line will be HDFQL_UNDEFINED.

Example(s)

// execute script (composed of only one operation - i.e. CREATE FILE my file.h5 - which is

Version 2.4.0 Page 60 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

syntactically correct)

hdfql execute("CREATE FILE my file.h5");

// display number of the line where an error occurred during the last executed operation
(should be "Error line number is -1")

printf("Error line number is %d\n", hdfql error get line());

// execute script (composed of only one operation - i.e. CREATE FILEX my file.h5 - which is
syntactically incorrect due to a typo in "FILEX")

hdfgl execute("CREATE FILEX my file.hb5");

// display number of the line where an error occurred during the last executed operation
(should be "Error line number is 1")

printf("Error line number is %d\n", hdfql error get line());

5.2.4 HDFQL_ERROR_GET_POSITION

Syntax

int hdfgl_error_get_position(void)

Description

Get error position of the last executed operation. In other words, this function returns the position in the line where an

error was raised during the last call of hdfgl_execute. The first position in the line is designated as number one (1).
Parameter]s[

None

Return

int — position in the line where an error has occurred during the last executed operation. If the last executed operation

was sucessful, the position in the line will be HDFQL_UNDEFINED.

Example(s)

// execute script (composed of only one operation - i.e. CREATE FILE my file.h5 - which is

syntactically correct)

hdfql execute("CREATE FILE my file.h5");

Version 2.4.0 Page 61 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// display position in the line where an error occurred during the last executed operation
(should be "Error position is -1")

printf("Error position is %d\n", hdfql error get position());

// execute script (composed of only one operation - i.e. CREATE FILEX my file.h5 - which is
syntactically incorrect due to a typo in "FILEX")

hdfgl execute("CREATE FILEX my file.hb5");

// display position in the line where an error occurred during the last executed operation
(should be "Error position is 8")

]

printf("Error position is %d\n", hdfql error get position());

5.2.5 HDFQL_ERROR_GET_ MESSAGE

Syntax

char *hdfql_error_get_message(void)

Description

Get error message of the last executed operation. In other words, this function returns the message of the error that was

raised during the last call of hdfqgl_execute.
Pa rameter]s[

None

Return

char * — pointer to the message of an error that has occurred during the last executed operation. If the last executed

operation was sucessful, the pointer will be NULL.

Example(s)

// execute script (composed of only one operation - i.e. CREATE FILE my file.h5 - which is
syntactically correct)

hdfql execute("CREATE FILE my file.h5");

// display message of an error that occurred during the last executed operation (should be

Version 2.4.0 Page 62 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

"NULL n)
printf("%s\n", hdfqgl error get message());

// execute script (composed of only one operation - i.e. CREATE FILEX my file.h5 - which is
syntactically incorrect due to a typo in "FILEX")

hdfql execute("CREATE FILEX my file.h5");

// display message of an error that occurred during the last executed operation (should be
"Unknown token “FILEX”")

printf("2s\n", hdfql error get message());

5.2.6 HDFQL_CURSOR_INITIALIZE

Syntax

int hdfgl_cursor_initialize(HDFQL_CURSOR *cursor)

Description

Initialize a cursor named cursor for subsequent use. Before a new cursor is used for the first time, it should always be
initialized (otherwise unexpected errors may arise such as a segmentation fault). The initialization of a cursor sets its data
type attribute to undefined (HDFQL_UNDEFINED), its current element to NULL, and resets its count and position attributes
to zero and minus one respectively, making it ready for usage. Of note, the process of initializing a cursor is only required
in C and performed once, while in other programming languages supported by HDFgl — namely C++, Java, Python, C#,
Fortran and R — such initialization is redundant (in other words, it is not needed) as it is done automatically when creating

a cursor.

Parameter(s)

cursor — pointer to a cursor (previously declared) to initialize with default values. If the pointer is NULL (in C), the cursor in
use is initialized instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFgl wrappers is NULL,
null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is

optional (when not provided, the cursor in use is initialized instead).
Return

int — depending on the success in initializing cursor, it can either be HDFQL_SUCCESS or HDFQL_ERROR_UNKNOWN.

Version 2.4.0 Page 63 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create a cursor named "my cursor"

HDFQIL, CURSOR my_ cursor;

// initialize cursor "my cursor"
Y

hdfql cursor initialize(&my cursor);

// use cursor "my cursor"

hdfql cursor use(&my cursor);

// display number of elements in cursor "my cursor" (should be "Number of elements in cursor is
O")

printf ("Number of elements in cursor is %d\n", hdfgl cursor get count (NULL))

5.2.7 HDFQL_CURSOR_USE

Syntax

int hdfgl_cursor_use(const HDFQL_CURSOR *cursor)

Description
Set the cursor named cursor as the one to be used for storing results of operations.

Parameter(s)

cursor — pointer to a cursor to use for storing the result of operations. If the pointer is NULL (in C), the HDFql default cursor
is used instead (i.e. equivalent of calling the function hdfgl_cursor_use_default). The equivalent of a NULL pointer in C++,

Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively.
Return

int — depending on the success in using cursor, it can either be HDFQL_SUCCESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// create a cursor named "my cursor"

HDFQL CURSOR my cursor;

Version 2.4.0 Page 64 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// use cursor "my cursor"

hdfql cursor use(&my cursor);

// initialize cursor "my cursor"

hdfgl cursor initialize (NULL);

// display data type of cursor "my cursor" (should be "Data type of cursor -1")
printf("Data type of cursor is %d\n", hdfql cursor get data type (NULL));

// show (i.e. get) current working directory

hdfgl execute("SHOW USE DIRECTORY");

// display (again) data type of cursor "my cursor" (should be "Data type of cursor is 2097152")
printf("Data type of cursor is %d\n", hdfql cursor get data type (NULL));

// use HDFql default cursor
hdfqgl cursor use (NULL);

// display data type of HDFql default cursor (should be "Data type of cursor is -1")
printf("Data type of cursor is %d\n", hdfql cursor get data type (NULL));

5.2.8 HDFQL_CURSOR_USE_DEFAULT

Syntax

int hdfgl_cursor_use_default(void)

Description

Set HDFql default cursor as the one to be used for storing results of operations.

Parameter(s)

None
Return

int — depending on the success in using HDFql default cursor, it can either be HDFQL SUCCESS or
HDFQL_ERROR_UNKNOWN.

Version 2.4.0 Page 65 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

"

// create a cursor named "my cursor

HDFQIL, CURSOR my_ cursor;

// initialize cursor "my cursor"
Y

hdfql cursor initialize(&my cursor);

// use cursor "my cursor"

hdfql cursor use(&my cursor);

// display data type of cursor "my cursor" (should be "Data type of cursor is -1")
printf("Data type of cursor is 2d\n'", hdfql cursor get data type (NULL));

// show (i.e. get) current working directory

hdfgl execute ("SHOW USE DIRECTORY");

// display (again) data type of cursor "my cursor" (should be "Data type of cursor is 2097152")
printf("Data type of cursor is 2d\n'", hdfql cursor get data type (NULL));

// use HDFql default cursor

hdfql cursor use default();

// display data type of HDFgl default cursor (should be "Data type of cursor is -1")
printf("Data type of cursor is %d\n", hdfql cursor get data type (NULL));

5.2.9 HDFQL_CURSOR_CLEAR

Syntax

int hdfgl_cursor_clear(HDFQL_CURSOR *cursor)

Description

Clear (i.e. empty) a cursor named cursor. Specifically, this function removes all elements (i.e. result set) stored in the
cursor, specifies its data type attribute to undefined (HDFQL_UNDEFINED), changes its current element to NULL, and

resets its count and position attributes to zero and minus one respectively.

Version 2.4.0 Page 66 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor — pointer to a cursor to clear (i.e. empty). If the pointer is NULL (in C), the cursor in use is cleared instead. The
equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFgl wrappers is NULL, null, None, null, 0 and NULL,
respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the

cursor in use is cleared instead).
Return

int — depending on the success in clearing cursor, it can either be HDFQL_SUCCESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// show (i.e. get) current working directory

hdfql execute ("SHOW USE DIRECTORY");

// display number of elements in the cursor in use (should be "Number of elements in cursor 1is
1")

printf ("Number of elements in cursor is %d\n", hdfql cursor get count (NULL));

// clear the cursor 1in use

hdfql cursor clear (NULL);

// display (again) number of elements in the cursor in use (should be "Number of elements 1in

cursor is 0")

printf ("Nt r of elements in cursor is %d\n", hdfgl cursor get count (NULL));

5.2.10 HDFQL_CURSOR_CLONE

Syntax

int hdfgl_cursor_clone(const HDFQL_CURSOR *cursor_original, HDFQL_CURSOR *cursor_clone)

Description

Clone (i.e. duplicate) a cursor named cursor_original into another one named cursor_clone. In other words, cursor_clone
will be an exact (deep) copy of cursor_original, meaning that it will have the same data type, count and position values,

store the same result set, and have the same current element as the original cursor.

Version 2.4.0 Page 67 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor_original — pointer to a cursor to clone. If the pointer is NULL (in C), the cursor in use is the one to be cloned instead.
The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFqgl wrappers is NULL, null, None, null, 0 and
NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not

provided, the cursor in use is the one to be cloned instead).
cursor_clone — pointer to the cursor that will be a clone (i.e. duplicate) of the original cursor.
Return

int — depending on the success in cloning cursor_original into cursor_clone, it can either be HDFQL SUCCESS,

HDFQL_ERROR_NOT_ENOUGH_MEMORY or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// create a cursor named "my cursor"

HDFQIL CURSOR my cursor;

// initialize cursor "my cursor"

hdfql cursor initialize(&my cursor);

// show (i.e. get) current working directory and populate cursor in use (i.e. HDFql default
cursor) with it

hdfql execute ("SHOW USE DIRECTORY");

// clone the cursor in use (i.e. HDFgl default cursor) into the cursor "my cursor"

hdfql cursor clone (NULL, &my cursor);

// use cursor "my cursor"

hdfql cursor use(&my cursor);

// display number of elements in the cursor in use (should be "Number of elements in cursor 1is

l")

printf ("Number

or is 2d\n'", hdfql cursor get count (NULL));

5.2.11 HDFQL_CURSOR_GET_DATA_TYPE

Syntax
int hdfgl_cursor_get_data_type(const HDFQL_CURSOR *cursor)

Version 2.4.0 Page 68 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get the data type of a cursor named cursor. If the cursor has never been populated or has been initialized or cleared, the

returned data type is undefined (HDFQL_UNDEFINED). Please refer to Table 6.3 for a complete enumeration of HDFql data

types.

Parameter(s)

cursor — pointer to a cursor to get its data type. If the pointer is NULL (in C), the data type of the cursor in use is returned
instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null,
0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not

provided, the data type of the cursor in use is returned instead).
Return

int — depending on the data type of the cursor or its state (i.e. whether it has never been populated or has been initialized
or cleared), it can either be HDFQL_TINYINT, HDFQL_UNSIGNED_TINYINT, HDFQL_SMALLINT,
HDFQL_UNSIGNED_SMALLINT, HDFQL_INT, HDFQL_UNSIGNED_INT, HDFQL_BIGINT, HDFQL_UNSIGNED_BIGINT,
HDFQL_FLOAT, HDFQL_DOUBLE, HDFQL_CHAR, HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT,
HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT, HDFQL_UNSIGNED_VARINT,
HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE, HDFQL_VARCHAR,
HDFQL_OPAQUE, HDFQL_BITFIELD, = HDFQL_ENUMERATION, = HDFQL_COMPOUND, HDFQL_REFERENCE or
HDFQL_UNDEFINED.

Example(s)

// show (i.e. get) current working directory

hdfql execute("SHOW USE DIRECTORY");

// display data type of the cursor in use (should be "Data type of cursor is 2097152")
printf("Data type of cursor is %d\n", hdfql cursor get data type (NULL));

// clear the cursor in use

hdfql cursor clear (NULL);

// display (again) data type of the cursor in use (should be "Data type of cursor is -1")
printf("Data type of cursor is %d\n", hdfql cursor get data type (NULL));

Version 2.4.0 Page 69 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.12 HDFQL_CURSOR_GET_COUNT

Syntax

int hdfgl_cursor_get_count(const HDFQL_CURSOR *cursor)

Description

Get the number of elements (i.e. result set size) stored in a cursor named cursor. If the result set stores data from a
dataset or attribute that does not have a dimension (i.e. if it is scalar), the returned number of elements is one. Otherwise,
if the result set stores data from a dataset or attribute that has dimensions, the returned number of elements equals the
multiplication of all its dimensions’ sizes (e.g. if a cursor stores a result set of two dimensions of size 10x3, the number of
elements is 30). If the cursor has never been populated or has been initialized or cleared, the returned number of

elements is zero.

Parameter(s[

cursor — pointer to a cursor to get its number of elements (i.e. result set size). If the pointer is NULL (in C), the number of
elements of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R
HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python,

C#, Fortran and R it is optional (when not provided, the number of elements of the cursor in use is returned instead).
Return

int — number of elements (i.e. result set size) stored in the cursor.

Example(s)

// show (i.e. get) current working directory

hdfql execute("SHOW USE DIRECT

// display number of elements in the cursor in use (should be "Number of elements in cursor 1is
l")
printf ("N

r of elements in cursor is %d\n", hdfgl cursor get count (NULL));

// clear the cursor 1n use

hdfql cursor clear (NULL);

// display (again) number of elements in the cursor in use (should be "Number of elements 1in

cursor is 0'")

Version 2.4.0 Page 70 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

printf ("Number of elements in cursor is %d\n", hdfgl cursor get count (NULL));

5.2.13 HDFQL_SUBCURSOR_GET_COUNT

Syntax

int hdfgl_subcursor_get_count(const HDFQL_CURSOR *cursor)

Description

Get the number of elements (i.e. result subset size) stored in the subcursor in use. If the cursor that the subcursor belongs

to has never been populated or has been initialized or cleared, the returned number of elements is zero.

Parameter(s)

cursor — pointer to a cursor to get the number of elements (i.e. result subset size) stored in the subcursor in use. If the
pointer is NULL (in C), the number of elements of the subcursor of the cursor in use is returned instead. The equivalent of
a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively.
While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the number of

elements of the subcursor of the cursor in use is returned instead).
Return

int — number of elements (i.e. result subset size) stored in the subcursor.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length int of two dimensions

(size 2x2)

hdfgl execute ("CREA 2, 2)");

// insert (i.e. write) values into dataset "my dataset"”
hdfgl execute ("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");
// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("S

// display number of elements in the cursor in use (should be "Number of elements in cursor 1is

4!7)

Version 2.4.0 Page 71 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

printf ("Number of elements in cursor is %d\n", hdfgl cursor get count (NULL));

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display number of elements in the subcursor in use (should be "Number of elements in

subcursor is 3")

printf ("Nuz

- 1s %d\n", hdfql subcursor get count (NULL));

// move the cursor in use to next position within the result set (i.e. second position)

hdfgl cursor next (NULL);

// display number of elements in the subcursor in use (should be "Number of elements in
subcursor is 1")

printf("Number of elements in subcursor is %d\n", hdfgl subcursor get count (NULL))

5.2.14 HDFQL_CURSOR_GET_POSITION

Syntax

int hdfgl_cursor_get_position(const HDFQL_CURSOR *cursor)

Description

Get current position of a cursor named cursor within the result set. The first element of the result set is at position zero,
while the last element is located at the position returned by hdfgl_cursor_get_count - 1. If the cursor has never been
populated or has been initialized or cleared, or in case the result set is empty, the returned current position is minus one.
If the cursor was moved before the first element or after the last element, the returned current position is minus one or

the number of elements in the result set, respectively.

Parameter(s)

cursor — pointer to a cursor to get its current position within the result set. If the pointer is NULL (in C), the current
position of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R
HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python,

C#, Fortran and R it is optional (when not provided, the current position of the cursor in use is returned instead).
Return
int — current position of the cursor within the result set.

Version 2.4.0 Page 72 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// show (i.e. get) current working directory

hdfql execute ("SHOW USE DIRECTORY");

// move the cursor in use to the first position within the result set

hdfql cursor first (NULL);

// display position of the cursor in use within the result set (should be "Position of cursor

is 0")

printf("Posi

r is %d\n", hdfgl cursor get position (NULL));

// clear the cursor in use

hdfql cursor clear (NULL);

// display (again) position of the cursor in use within the result set (should be "Position of
cursor is -1")

printf("Position of cursor is 2d\n'", hdfql cursor get position (NULL));

5.2.15 HDFQL_SUBCURSOR_GET_POSITION

Syntax

int hdfgl_subcursor_get_position(const HDFQL_CURSOR *cursor)

Description

Get current position of the subcursor in use within the result subset. The first element of the result subset is at position
zero, while the last element is located at the position returned by hdfgl_subcursor_get_count - 1. If the cursor that the
subcursor belongs to has never been populated or has been initialized or cleared, or in case the result subset is empty, the
returned current position is minus one. If the subcursor was moved before the first element or after the last element, the

returned current position is minus one or the number of elements in the result subset, respectively.

Parameter(s)

cursor — pointer to a cursor to get the current position of the subcursor in use within the result subset. If the pointer is
NULL (in C), the current position of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer

in C++, Java, Python, C#, Fortran and R HDFqgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C

Version 2.4.0 Page 73 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current position of the

subcursor of the cursor in use is returned instead).
Return

int — current position of the subcursor within the result subset.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length int of two dimensions
(size 2x2)

hdfql execute ("CREATE DATASET my dataset AS VARINT (2, 2)");

// insert (i.e. write) values into dataset "my dataset"”

hdfgl execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfql cursor first (NULL);

// display position of the subcursor in use within the result subset (should be "Position of
subcursor is -1")

printf("Position of subcursor is %d\n", hdfql subcursor get position (NULL));

// move the subcursor in use to the next position within the result subset (two times)
hdfql subcursor next (NULL) ;
hdfql subcursor next (NULL) ;

// display (again) position of the subcursor in use within the result subset (should be
"Position of subcursor is 1")

printf("Position of subcursor is %d\n", hdfql subcursor get position (NULL));

5.2.16 HDFQL_CURSOR_FIRST

Syntax

int hdfgl_cursor_first(HDFQL_CURSOR *cursor)

Version 2.4.0 Page 74 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Move a cursor named cursor to the first position within the result set. In other words, the cursor will point to the first
element of the result set and its position is set to zero. If the result set is empty, an error is returned and its position

remains unchanged (i.e. remains minus one).

Parameter(s)

cursor — pointer to a cursor to move to the first position within the result set. If the pointer is NULL (in C), the cursor in use
is moved to the first position instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql
wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, CH,

Fortran and R it is optional (when not provided, the cursor in use is moved to the first position instead).
Return

int — depending on the success in moving the cursor to the first position within the result set, it can either be

HDFQL_SUCCESS or HDFQL_ERROR_EMPTY.

Example(s)

// show (i.e. get) current working directory

hdfgl execute ("SHOW USE DIRECTORY") ;

// display position of the cursor in use within the result set (should be "Position of cursor
is -1")

printf("Position of cursor is %d\n", hdfql cursor get position (NULL));

// move the cursor in use to the first position within the result set

hdfql cursor first (NULL) ;

// display (again) position of the cursor in use within the result set (should be "Position of
cursor is 0")

printf("Position of cursor is %d\n", hdfgl cursor get position (NULL));

5.2.17 HDFQL_SUBCURSOR_FIRST

Syntax

int hdfgl_subcursor_first(HDFQL_CURSOR *cursor)

Version 2.4.0 Page 75 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Move the subcursor in use to the first position within the result subset. In other words, the subcursor will point to the first
element of the result subset and its position is set to zero. If the result subset is empty, an error is returned and its

position remains unchanged (i.e. remains minus one).

Parameter(s)

cursor — pointer to a cursor to move the subcursor in use to the first position within the result subset. If the pointer is
NULL (in C), the subcursor of the cursor in use is moved to the first position instead. The equivalent of a NULL pointer in
C++, Java, Python, C#, Fortran and R HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is
mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the subcursor of the cursor in use is

moved to the first position instead).
Return

int — depending on the success in moving the subcursor to the first position within the result subset, it can either be

HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length int of two dimensions
(size 2x2)

hdfql execute ("CREATE DATASET my dataset AS VARINT (2, 2)");

// insert (i.e. write) values into dataset "my dataset"”
hdfgl execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");
// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfql cursor first (NULL);

// display position of the subcursor in use within the result subset (should be "Position of
subcursor is -1")

printf("Position of subcursor is %d\n'", hdfql subcursor get position (NULL));

// move the subcursor in use to the first position within the result subset

hdfgl subcursor first (NULL);

Version 2.4.0 Page 76 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// display (again) position of the subcursor in use within the result subset (should be
"Position of subcursor is 0")

printf("Position of subcursor is %d\n", hdfgl subcursor get position (NULL));

5.2.18 HDFQL_CURSOR_LAST

Syntax

int hdfgl_cursor_last(HDFQL_CURSOR *cursor)

Description

Move a cursor named cursor to the last position within the result set. In other words, the cursor will point to the last
element of the result set and its position is set to the value returned by hdfgl_cursor_get_count - 1. If the result set is

empty, an error is returned and its position remains unchanged (i.e. remains minus one).

Parameter(s)

cursor — pointer to a cursor to move to the last position within the result set. If the pointer is NULL (in C), the cursor in use
is moved to the last position instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql
wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, CH,

Fortran and R it is optional (when not provided, the cursor in use is moved to the last position instead).
Return

int — depending on the success in moving the cursor to the last position within the result set, it can either be

HDFQL_SUCCESS or HDFQL_ERROR_EMPTY.

Example(s)

// show (i.e. get) current working directory

hdfqgl execute("SHOW USE DIRECTORY");

// display position of the cursor in use within the result set (should be "Position of cursor
is -1")

printf("Position of cursor is 3%d\n", hdfqgl cursor get position(NULL));

// move the cursor in use to the last position within the result set

hdfgl cursor last (NULL);

Version 2.4.0 Page 77 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// display position of the cursor in use within the result set (should be "Position of cursor
is 0")

printf("Position of cursor is 2d\n'", hdfql cursor get position(NULL));

5.2.19 HDFQL_SUBCURSOR_LAST

Syntax

int hdfgl_subcursor_last(HDFQL_CURSOR *cursor)

Description

Move the subcursor in use to the last position within the result subset. In other words, the subcursor will point to the last
element of the result subset and its position is set to the value returned by hdfql_subcursor_get_count - 1. If the result

subset is empty, an error is returned and its position remains unchanged (i.e. remains minus one).

Parameter!s[

cursor — pointer to a cursor to move the subcursor in use to the last position within the result subset. If the pointer is NULL
(in C), the subcursor of the cursor in use is moved to the last position instead. The equivalent of a NULL pointer in C++,
Java, Python, C#, Fortran and R HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is
mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the subcursor of the cursor in use is

moved to the last position instead).
Return

int — depending on the success in moving the subcursor to the last position within the result subset, it can either be

HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length int of two dimensions
(size 2x2)

hdfql execute ("CREATE DATASET my dataset AS VARINT (2, 2)");
// insert (i.e. write) values into dataset "my dataset"”

hdfql execute("INSERT INTO my dataset VALUES(((7, &8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

Version 2.4.0 Page 78 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute ("SE

// move the cursor in use to the first position within the result set

hdfgl cursor first (NULL);

// display position of subcursor in use within the result subset (should be "Position of

subcursor is -1")

printf("Position of subcursor is %d\n", hdfgl subcursor get position (NULL));

// move the subcursor in use to the last position within the result subset

hdfgl subcursor last (NULL)

// display (again) position of subcursor in use within the result subset (should be "Position

of subcursor is 2")

printf("Position of sul is ¢d\n", hdfgl subcursor get position (NULL));

5.2.20 HDFQL_CURSOR_NEXT

Syntax

int hdfgl_cursor_next(HDFQL_CURSOR *cursor)

Description

Move a cursor named cursor one position forward from its current position. In other words, the cursor will point to the
next element of the result set and its position is incremented by one. If the result set is empty or the cursor is in the last
position, an error is returned and its position remains unchanged (i.e. remains minus one) or is set to the value returned

by hdfgl_cursor_get_count, respectively.

Parameter(s)

cursor — pointer to a cursor to move one position forward from its current position. If the pointer is NULL (in C), the cursor
in use is moved one position forward from its current position instead. The equivalent of a NULL pointer in C++, Java,
Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is
mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the cursor in use is moved one

position forward from its current position instead).

Version 2.4.0 Page 79 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Return

int — depending on the success in moving the cursor one position forward from its current position, it can either be

HDFQL_SUCCESS, HDFQL_ERROR_EMPTY or HDFQL_ERROR_AFTER_LAST.

Example(s)

// show (i.e. get) current working directory

hdfql execute("SHOW USE DIRECTORY");

// move the cursor in use to the next position within the result set

hdfql cursor next (NULL) ;

// display position of cursor within the result set (should be "Position of cursor is 0")

printf("Position of cursor is %d\n", hdfql cursor get position (NULL));

5.2.21 HDFQL_SUBCURSOR_NEXT

Syntax

int hdfgl_subcursor_next(HDFQL_CURSOR *cursor)

Description

Move the subcursor in use one position forward from its current position. In other words, the subcursor will point to the
next element of the result subset and its position is incremented by one. If the result subset is empty or the subcursor is in
the last position, an error is returned and its position remains unchanged (i.e. remains minus one) or is set to the value

returned by hdfgl_subcursor_get_count, respectively

Parameter(s)

cursor — pointer to a cursor to move the subcursor in use one position forward from its current position. If the pointer is
NULL (in C), the subcursor of the cursor in use is moved one position forward from its current position instead. The
equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFgl wrappers is NULL, null, None, null, 0 and NULL,
respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the

subcursor of the cursor in use is moved one position forward from its current position instead).

Version 2.4.0 Page 80 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Return

int — depending on the success in moving the subcursor one position forward from its current position, it can either be

HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length int of two dimensions
(size 2x2)

hdfql execute("CREATE DATASET my dataset AS VARINT (2, 2)");

insert (i.e. write) values into datase my datase
// 1 t (1 ite) 1 into dat t "my dat t"

hdfgl execute("INSERT INTO my dataset VALUES(((7, 8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfqgl execute ("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfqgl cursor first (NULL);

// display position of subcursor in use within the result subset (should be "Position of
subcursor is -1")

printf("Position of subcursor is 2d\n", hdfgl subcursor get position (NULL));

// move the subcursor in use to the next position within the result subset (two times)
hdfql subcursor next (NULL) ;
hdfql subcursor next (NULL) ;

// display (again) position of subcursor in use within the result subset (should be "Position
of subcursor is 1")

printf("Position of subcursor is %d\n", hdfql subcursor get position (NULL));

5.2.22 HDFQL_CURSOR_PREVIOUS

Syntax

int hdfgl_cursor_previous(HDFQL_CURSOR *cursor)

Version 2.4.0 Page 81 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Move a cursor named cursor one position backward from its current position. In other words, the cursor will point to the
previous element of the result set and its position is decremented by one. If the result set is empty or the cursor is in the
first position, an error is returned and its position remains unchanged (i.e. remains minus one) or is set to minus one,

respectively.

Parameter(s)

cursor — pointer to a cursor to move one position backward from its current position. If the pointer is NULL (in C), the
cursor in use is moved one position backward from its current position instead. The equivalent of a NULL pointer in C++,
Java, Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is
mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the cursor in use is moved one

position backward from its current position instead).
Return

int — depending on the success in moving the cursor one position backward from its current position, it can either be

HDFQL_SUCCESS, HDFQL_ERROR_EMPTY or HDFQL_ERROR_BEFORE_FIRST.

Example(s)

// create an HDF5 dataset named "my dataset" of data type float of two dimensions (size 2x10)
(2, 10)");

hdfgl execute ("CREATE D 2

T mv 2t age AS FT,(C
my dataset AS FLO

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it
hdfql execute("SELECT FROM my dataset");
// move the cursor in use to the last position within the result set

hdfgl cursor last (NULL);

// move the cursor in use to the previous position within the result set

hdfgl cursor previous (NULL) ;

// display position of cursor in use within the result set (should be "Position of cursor 1is

18")

)
Rl
»]
%)
o)
]
N

printf("Position o - is 2d\n", hdfgl cursor get position (NULL));

Version 2.4.0 Page 82 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.23 HDFQL_SUBCURSOR_PREVIOUS

Syntax

int hdfgl_subcursor_previous(HDFQL_CURSOR *cursor)

Description

Move the subcursor in use one position backward from its current position. In other words, the subcursor will point to the
previous element of the result subset and its position is decremented by one. If the result subset is empty or the subcursor
is in the first position, an error is returned and its position remains unchanged (i.e. remains minus one) or is set to minus

one, respectively.

Parameter(s)

cursor — pointer to a cursor to move the subcursor in use one position backward from its current position. If the pointer is
NULL (in C), the subcursor of the cursor in use is moved one position backward from its current position instead. The
equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFgl wrappers is NULL, null, None, null, 0 and NULL,
respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the

subcursor of the cursor in use is moved one position backward from its current position instead).
Return

int — depending on the success in moving the subcursor one position backward from its current position, it can either be

HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length int of two dimensions

(size 2x2)

hdfql execute ("CREATE |

2, 2)";

// insert (i.e. write) values into dataset "my dataset"”

hdfql execute("INSERT INTO my dataset VALUES(((7, &8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT

// move the cursor in use to the first position within the result set

hdfgl cursor first (NULL);

Version 2.4.0 Page 83 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// move the subcursor in use to the last position within the result subset

hdfgl subcursor last (NULL) ;

// move the subcursor in use to the previous position within the result subset (two times)
hdfql subcursor previous (NULL) ;
hdfql subcursor previous (NULL) ;

// display position of the subcursor within the result subset (should be "Position of subcursor
is 0")

printf("Position of subcursor is %d\n", hdfgl subcursor get position (NULL));

5.2.24 HDFQL_CURSOR_ABSOLUTE

Syntax

int hdfgl_cursor_absolute(HDFQL_CURSOR *cursor, int position)

Description

Move a cursor named cursor to an absolute position position within the result set. The first element of the result set is at
position zero, while the last element is located at the position returned by hdfgl_cursor_get_count - 1. An attempt to
move the cursor before the first element will return an error and set the position of the cursor to minus one, while an
attempt to move the cursor after the last element will return an error and set the position of the cursor to number of

elements in the result set.

Parameter(s)

cursor — pointer to a cursor to move to an absolute position within the result set. If the pointer is NULL (in C), the cursor in
use is moved to an absolute position instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R
HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python,

C#, Fortran and R it is optional (when not provided, the cursor in use is moved to an absolute position instead).

position — absolute position to which to move the cursor. If position is positive, the cursor will position itself with reference
to the beginning of the result set. If position is negative, the cursor will position itself with reference to the end of the

result set.

Version 2.4.0 Page 84 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Return

int — depending on the success in moving the cursor to an absolute position within the result set, it can either be

HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create five HDF5 groups named "gl'", "g2", "g3", "g4" and "g5"

hdfql execute("CREATE GROUP gl, g2, g3, g4, g5");

// show (i.e. get) all existing groups and populate cursor in use with these (should be "gl",
"g2”, "g3”1 "g4”, "9'5”)

hdfql execute ("SHOW GROUP");

// move the cursor in use to absolute position 2 within the result set

hdfqgl cursor absolute(NULL, °);

// display current element of the cursor in use within the result set (should be "Current
element of cursor is g3")

printf("Current element of cursor is %s", hdfqgl cursor get char (NULL)) ;

// move the cursor in use to absolute position -2 within the result set

hdfql cursor absolute(NULL, -2);

// display current element of the cursor in use within the result set (should be "Current
element of cursor is g4")

printf("Current element of cursor is %s'", hdfql cursor get char (NULL)) ;

5.2.25 HDFQL_SUBCURSOR_ABSOLUTE

Syntax

int hdfgl_subcursor_absolute(HDFQL_CURSOR *cursor, int position)

Description

Move the subcursor in use to an absolute position position within the result subset. The first element of the result subset
is at position zero, while the last element is located at the position returned by hdfql_subcursor_get_count - 1. An attempt

to move the subcursor before the first element will return an error and set the position of the subcursor to minus one,

Version 2.4.0 Page 85 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

while an attempt to move the subcursor after the last element will return an error and set the position of the subcursor to

number of elements in the result subset.

Parameter(s)

cursor — pointer to a cursor to move the subcursor in use to an absolute position within the result subset. If the pointer is
NULL (in C), the subcursor of the cursor in use is moved to an absolute position instead. The equivalent of a NULL pointer
in C++, Java, Python, C#, Fortran and R HDFqgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C
cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the subcursor of the cursor

in use is moved to an absolute position instead).

position — absolute position to which to move the subcursor. If position is positive, the subcursor will position itself with
reference to the beginning of the result subset. If position is negative, the subcursor will position itself with reference to

the end of the result subset.
Return

int — depending on the success in moving the subcursor to an absolute position within the result subset, it can either be

HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length int of two dimensions

(size 2x2)

hdfgl execute ("CREATE

T my dataset AS VARINT (2, 2)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES(((7, &8, 5), (9)), ((6, 1, 2, 3), (4, 0)))");
// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfql cursor first (NULL);

// move the subcursor in use to absolute position 2 within the result subset

hdfgl subcursor absolute (NULL, ”);

// display current element of the subcursor in use within the result subset (should be "Current
element of subcursor is 5")

printf("Current element of subcursor is %d", hdfgl subcursor get int (NULL));

Version 2.4.0 Page 86 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// move the subcursor in use to absolute position -2 within the result subset

hdfql subcursor absolute (NULL, -2);

// display current element of the subcursor in use within the result subset (should be "Current
element of subcursor is 8")

printf("Current element of subcursor is %d", hdfql_subcursor_get_int (NULL)) ;

5.2.26 HDFQL_CURSOR_RELATIVE

Syntax

int hdfgl_cursor_relative(HDFQL_CURSOR *cursor, int position)

Description

Move a cursor named cursor to a relative position position with respect to its current position. The first element of the
result set is at position zero, while the last element is located at the position returned by hdfgl_cursor_get_count - 1. An
attempt to move the cursor before the first element will return an error and set the position of the cursor to minus one,
while an attempt to move the cursor after the last element will return an error and set the position of the cursor to

number of elements in the result set.

Parameter(s)

cursor — pointer to a cursor to move to a relative position with respect to its current position. If the pointer is NULL (in C),
the cursor in use is moved to a relative position instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran
and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java,

Python, C#, Fortran and R it is optional (when not provided, the cursor in use is moved to a relative position instead).

position — relative position to which to move the cursor. If position is positive, the cursor will go forward in the result set
relative to its current position. If position is negative, the cursor will go backward in the result set relative to its current

position.
Return

int — depending on the success in moving the cursor to a relative position with respect to its current position, it can either

be HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Version 2.4.0 Page 87 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create five HDF5 groups named "gl'", "g2", "g3", "g4" and "g5"

hdfql execute ("CREATE GROUP gl, 92, g3,

2

74, g5") ;

\Q

Q

// show (i.e. get) all existing groups and populate cursor in use with these (should be "gl",
"g2”, "93", "g4”, "g5")
hdfgl execute ("SHOW GROUP") ;

// move the cursor in use to the first position within the result set

hdfql cursor first (NULL);

// move the cursor in use to relative position 2 within the result set

hdfql cursor relative (NULL, 2);

// display current element of the cursor within the result set (should be "Current element of
cursor is g3")

printf("Current element of cursor is $%s", hdfgl cursor get char (NULL)) ;

// move the cursor in use to relative position -2 within the result set

hdfql cursor relative(NULL, -7);

// display current element of the cursor within the result set (should be "Current element of
cursor is gl")

printf("Current element of cursor is %s", hdfql cursor get char (NULL)) ;

5.2.27 HDFQL_SUBCURSOR_RELATIVE

Syntax

int hdfgl_subcursor_relative(HDFQL_CURSOR *cursor, int position)

Description

Move the subcursor in use to a relative position position with respect to its current position. The first element of the result
subset is at position zero, while the last element is located at the position returned by hdfql_subcursor_get_count - 1. An
attempt to move the subcursor before the first element will return an error and set the position of the subcursor to minus
one, while an attempt to move the subcursor after the last element will return an error and set the position of the

subcursor to number of elements in the result set.

Version 2.4.0 Page 88 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor — pointer to a cursor to move the subcursor in use to a relative position with respect to its current position. If the
pointer is NULL (in C), the subcursor of the cursor in use is moved to a relative position instead. The equivalent of a NULL
pointer in C++, Java, Python, C#, Fortran and R HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in
C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the subcursor of the

cursor in use is moved to a relative position instead).

position — relative position to which to move the subcursor. If position is positive, the subcursor will go forward in the
result set relative to its current position. If position is negative, the subcursor will go backward in the result set relative to

its current position.
Return

int — depending on the success in moving the subcursor to a relative position with respect to its current position, it can

either be HDFQL_SUCCESS, HDFQL_ERROR_EMPTY, HDFQL_ERROR_BEFORE_FIRST or HDFQL_ERROR_AFTER_LAST.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length int of two dimensions
(size 2x2)

hdfqgl execute ("CREATE DATASET my dataset AS VARINT (2, 2)");

// insert (i.e. write) values into dataset "my dataset"”

hdfqgl execute("INSERT INTO my dataset VALUES(((7, &, 5), (9)), ((6, 1, 2, 3), (4, 0)))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset");

// move the cursor in use to the first position within the result set

hdfql cursor first (NULL);

// move the subcursor in use to the first position within the result subset

hdfql subcursor first (NULL);

// move the subcursor in use to relative position 2 within the result subset

hdfql subcursor relative (NULL, Z);

// display current element of the subcursor in use within the result subset (should be "Current
element of subcursor 1is 5'")

printf ("Current element of subcursor is 3%d", hdfql subcursor get int (NULL))

Version 2.4.0 Page 89 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// move the subcursor in use to relative position -1 within the result subset

hdfql subcursor relative(NULL, -1);

// display current element of the subcursor in use within the result subset (should be "Current

element of subcursor is 8")

9]

printf ("Current element of subcursor is %d", hdfql subcursor get int (NULL))

5.2.28 HDFQL_CURSOR_GET_TINYINT

Syntax

char *hdfql_cursor_get_tinyint(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as a TINYINT. In other words, the current element is interpreted as a
“char” C data type and returned as a pointer of such type. If the result set is empty or the cursor is located before or after

the first or last element of the result set, the returned element is NULL.

Parameter!s[

cursor — pointer to a cursor to get the current element as a TINYINT. If the pointer is NULL (in C), the current element of
the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql
wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, CH,

Fortran and R it is optional (when not provided, the current element of the cursor in use is returned instead).
Return

char * — pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type char of one dimension (size 3)

hdfql_execute(”CREATE DA dataset AS TINYINT(3)"),;

// insert (i.e. write) values into dataset "my dataset”

hdfql execute("INSERT INTO my dataset VALUES (12, 34, 23)");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

Version 2.4.0 Page 90 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

hdfql execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a char (should be "Current element of cursor
is 12")

printf("Current element of cursor is 4od\n'", *hdfgl cursor get tinyint (NULL))

5.2.29 HDFQL_SUBCURSOR_GET_TINYINT

Syntax

char *hdfql_subcursor_get_tinyint(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as a TINYINT. In other words, the current element is interpreted as a
“char” C data type and returned as a pointer of such type. If the result subset is empty or the subcursor is located before

or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as a TINYINT. If the pointer is NULL (in C),
the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer in C++,
Java, Python, C#, Fortran and R HDFqgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is
mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the subcursor

of the cursor in use is returned instead).
Return

char * — pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length char of one dimension
(size 3)

hdfql execute ("CREATE DATASET my dataset AS VARTINYINT (3)");

Version 2.4.0 Page 91 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as a char (should be "Current element of cursor

is 5")

)
Q
=
p]
9}
o
N
-
03]

printf("Current element o ¢d\n", *hdfgl cursor get tinyint (NULL));
// move the subcursor in use to next position within the result subset (i.e. first position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as a char (should be "Current element of
subcursor is 5")

printf("Current element of subcursor is %d\n", *hdfgl subcursor get tinyint (NULL))

// move the subcursor in use to next position within the result subset (i.e. second position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as a char (should be "Current element of
subcursor is 2")

printf("Current element of subcursor is %d\n", *hdfgl subcursor get tinyint (NULL))

5.2.30 HDFQL_CURSOR_GET_UNSIGNED_TINYINT

Syntax

unsigned char *hdfql_cursor_get_unsigned_tinyint(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as an UNSIGNED TINYINT. In other words, the current element is
interpreted as an “unsigned char” C data type and returned as a pointer of such type. If the result set is empty or the

cursor is located before or after the first or last element of the result set, the returned element is NULL.

Version 2.4.0 Page 92 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor — pointer to a cursor to get the current element as a UNSIGNED TINYINT. If the pointer is NULL (in C), the current
element of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R
HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python,

C#, Fortran and R it is optional (when not provided, the current element of the cursor in use is returned instead).
Return

unsigned char * — pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type unsigned char of one dimension (size
3)
hdfqgl execute ("CREATE DA!

" my dataset AS UNSIGNED T INT (3)");
// insert (i.e. write) values Iinto dataset "my dataset"

hdfql execute("INSERT INTO my 34, 23)");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned char (should be "Current element

of cursor is 12")

"e

printf("Current element of cursor is 2u\n", *hdfql cursor get unsigned tinyint (NULL));

5.2.31 HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINT

Syntax

unsigned char *hdfgl_subcursor_get_unsigned_tinyint(const HDFQL_CURSOR *cursor)

Version 2.4.0 Page 93 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get the current element of the subcursor in use as an UNSIGNED TINYINT. In other words, the current element is
interpreted as an “unsigned char” C data type and returned as a pointer of such type. If the result subset is empty or the

subcursor is located before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as an UNSIGNED TINYINT. If the pointer is
NULL (in C), the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer
in C++, Java, Python, C#, Fortran and R HDFqgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C
cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the

subcursor of the cursor in use is returned instead).
Return

unsigned char * — pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length unsigned char of one
dimension (size 3)
hdfql_execute(”(?REATE DATASET my dataset AS UNSIGNED VARTINYINT(3)");

// insert (i.e. write) values into dataset "my dataset”

hdfql execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");
// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned char (should be "Current element
of cursor 1is 5")
printf("Current element of cursor is %u\n", *hdfgl cursor get unsigned tinyint (NULL)),;

// move the subcursor in use to next position within the result subset (i.e. first position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as an unsigned char (should be "Current

element of subcursor is 5")

Version 2.4.0 Page 94 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

printf("Current element of subcursor is %u\n", *hdfgl subcursor get unsigned tinyint (NULL));

// move the subcursor in use to next position within the result subset (i.e. second position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as an unsigned char (should be "Current
element of subcursor is 2")

printf("Current element of subcursor is ¢%ul\n", *hdfgl subcursor get unsigned tinyint (NULL));

5.2.32 HDFQL_CURSOR_GET_SMALLINT

Syntax

short *hdfgl_cursor_get_smallint(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as a SMALLINT. In other words, the current element is interpreted as a
“short” C data type and returned as a pointer of such type. If the result set is empty or the cursor is located before or after

the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a SMALLINT. If the pointer is NULL (in C), the current element of
the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql
wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, CH,

Fortran and R it is optional (when not provided, the current element of the cursor in use is returned instead).
Return

short * — pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type short of one dimension (size 3)

P

my dataset AS

hdfql execute ("CREATE DA

// insert (i.e. write) values into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES (12, 34, 23)");

Version 2.4.0 Page 95 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a short (should be "Current element of
cursor is 12")

printf("Current element of cursor is ed\n'", *hdfgl cursor get smallint (NULL));

5.2.33 HDFQL_SUBCURSOR_GET_SMALLINT

Syntax

short *hdfgl_subcursor_get_smallint(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as a SMALLINT. In other words, the current element is interpreted as a
“short” C data type and returned as a pointer of such type. If the result subset is empty or the subcursor is located before

or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as a SMALLINT. If the pointer is NULL (in C),
the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer in C+4+,
Java, Python, C#, Fortran and R HDFqgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is
mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the subcursor

of the cursor in use is returned instead).
Return

short * — pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length short of one

dimension (size 3)

Version 2.4.0 Page 96 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

hdfgl execute("CREATE DATASET my dataset AS VARSMALLINT (3) ") ;

inser l1.e. write values 1nto atase my atase
// 1 t (1 ite) 1 into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as a short (should be "Current element of
cursor is 5")

printf("Current element of cursor is %d\n", *hdfgl cursor get smallint (NULL)),

// move the subcursor in use to next position within the result subset (i.e. first position)

hdfqgl subcursor next (NULL) ;

// display current element of the subcursor in use as a short (should be "Current element of
subcursor is 5")

printf("Current element of subcursor is %d\n", *hdfgl subcursor get smallint (NULL));

// move the subcursor in use to next position within the result subset (i.e. second position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as a short (should be "Current element of
subcursor 1s 2")

printf("Current element of subcursor is %d\n", *hdfgl subcursor get smallint (NULL));

5.2.34 HDFQL_CURSOR_GET_UNSIGNED_SMALLINT

Syntax

unsigned short *hdfgl_cursor_get_unsigned_smallint(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as an UNSIGNED SMALLINT. In other words, the current element is
interpreted as an “unsigned short” C data type and returned as a pointer of such type. If the result set is empty or the

cursor is located before or after the first or last element of the result set, the returned element is NULL.

Version 2.4.0 Page 97 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

cursor — pointer to a cursor to get the current element as an UNSIGNED SMALLINT. If the pointer is NULL (in C), the current
element of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R
HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python,

C#, Fortran and R it is optional (when not provided, the current element of the cursor in use is returned instead).
Return

unsigned short * — pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type unsigned short of one dimension (size
3)
hdfqgl execute ("CREATE DA!

" my dataset AS UNSIGNED

// insert (i.e. write) values Iinto dataset "my dataset"

34, 23)");

hdfql execute("INSERT INTO my

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

oTT

hdfql execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned short (should be "Current

element of cursor is 12")

"e

printf("Current element of cursor is su\n", *hdfql cursor get unsigned smallint (NULL));

5.2.35 HDFQL_SUBCURSOR_GET_UNSIGNED_SMALLINT

Syntax

unsigned short *hdfgl_subcursor_get_unsigned_smallint(const HDFQL_CURSOR *cursor)

Version 2.4.0 Page 98 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get the current element of the subcursor in use as an UNSIGNED SMALLINT. In other words, the current element is
interpreted as an “unsigned short” C data type and returned as a pointer of such type. If the result subset is empty or the

subcursor is located before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as an UNSIGNED SMALLINT. If the pointer is
NULL (in C), the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer
in C++, Java, Python, C#, Fortran and R HDFqgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C
cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the

subcursor of the cursor in use is returned instead).
Return

unsigned short * — pointer to the current element of the subcursor. If there is no current element, the pointer will be

NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length unsigned short of one
dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS UNSIGNED VARSMALLINT (3)");

// insert (i.e. write) values into dataset "my dataset”

N

hdfql execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned short (should be "Current

element of cursor is 5'")

H

Q
=
[0)]
o)
N
.
[0)]

printf ("Current element o u\n", *hdfgl cursor get unsigned smallint (NULL));

// move the subcursor in use to next position within the result subset (i.e. first position)

hdfgl subcursor next (NULL) ;

Version 2.4.0 Page 99 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// display current element of the subcursor in use as an unsigned short (should be "Current
element of subcursor is 5")

printf("Current element of subcursor is %u\n", *hdfgl subcursor get unsigned smallint (NULL))

// move the subcursor in use to next position within the result subset (i.e. second position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as an unsigned short (should be "Current

element of subcursor is 2'")

printf("Current element of subcursor is ¢%ul\n", *hdfgl subcursor get unsigned smallint (NULL))

5.2.36 HDFQL_CURSOR_GET_INT

Syntax

int *hdfql_cursor_get_int(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as an INT. In other words, the current element is interpreted as an “int”
C data type and returned as a pointer of such type. If the result set is empty or the cursor is located before or after the

first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as an INT. If the pointer is NULL (in C), the current element of the
cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql wrappers
is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it

is optional (when not provided, the current element of the cursor in use is returned instead).
Return

int * — pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type int of one dimension (size 3)

g 2

TE DATASET my dataset AS INT(3)");

hdfql execute("CRE

Version 2.4.0 Page 100 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// insert (i.e. write) values into dataset "my dataset"”

hdfql execute("INSERT INTO my dataset VALUES (12, 34, 23)");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfgl execute("SELECT FROM

my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfgl cursor next (NULL);

// display current element of the cursor in use as an unsigned short (should be "Current
element of cursor is 12")

printf("Current element of cursor is %d\n'", *hdfqgl cursor get int(NULL));

5.2.37 HDFQL_SUBCURSOR_GET_INT

Syntax

int *hdfqgl_subcursor_get_int(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as an INT. In other words, the current element is interpreted as an “int” C
data type and returned as a pointer of such type. If the result subset is empty or the subcursor is located before or after

the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as an INT. If the pointer is NULL (in C), the
current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java,
Python, C#, Fortran and R HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is
mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the subcursor

of the cursor in use is returned instead).
Return

int * — pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Version 2.4.0 Page 101 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length int of one dimension
(size 3)

hdfql execute ("CREATE DATASET my dataset AS VARINT (3)");

// insert (i.e. write) values into dataset "my dataset”

hdfql execute ("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an int (should be "Current element of cursor
is 5")

printf("Current element of cursor is %d\n", *hdfql cursor get int (NULL));

// move the subcursor in use to next position within the result subset (i.e. first position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as an int (should be "Current element of
subcursor is 5")

printf("Current element of subcursor is %d\n", *hdfqgl subcursor get int (NULL));

// move the subcursor in use to next position within the result subset (i.e. second position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as an int (should be "Current element of
subcursor is 2")

printf("Current element of subcursor is %d\n", *hdfqgl subcursor get int (NULL));

5.2.38 HDFQL_CURSOR_GET_UNSIGNED_INT

Syntax

unsigned int *hdfqgl_cursor_get_unsigned_int(const HDFQL_CURSOR *cursor)

Version 2.4.0 Page 102 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get the current element of a cursor named cursor as an UNSIGNED INT. In other words, the current element is interpreted
as an “unsigned int” C data type and returned as a pointer of such type. If the result set is empty or the cursor is located

before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as an UNSIGNED INT. If the pointer is NULL (in C), the current
element of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R
HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python,

C#, Fortran and R it is optional (when not provided, the current element of the cursor in use is returned instead).
Return

unsigned int * — pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type unsigned int of one dimension (size
3)

hdfql execute ("CREATE DAT AS UNSIGNED INT (3)");

// insert (i.e. write) values into dataset "my dataset”

hdfql execute("INSERT INTO my dataset JES (12, 34, 23)");
// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT FROM

o "y .
dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned int (should be "Current element
of cursor 1is 12")

printf("Current element of cursor is %u\n", *hdfgl cursor get unsigned int (NULL));

Version 2.4.0 Page 103 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.39 HDFQL_SUBCURSOR_GET_UNSIGNED_INT

Syntax

unsigned int *hdfqgl_subcursor_get_unsigned_int(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as an UNSIGNED INT. In other words, the current element is interpreted
as an “unsigned int” C data type and returned as a pointer of such type. If the result subset is empty or the subcursor is

located before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as an UNSIGNED INT. If the pointer is NULL
(in C), the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer in
C++, Java, Python, C#, Fortran and R HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is
mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the subcursor

of the cursor in use is returned instead).
Return

unsigned int * — pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length unsigned int of one
dimension (size 3)

hdfql execute("CR

// insert (i.e. write) values into dataset "my dataset”

hdfgl execute("I S((5, 2), (8), (4, 3, 9))");

INTO my dataset V

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfgl execute("SE

i & my .
taset),

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned int (should be "Current element

of cursor 1s 5")

Version 2.4.0 Page 104 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

printf("Current element of cursor is su\n", *hdfql cursor get unsigned int (NULL));

// move the subcursor in use to next position within the result subset (i.e. first position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as an unsigned int (should be "Current
element of subcursor is 5")

~

printf("Current element of subcursor is sul\n", *hdfgl subcursor get unsigned int (NULL))

// move the subcursor in use to next position within the result subset (i.e. second position)

hdfgl subcursor next (NULL) ;

// display current ele'ment of the subcursor in use as an unsigned int (should be "Current
element of subcursor is 2'")

printf("Current element of subcursor is %u\n", *hdfgl subcursor get unsigned int (NULL));

5.2.40 HDFQL_CURSOR_GET_BIGINT

Syntax

long long *hdfgl_cursor_get_bigint(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as a BIGINT. In other words, the current element is interpreted as a
“long long” C data type and returned as a pointer of such type. If the result set is empty or the cursor is located before or

after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a BIGINT. If the pointer is NULL (in C), the current element of the
cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFgl wrappers
is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it

is optional (when not provided, the current element of the cursor in use is returned instead).
Return

long long * — pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Version 2.4.0 Page 105 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create an HDF5 dataset named "my dataset" of data type long long of one dimension (size 3)

hdfgl execute ("CRE

inser l1.e. write values 1nto atase m atase
// 1 t (1 i te) 1 into dat t "my dat 4

(12, 34, 23)");

hdfql execute("INSERT INTO my dat

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SEL FROM my dataset");
// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a long long (should be "Current element of
cursor is 12")

printf("Current element of cursor is $%11d\n", *hdfql cursor get bigint (NULL));

5.2.41 HDFQL_SUBCURSOR_GET_BIGINT

Syntax

long long *hdfgl_subcursor_get_bigint(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as a BIGINT. In other words, the current element is interpreted as a “long
long” C data type and returned as a pointer of such type. If the result subset is empty or the subcursor is located before or

after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as a BIGINT. If the pointer is NULL (in C), the
current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java,
Python, C#, Fortran and R HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is
mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the subcursor

of the cursor in use is returned instead).

Version 2.4.0 Page 106 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Return

long long * — pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length long long of one
dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS VARBIGINT(3)");

// insert (i.e. write) values into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES((5, 2), (8), (4, 3, 9))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a long long (should be "Current element of
cursor is 5")

printf("Current element of cursor is %11d\n", *hdfql cursor get bigint (NULL));

// move the subcursor in use to next position within the result subset (i.e. first position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as a long long (should be "Current element
of subcursor 1is 5")

printf("Current element of subcursor is %11d\n", *hdfql subcursor get bigint (NULL));

// move the subcursor in use to next position within the result subset (i.e. second position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as a long long (should be "Current element
of subcursor is 2'")

printf("Current element of subcursor is $11d\n", *hdfql subcursor get bigint (NULL));

5.2.42 HDFQL_CURSOR_GET_UNSIGNED_BIGINT

Syntax

unsigned long long *hdfqgl_cursor_get_unsigned_bigint(const HDFQL_CURSOR *cursor)

Version 2.4.0 Page 107 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get the current element of a cursor named cursor as an UNSIGNED BIGINT. In other words, the current element is
interpreted as an “unsigned long long” C data type and returned as a pointer of such type. If the result set is empty or the

cursor is located before or after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as an UNSIGNED BIGINT. If the pointer is NULL (in C), the current
element of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R
HDFgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python,

C#, Fortran and R it is optional (when not provided, the current element of the cursor in use is returned instead).
Return

unsigned long long * — pointer to the current element of the cursor. If there is no current element, the pointer will be

NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type unsigned long long of one dimension
(size 3)

hdfql execute ("CREATE DATASET my dataset AS UNSIGNED BIGINT(3)");

// insert (i.e. write) values into dataset "my dataset”

hdfql execute("IN

34, 23)");

INTO my dat

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfgl execute("SE

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned long long (should be "Current

element of cursor is 12")

printf("Current element of cursor 1is n'", *hdfql cursor get unsigned bigint (NULL));

Version 2.4.0 Page 108 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.43 HDFQL_SUBCURSOR_GET_UNSIGNED_BIGINT

Syntax

unsigned long long *hdfqgl_subcursor_get_unsigned_bigint(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as an UNSIGNED BIGINT. In other words, the current element is
interpreted as an “unsigned long long” C data type and returned as a pointer of such type. If the result subset is empty or

the subcursor is located before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as an UNSIGNED BIGINT. If the pointer is
NULL (in C), the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer
in C++, Java, Python, C#, Fortran and R HDFqgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C
cursor is mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the

subcursor of the cursor in use is returned instead).
Return

unsigned long long * — pointer to the current element of the subcursor. If there is no current element, the pointer will be

NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length unsigned long long of

one dimension (size 3)

hdfqgl execute ("CR T(3)");

// insert (i.e. write) values into dataset "my dataset”

S((5, 2), (8), (4, 3, 9))");

) my dataset

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SE

my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as an unsigned long long (should be "Current

Version 2.4.0 Page 109 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

element of cursor is 5")

printf("Current element of cursor 1is

*hdfgl cursor get unsigned bigint (NULL)) ;

// move the subcursor in use to next position within the result subset (i.e. first position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as an unsigned long lon (should be "Current
pLay g g g

element of subcursor is 5")

printf ("Current element of subcursor 1is u\n", *hdfgl subcursor get unsigned bigint (NULL))

// move the subcursor in use to next position within the result subset (i.e. second position)

hdfgl subcursor next (NULL) ;

// display current element of the subcursor in use as an unsigned long long (should be "Current

element of subcursor is 2")

of subcursor 1is

printf("Cur u\n", *hdfqgl subcursor get unsigned bigint (NULL));

5.2.44 HDFQL_CURSOR_GET_FLOAT

Syntax

float *hdfqgl_cursor_get_float(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as a FLOAT. In other words, the current element is interpreted as a
“float” C data type and returned as a pointer of such type. If the result set is empty or the cursor is located before or after

the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a FLOAT. If the pointer is NULL (in C), the current element of the
cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFgl wrappers
is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, C#, Fortran and R it

is optional (when not provided, the current element of the cursor in use is returned instead).
Return

float * — pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Version 2.4.0 Page 110 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// create an HDF5 dataset named "my dataset" of data type float of one dimension (size 3)

hdfgl execute ("CRE

inser l1.e. write values 1nto atase m atase
/71 t (1 ite) 1 into dataset "my dataset"

8.1, 4.9)");

hdfql execute("INSERT INTO my dat

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SEL FROM my dataset");
// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a float (should be "Current element of
cursor is 5.5")

printf("Current element of cursor is $%f\n", *hdfql cursor get float(NULL));

5.2.45 HDFQL_SUBCURSOR_GET_FLOAT

Syntax

float *hdfqgl_subcursor_get_float(const HDFQL_CURSOR *cursor)

Description

Get the current element of the subcursor in use as a FLOAT. In other words, the current element is interpreted as a “float”
C data type and returned as a pointer of such type. If the result subset is empty or the subcursor is located before or after

the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as a FLOAT. If the pointer is NULL (in C), the
current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java,
Python, C#, Fortran and R HDFql wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is
mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the subcursor

of the cursor in use is returned instead).

Version 2.4.0 Page 111 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Return

float * — pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length float of one
dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS VARFLOAT(3)");

inser l1.e. write values 1nto atase m atase
// 1 t (1 ite) 1 into dataset "my dataset"

hdfql execute("INSERT INTO my dataset VALUES((7.5, 3.1), (4.5), (4.9, 3.2, 9.7, 8.8))");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a float (should be "Current element of
cursor is 7.5")

printf("Current element of cursor is %f\n", *hdfql cursor get float(NULL));

// move the subcursor in use to next position within the result subset (i.e. first position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as a float (should be '"Current element of
subcursor is 7.5")

printf("Current element of subcursor is %f\n", *hdfql subcursor get float (NULL));

// move the subcursor in use to next position within the result subset (i.e. second position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as a float (should be "Current element of
subcursor is 3.1")

printf("Current element of subcursor is %f\n", *hdfgl subcursor get float(NULL));

5.2.46 HDFQL_CURSOR_GET_DOUBLE

Syntax
double *hdfgl_cursor_get_double(const HDFQL_CURSOR *cursor)

Version 2.4.0 Page 112 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get the current element of a cursor named cursor as a DOUBLE. In other words, the current element is interpreted as a
“double” C data type and returned as a pointer of such type. If the result set is empty or the cursor is located before or

after the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a DOUBLE. If the pointer is NULL (in C), the current element of
the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql
wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, CH,

Fortran and R it is optional (when not provided, the current element of the cursor in use is returned instead).
Return

double * — pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type double of one dimension (size 3)

hdfql execute ("CRE ;I ET my taset AS DOUBLE (3)");

// insert (i.e. write) values into dataset "my dataset”

hdfql execute ("INSERI

my dataset

5.5, 8.1, 4.9)");

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a double (should be "Current element of
cursor 1s 5.5")

printf("Current element of cursor is $f\n", *hdfql cursor get double (NULL));

5.2.47 HDFQL_SUBCURSOR_GET_DOUBLE

Syntax

double *hdfql_subcursor_get_double(const HDFQL_CURSOR *cursor)

Version 2.4.0 Page 113 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get the current element of the subcursor in use as a DOUBLE. In other words, the current element is interpreted as a
“double” C data type and returned as a pointer of such type. If the result subset is empty or the subcursor is located

before or after the first or last element of the result subset, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element of the subcursor in use as a DOUBLE. If the pointer is NULL (in C),
the current element of the subcursor of the cursor in use is returned instead. The equivalent of a NULL pointer in C+4+,
Java, Python, C#, Fortran and R HDFqgl wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is
mandatory, in C++, Java, Python, C#, Fortran and R it is optional (when not provided, the current element of the subcursor

of the cursor in use is returned instead).
Return

double * — pointer to the current element of the subcursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type variable-length double of one
dimension (size 3)
hdfql_execute(”(?REATE DATASET my dataset AS VARDOUBLE (3)");

// insert (i.e. write) values into dataset "my dataset”

hdfql execute("INSERT INTO my dataset VALUES((7.5, 3.1), (4.5), (4.9, 3.2, 9.7, 8.8))");
// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset");

// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a double (should be "Current element of
cursor 1is 7.5")
printf("Current element of cursor is $f\n", *hdfql cursor get double (NULL));

// move the subcursor in use to next position within the result subset (i.e. first position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as a double (should be "Current element of

subcursor is 7.5")

Version 2.4.0 Page 114 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

printf("Current element of subcursor is %f\n", *hdfgl subcursor get double (NULL));

// move the subcursor in use to next position within the result subset (i.e. second position)

hdfql subcursor next (NULL) ;

// display current element of the subcursor in use as a double (should be "Current element of
subcursor is 3.1")

printf("Current element of subcursor is $f\n", *hdfgl subcursor get double (NULL));

5.2.48 HDFQL_CURSOR_GET_CHAR

Syntax

char *hdfql_cursor_get_char(const HDFQL_CURSOR *cursor)

Description

Get the current element of a cursor named cursor as a VARCHAR. In other words, the current element is interpreted as a
“char” C data type and returned as a pointer of such type. If the result set is empty or the cursor is located before or after

the first or last element of the result set, the returned element is NULL.

Parameter(s)

cursor — pointer to a cursor to get the current element as a VARCHAR. If the pointer is NULL (in C), the current element of
the cursor in use is returned instead. The equivalent of a NULL pointer in C++, Java, Python, C#, Fortran and R HDFql
wrappers is NULL, null, None, null, 0 and NULL, respectively. While in C cursor is mandatory, in C++, Java, Python, CH,

Fortran and R it is optional (when not provided, the current element of the cursor in use is returned instead).
Return

char * — pointer to the current element of the cursor. If there is no current element, the pointer will be NULL.

Example(s)

// create an HDF5 dataset named "my dataset" of data type char of one dimension (size 3)

my dataset AS CHAR(3)");

hdfql execute ("CREATE DA

inser l1.e. write vailues 1nto atase my atase
// 1 t (1 ite) 1 into dataset "my dataset"

hdfgl execute("INSERT INTO my dataset VALUES (Red)");

Version 2.4.0 Page 115 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// select (i.e. read) data from dataset "my dataset" and populate cursor in use with it

hdfql execute("SEI ' FROM my dataset");
// move the cursor in use to next position within the result set (i.e. first position)

hdfql cursor next (NULL);

// display current element of the cursor in use as a char (should be "Current element of cursor
is Red")

printf("Current element of ct

- is ¢s\n'"", hdfql cursor get char (NULL))

5.2.49 HDFQL_VARIABLE_REGISTER

Syntax

int hdfgl_variable_register(const void *variable)

Description

Register a variable named variable for subsequent use. In other words, for HDFqgl to be able to read/write values from/to a
user-defined variable it must first be registered. If the operation was successful, variable is registered and a number is
assigned to it. This number — calculated by HDFql — starts with zero and is incremented by one every time a new variable is
registered. If variable is registered more than once, only one number is assigned to it (namely the number assigned upon
the first registering). Of note, currently up to five variables can be registered at any given time (trying to register more
than this number will raise an HDFQL_ERROR_FULL). In C, C++ and Fortran any variable may be registered as long HDFq|
can properly read/write values from/to it by having direct access to the memory associated with these — otherwise
unexpected errors may arise such as a segmentation fault. The following restrictions apply to other programming

languages (supported by HDFql):

e InJaval, only a variable that is an array of “byte”, “short”, “int”, “long”, “float”, “double" or “String” data type (or
corresponding wrapper class “Byte”, “Short”, “Integer”, “Long”, “Float” or “Double”) may be registered. Any attempt
to register a variable that is not an array of the data type (or corresponding wrapper class) previously enumerated will

return an error (HDFQL_ERROR_UNEXPECTED_DATA_TYPE).

n o uw

! Whenever possible, the “byte”, “short”, “int”, “long”, “float” and “double" data types should be used instead of the corresponding wrapper classes
“Byte”, “Short”, “Integer”, “Long”, “Float” and “Double” as the formers are faster to process by HDFgl (due to not having to box/unbox values).

Version 2.4.0 Page 116 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

e In Python, only a variable that is a NumPy array of “int8”, “uint8”, “int16”, “uint16”, “int32”, “uint32”, “int64”,
“uint64”, “float32”, “float64”, “Ssize”, “ubyte” or “void” (i.e. compound/structured) data type may be registered. Any
attempt to register a variable that is not a NumPy array of the data type previously enumerated will return an error

(HDFQL_ERROR_UNEXPECTED_DATA_TYPE). Please refer to http://www.numpy.org for additional information.

e In C#, only a variable that is an array of “SByte”, “Byte”, “Int16”, “Ulnt16”, “Int32”, “UInt32”, “Int64”, “Ulnt64”,
“Single”, “Double” or “String” data type (or corresponding alias “sbyte”, “byte”, “short”, “ushort”, “int”, “uint”,
“long”, “ulong”, “float”, “double” or “string”) or of a struct may be registered. Any attempt to register a variable that
is not an array of the data type (or corresponding alias) previously enumerated or of a struct will return an error

(HDFQL_ERROR_UNEXPECTED_DATA_TYPE).

VETH

e In R, only a variable that is a vector, matrix or array of “integer”, “integer64” (through package bit64), “numeric”,
“double”, “character” or “raw” data type may be registered. Any attempt to register a variable that is not a vector,
matrix or array of the data type previously enumerated will return an error

(HDFQL_ERROR_UNEXPECTED_DATA_TYPE).

An important aspect to remember when working with a variable is that it should not change address from the moment it
has been registered until used in the intented operation (e.g. SELECT) or function (e.g. HDFQL_VARIABLE_GET_NUMBER),
as HDFgl will not be able to identify the variable. In this case, the operation or function will raise an error
(HDFQL_ERROR_NOT_REGISTERED). In case a variable needs to change its address (for whatever the reason), first
unregister it via the function hdfqgl_variable_unregister, change its address, and register it again. In general, it is advisable
to register a variable just before executing the HDFql operation or function which employs it, and to unregister it as soon
as it is no longer used (this is especially relevant in C# where variables are pinned when registered and thus cannot be

moved by the Garbage Collector).
Parameter(s)

variable — variable to register for subsequent use.
Return

int — depending on the success in registering the variable for subsequent use, it can either be > 0 (i.e. the number assigned
to the wvariable when successfully registered)) HDFQL_ERROR_NO_ADDRESS, HDFQL_ERROR_FULL or
HDFQL_ERROR_UNEXPECTED DATA_TYPE.

Example(s)

// declare variables

Version 2.4.0 Page 117 of 346

http://www.numpy.org/

Hierarchical Data Format query language (HDFql) Reference Manual

char script[1024];
short data[3];

int number;

// create an HDF5 dataset named "my dataset" of data type short of one dimension (size 3)

hdfql execute("CREATE DATASET my dataset AS SMALLINT (3)");

// populate variable "data" with certain values
data[0] = 21;

data[l]
data[”]

]
-
@
N

// register variable "data" for subsequent use (by HDFgl)

number = hdfql variable register (data);

// prepare script to insert (i.e. write) values from variable "data" into dataset "my dataset"

sprintf(script, "INSERT INTO my dataset VALUES FROM MEMORY %d", number);

// execute script

hdfql execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)

hdfql variable unregister(data);

// declare structure
struct coordinate
{
double latitude;
double longitude;
};

// declare variables
char script[1024];
struct coordinate location;

int number;

// create an HDF5 attribute named "my attribute" of data type compound composed of two members
named "latitude" (of data type double) and "longitude" (of data type double)

hdfqgl execute ("CREATE ATTRIBUTE my attribute AS COMPOUND (latitude AS DOUBLE, longitude AS
DOUBLE) ") ;

// populate variable "location" with certain values

Version 2.4.0 Page 118 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

location.latitude = ;

location.longitude = ;

// register variable "location" for subsequent use (by HDFgl)

number = hdfql variable register (&location);

// prepare script to insert (i.e. write) values from variable "location" into attribute

"my attribute"

sprintf(script, "INSERT INTO my attribute V. DRY %d", number);

// execute script

hdfgl execute(script);

// unregister variable "location" as it is no longer used/needed (by HDFgl)

hdfql variable unregister(&location);

5.2.50 HDFQL_VARIABLE_TRANSIENT_REGISTER

Syntax

int hdfgl_variable_transient_register(const void *variable)

Description

Register a variable named variable in a transient way for subsequent use. This function is similar to
hdfgl_variable_register, except that after the execution of a script (via the function hdfgl_execute) which uses variable,

variable is automatically unregistered (by HDFql) thus alleviating the programmer from doing it.
Parameter(s)

variable — variable to register in a transient way for subsequent use.

Return

int — depending on the success in registering the variable in a transient way for subsequent use, it can either be > 0 (i.e.
the number assigned to the variable when successfully registered), HDFQL_ERROR_NO_ADDRESS, HDFQL_ERROR_FULL or
HDFQL_ERROR_UNEXPECTED_DATA_TYPE.

Version 2.4.0 Page 119 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

// declare variables
char script[1
short data[3];

int number;

// create an HDF5 dataset named "my dataset" of data type short of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS SMALLINT (3)");

// populate variable "data'" with certain values

data[0] = ;
data[l] = ;
data[’] = ;

// register variable "data" in a transient way for subsequent use (by HDFql)

number = hdfql variable transient register (data);

// prepare script to insert (i.e. write) values from variable '"data" into dataset "my dataset"

sprintf(script, "INSERT INTO my dataset VALUES FROM MEMORY 3%d", number);

// execute script (variable '"data" is automatically unregistered immediately after the
execution of the script — i.e. there is no need to explicitly unregister the variable)

hdfql execute(script);

5.2.51 HDFQL_VARIABLE_UNREGISTER

Syntax

int hdfgl_variable_unregister(const void *variable)

Description

Unregister a variable named variable. In other words, HDFql will free up any memory that may have been allocated to
manage the variable as well as the number assigned to it (the number may then be assigned to a new variable registered
subsequently). In general, it is advisable to unregister a variable as soon as it is no longer used by HDFql (this is especially
relevant in C# as variables are unpinned when unregistered and thus may again be moved by the Garbage Collector). If

variable has never been registered or has already been unregistered, an error is returned.

Version 2.4.0 Page 120 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

variable — variable to unregister.
Return

int — depending on the success in unregistering the variable, it can either be HDFQL_SUCCESS,
HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables
char script[1024];
short data[3];

int number;

// create an HDF5 dataset named "my dataset" of data type short of one dimension (size 3)

hdfql execute ("CREATE DATASET my dataset AS SMALLINT (3)");

// populate variable "data" with certain values

datal[0] = 21;
data[l] = 18;
data[”] = /5;

// register variable "data" for subsequent use (by HDFgl)

number = hdfql variable register (data);

// prepare script to insert (i.e. write) values from variable "data" into dataset "my dataset"

sprintf(script, "INSERT INTO my dataset VALUES FROM MEMORY %d", number);

// execute script

hdfql execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)

hdfql variable unregister(data);

5.2.52 HDFQL_VARIABLE_UNREGISTER_ALL

Syntax

int hdfgl_variable_unregister_all(void)

Version 2.4.0 Page 121 of 346

Hierarchical Data Format query language (HDFql)

Reference Manual

Description

Unregister all the variables that may have been registered previously. In other words, HDFgl will free up any memory that

may have been allocated to manage the variables as well as the numbers assigned to them (the numbers may then be

assigned to new variables registered subsequently). In general, it is advisable to unregister variables as soon as they are no

longer used by HDFql (this is especially relevant in C# as variables are unpinned when unregistered and thus may again be

moved by the Garbage Collector).

Parameter(s)

None

Return

int — depending on the success in unregistering all the variables that may have been registered previously, it can either be

HDFQL_SUCCESS or HDFQL_ERROR_UNKNOWN.

Example(s)

// declare variables
short dataO[3];
float datal[5];

// register variable "dataO" for subsequent use

hdfql variable register(data0);

// register variable "datal" for subsequent use

hdfql variable register(datal);

// display number of variable "dataO" (should be

printf ("Number of variable is 2d\n", hdfql variable get number (data0));

// display number of variable "datal" (should be

printf ("Number of variable is 2d\n", hdfql variable get number (datal));

// unregister all the variables (i.e. variables
used/needed (by HDFql)
hdfgl variable unregister _all();

"dataO"

(by HDFgl)

(by HDFql)

"Number of variable 1is

"Number of variable 1is

and '"datal'") as

0")

l")

they are no longer

Version 2.4.0

Page 122 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.53 HDFQL_VARIABLE_GET_NUMBER

Syntax

int hdfgl_variable_get_number(const void *variable)

Description

Get the number of a variable named variable. This refers to the number that was calculated by HDFgl and assigned to the
variable upon registering it with the function hdfgl_variable_register. If variable has never been registered or has been

unregistered, an error is returned.

Parameter(s)

variable — variable to get the number (calculated by HDFql) assigned to it.
Return

int — depending on the success in getting the number assigned to the variable, it can either be > 0 (i.e. the number

assigned to the variable), HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables
short dataO[3];
float datal[5];

// register variable "dataO" for subsequent use (by HDFql)
hdfql variable register(data0);

// register variable "datal" for subsequent use (by HDFql)
hdfql variable register(datal);

// display number of variable "dataO" (should be "Number of variable is 0'")
printf("Number of variable is 2%d\n'", hdfql variable get number (datal));

// display number of variable "datal" (should be "Number of variable is 1")
printf("Number of variable is 2d\n'", hdfql variable get number (datal));

Version 2.4.0 Page 123 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

5.2.54 HDFQL_VARIABLE_GET_DATA_TYPE

Syntax

int hdfgl_variable_get_data_type(const void *variable)

Description

Get the data type of a variable named variable. This function should help the programmer to better handle the content
stored in variable. The data type refers to the result of a DATA QUERY LANGUAGE (DQL) or DATA INTROSPECTION
LANGUAGE (DIL) operation redirected into memory —and not the data type of variable declared in the program. If variable
has never been registered, populated (through the redirection of the result of a DATA QUERY LANGUAGE (DQL) or DATA
INTROSPECTION LANGUAGE (DIL) operation into memory), or in case it has been unregistered, the returned data type is
undefined (HDFQL_UNDEFINED). Please refer to Table 6.3 for a complete enumeration of HDFql data types.

Parameter(s[

variable — variable to get its data type.
Return

int — depending on the success in getting the data type of the variable, it can either be HDFQL TINYINT,
HDFQL_UNSIGNED_TINYINT, HDFQL_SMALLINT, HDFQL_UNSIGNED_SMALLINT, HDFQL_INT, HDFQL_UNSIGNED_INT,
HDFQL_BIGINT, HDFQL_UNSIGNED_BIGINT, HDFQL_FLOAT, HDFQL_DOUBLE, HDFQL_CHAR, HDFQL_VARTINYINT,
HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT,
HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE,
HDFQL_VARCHAR, HDFQL_OPAQUE, HDFQL_BITFIELD, HDFQL_ENUMERATION, HDFQL_COMPOUND, HDFQL_REFERENCE,
HDFQL_UNDEFINED, HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables
char script[1

char data[1;

// register variable "data'" for subsequent use (by HDFql)
hdfql variable register(data);

// prepare script to show (i.e. get) current working directory and populate variable "data"

with it

Version 2.4.0 Page 124 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

sprintf(script, "SHOW USE DIRECTORY INTO M ¢d", hdfgl variable get number (data));

// execute script

hdfql execute(script);

// display data type of variable "data" (should be "Data type of variable is 2097152")

printf("Data type of variable is %d\n", hdfgl variable get data type(data));

5.2.55 HDFQL_VARIABLE_GET_COUNT

Syntax

int hdfgl_variable_get_count(const void *variable)

Description

Get the number of elements (i.e. result set size) stored in a variable named variable. This function should help the
programmer to better handle the content stored in variable. If the result set stores data from a dataset or attribute that
does not have a dimension (i.e. if it is scalar), the returned number of elements is one. Otherwise, if the result set stores
data from a dataset or attribute that has dimensions, the returned number of elements equals the multiplication of all its
dimensions’ sizes (e.g. if a variable stores a result set of two dimensions of size 10x3, the number of elements is 30). Of
note, in case a hyperslab or point selection is specified (in a DATA QUERY LANGUAGE (DQL) operation) the number of
elements of the selection will be returned instead. If variable has never been populated (through the redirection of the
result of a DATA QUERY LANGUAGE (DQL) or DATA INTROSPECTION LANGUAGE (DIL) operation into memory), the

returned number of elements is zero.

Parameter(s)

variable — variable to get its number of elements (i.e. resut set size).
Return

int — depending on the success in getting the number of elements of the variable, it can either be > 0 (i.e. the number of

elements), HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables

Version 2.4.0 Page 125 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

char script][1,

int data[5][3];

// create an HDF5 dataset named "my dataset" of data type int of two dimensions (size 5x3)

hdfgl execute ("CREATE DATASET my dataset AS INT(5, 3)");

// register variable "data" for subsequent use (by HDFgl)

hdfgl variable register(data);

// prepare script to select (i.e. read) data from dataset "my dataset" and populate variable
"data" with it

sprintf(script, "SELECT FROM t INTO MEMORY ¢d", hdfqgl variable get number (data));

// execute script

hdfqgl execute(script);

// display number of elements in variable "data" (should be "Number of elements in variable is

i5m)

printf (" >r of elements in variable is %d\n", hdfgl variable get count(data));

5.2.56 HDFQL_VARIABLE_GET_SIZE

Syntax

int hdfgl_variable_get_size(const void *variable)

Description

Get the size (in bytes) of a variable named variable. This function should help the programmer to better handle the
content stored in variable. The size refers to the result of a DATA QUERY LANGUAGE (DQL) or DATA INTROSPECTION
LANGUAGE (DIL) operation redirected into memory — and not the size that variable has in the program. If variable has
never been registered or has been unregistered, an error is returned. If variable has never been populated (through the
redirection of the result of a DATA QUERY LANGUAGE (DQL) or DATA INTROSPECTION LANGUAGE (DIL) operation into
memory), the returned size is zero. Please refer to Table 6.3 for a complete enumeration of HDFgl data types and their

corresponding sizes.

Parameter(s)

variable — variable to get its size (in bytes).

Version 2.4.0 Page 126 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Return

int — depending on the success in getting the size (in bytes) of the variable, it can either be > 0 (i.e. the size itself),

HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables
char script][1/

int data[5][3];

// create an HDF5 dataset named "my dataset" of data type int of two dimensions (size 5x3)

hdfql execute ("CREATE DATZ

t AS INT(5, 3)");

// register variable "data" for subsequent use (by HDFgl)

hdfql variable register(data);

// prepare script to select (i.e. read) data from dataset "my dataset" and populate variable
"data" with it

sprintf(script, "SELECT FROM my dataset INTO MEMORY 3d'", hdfgl variable get number (data));

// execute script

hdfql execute(script);

// display size (in bytes) of variable "data" (should be "Size (in bytes) of variable is 60")

printf("Size (in bytes) of variable is %d\n'", hdfql variable get size(data))

5.2.57 HDFQL_VARIABLE_GET_DIMENSION_COUNT

Syntax

int hdfgl_variable_get_dimension_count(const void *variable)

Description

Get the number of dimensions of a variable named variable. This function should help the programmer to better handle
the content stored in variable. The number of dimensions refers to the result of a DATA QUERY LANGUAGE (DQL) or DATA
INTROSPECTION LANGUAGE (DIL) operation redirected into memory — and not the number of dimensions that variable has

in the program. If variable has never been registered or has been unregistered, an error is returned. If variable has never

Version 2.4.0 Page 127 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

been populated (through the redirection of the result of a DATA QUERY LANGUAGE (DQL) or DATA INTROSPECTION

LANGUAGE (DIL) operation into memory), the returned number of dimensions is zero.
Parameter(s)

variable — variable to get its number of dimensions.

Return

int — depending on the success in getting the number of dimensions of the variable, it can either be > 0 (i.e. the number of

dimensions), HDFQL_ERROR_NO_ADDRESS or HDFQL_ERROR_NOT_REGISTERED.

Example(s)

// declare variables
char script[1’

int data[5][3]1;

// create an HDF5 dataset named "my dataset" of data type int of two dimensions (size 5x3)

hdfql execute("CREATE DATASET my dataset AS INT(5, 3)");

// register variable "data" for subsequent use (by HDFgl)
hdfgl variable register(data);

// prepare script to select (i.e. read) data from dataset "my dataset" and populate variable
"data" with it

sprintf(script, "SELECT FROM my dataset INTO MEMORY 3d'", hdfqgl variable get number (data));

// execute script

hdfql execute(script);

// display number of dimensions of variable "data" (should be "Number of dimensions in variable
is 2")

printf("Number of dimensions in variable is %d\n", hdfql variable get dimension count(data));

5.2.58 HDFQL_VARIABLE_GET_DIMENSION

Syntax

long long hdfqgl_variable_get_dimension(const void *variable, int index)

Version 2.4.0 Page 128 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Get the size of a certain dimension specified in index of a variable named variable. This function should help the
programmer to better handle the content stored in variable. The size of a certain dimension refers to the result of a DATA
QUERY LANGUAGE (DQL) or DATA INTROSPECTION LANGUAGE (DIL) operation redirected into memory — and not the size
of a certain dimension that variable has in the program. The index of the first dimension is zero (index must be between 0
and the value returned by hdfgl_variable_get_dimension_count - 1). If variable has never been registered, populated
(through the redirection of the result of a DATA QUERY LANGUAGE (DQL) or DATA INTROSPECTION LANGUAGE (DIL)

operation into memory), or in case it has been unregistered, an error is returned.

Parameter(s)

variable — variable to get the size of one of its dimensions.

index — index of the dimension to get its size.
Return

long long — depending on the success in getting the size of a certain dimension of the variable, it can either be > 0 (i.e. the
size of a certain dimension itself), HDFQL_ERROR_NO_ADDRESS, HDFQL_ERROR_NOT_REGISTERED or
HDFQL_ERROR_OUTSIDE_LIMIT.

Example(s)

// declare variables
char script[1

int data[5][3];

// create an HDF5 dataset named "my dataset" of data type int of two dimensions (size 5x3)

hdfql_execute ("CREATE DATASET my dataset AS INT(5, 3)");

// register variable "data" for subsequent use (by HDFgl)
hdfql variable register(data);

// prepare script to select (i.e. read) data from dataset "my dataset" and populate variable

"data" with it

sprintf(script, "SELECT FROM my dataset INTO M © 5d", hdfql variable get number (data));

// execute script

hdfql execute(script);

Version 2.4.0 Page 129 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// display size of the first dimension of variable "data" (should be "Size of first dimension
of variable is 5")

printf("Size of first dimension of variable is %11d\n", hdfqgl variable get dimension(data, 0));

// display size of the second dimension of variable "data'" (should be "Size of second dimension
of variable is 3")
printf("Size of second dimension of variable is %11d\n", hdfgl variable get dimension(data,

));

5.2.59 HDFQL_MPI_GET_SIZE

Syntax

int hdfgl_mpi_get_size(void)

Description

Get the number (i.e. size) of processes associated to the default MPI communicator (MPI_COMM_WORLD). In other
words, this function returns the number of MPI processes that are specified upon launching a program in parallel using
“mpiexec” (or a similar launcher). Of note, this function is basically a wrapper of the MPI function “MPI_Comm_size”
(please refer to https://www.mpich.org/static/docs/v3.2/www3/MPI_Comm_size.html or https://www.open-
mpi.org/doc/v2.1/man3/MPI_Comm_size.3.php for additional information in case the MPI library used is MPICH (or,

alternatively, one of its ABI compatible derivative libraries) or Open MPI).
Parameter(s)

None

Return

int — depending on the success in getting the number of processes associated to the default MPI communicator
(MPI_COMM_WORLD), it can either be > 1 (i.e. the number of processes) or HDFQL_UNDEFINED (in case MPI itself was

not initialized properly or in case of using an HDFql non MPI-based distribution).

Example(s)

// display number (i.e. size) of MPI processes (if the program is launched as, e.g., "mpiexec -
n 5 my program'", the message "Number (i.e. size) of MPI processes is 5" will be displayed five

times)

Version 2.4.0 Page 130 of 346

https://www.mpich.org/static/docs/v3.2/www3/MPI_Comm_size.html
https://www.open-mpi.org/doc/v2.1/man3/MPI_Comm_size.3.php
https://www.open-mpi.org/doc/v2.1/man3/MPI_Comm_size.3.php

Hierarchical Data Format query language (HDFql) Reference Manual

printf ("N (i.e. size) of MPI processes is %d\n", hdfql mpi get size());

5.2.60 HDFQL_MPI_GET_RANK

Syntax

int hdfgl_mpi_get_rank(void)

Description

Get the number (i.e. rank) of the calling process associated to the default MPlI communicator (MPI_COMM_WORLD). In
other words, this function returns the number of the MPI process assigned to a particular instance of a program that was
launched in parallel using “mpiexec” (or a similar launcher). Of note, this function is basically a wrapper of the MPI
function “MPI_Comm_rank” (please refer to https://www.mpich.org/static/docs/v3.2/www3/MPI_Comm_rank.html or
https://www.open-mpi.org/doc/v2.1/man3/MPI_Comm_rank.3.php for additional information in case the MPI library

used is MPICH (or, alternatively, one of its ABI compatible derivative libraries) or Open MPI).
Parameters(s)

None

Return

int — depending on the success in getting the number (i.e. rank) of the calling process associated to the default MPI
communicator (MPI_COMM_WORLD), it can either be = 0 (i.e. the number of the calling process) or HDFQL_UNDEFINED

(in case MPI itself was not initialized properly or in case of using an HDFgl non MPI-based distribution).

Example(s)

// display number (i.e. rank) of the MPI process (if the program is launched as, e.g., "mpiexec
-n 3 my program", the message "Number (i.e. rank) of the MPI process is X" will be displayed

three times where X is 0, 1 or 2 (not necessarily in this order))

printf ("N (i.e. rank) of the MPI process is %d\n", hdfgl mpi get rank());

Version 2.4.0 Page 131 of 346

https://www.mpich.org/static/docs/v3.2/www3/MPI_Comm_rank.html
https://www.open-mpi.org/doc/v2.1/man3/MPI_Comm_rank.3.php

Hierarchical Data Format query language (HDFql) Reference Manual

Version 2.4.0 Page 132 of 346

6. LANGUAGE

HDFql is a high-level language to manage HDF5 files in a simple and natural way. It was designed to be similar to SQL
(wherever possible) so that its learning effort is kept at minimum while still providing great power and flexibility to the
programmer. This chapter describes data types, post-processing options to further transform result sets, redirecting
options to read/write data/result sets from/into disparate input/output sources, and operations (i.e. the language itself)
available in HDFqgl. It also introduces text formatting conventions used throughout this chapter to describe HDFql
operations (Table 6.1), and a summary of existing operations (Table 6.2). Before continuing, it is highly recommended to
first read the HDF5 User’s Guide available at https://support.hdfgroup.org/HDF5/doc/UG/HDF5_Users_Guide.pdf to

facilitate the understanding of the current chapter.

Convention Description Example
Bold Keyword that must be typed exactly as shown CREATE
Italic Value that the programmer must supply dataset_name
Between brackets ([]) Optional keyword/value [DATASET]
Between braces ({}) Logical grouping of keywords/values (to ease understanding) {{TRUNCATE] BINARY FILE file_name}
Separated with a pipe (]) Set of keywords/values from which one must be chosen GROUP | DATASET | ATTRIBUTE
Asterisk (*) Keyword/value that can be supplied zero or more times group_name [, group_name)*

Table 6.1 — HDFql operations text formatting conventions

Operation Description
CREATE DIRECTORY Create a directory
CREATE FILE Create an HDFS5 file
CREATE GROUP Create an HDF5 group

Version 2.4.0 Page 133 of 346

https://support.hdfgroup.org/HDF5/doc/UG/HDF5_Users_Guide.pdf

Hierarchical Data Format query language (HDFql)

Reference Manual

CREATE DATASET

Create an HDF5 dataset

CREATE ATTRIBUTE

Create an HDF5 attribute

CREATE [SOFT | HARD] LINK

Create an HDF5 soft or hard link

CREATE EXTERNAL LINK

Create an HDF5 external link

ALTER DIMENSION

Alter (i.e. change) the dimensions of an existing HDF5 dataset

RENAME DIRECTORY

Rename (or move) an existing directory

RENAME FILE

Rename (or move) an existing file

RENAME [GROUP | DATASET | ATTRIBUTE |
[SOFT] LINK | EXTERNAL LINK]

Rename (or move) an existing HDF5 group, dataset, attribute, (soft) link or external

link

COPY FILE

Copy an existing file

COPY [GROUP | DATASET | ATTRIBUTE |
[SOFT] LINK | EXTERNAL LINK]

Copy an existing HDF5 group, dataset, attribute, (soft) link or external link

DROP DIRECTORY

Drop (i.e. delete) an existing directory

DROP FILE

Drop (i.e. delete) an existing file

DROP [GROUP | DATASET | ATTRIBUTE |
[SOFT] LINK | EXTERNAL LINK]

Drop (i.e. delete) an existing HDF5 group, dataset, attribute, (soft) link or external

link

INSERT

Insert (i.e. write) data into an HDF5 dataset or attribute

SELECT

Select (i.e. read) data from an HDF5 dataset or attribute

SHOW FILE VALIDITY

Get validity of a file (i.e. whether it is a valid HDF5 file or not)

SHOW USE DIRECTORY

Get working directory currently in use

SHOW USE FILE

Get HDFS5 file currently in use or check if a certain HDF5 file is used (i.e. opened)

SHOW ALL USE FILE

Get all HDF5 files in use (i.e. open)

SHOW USE GROUP

Get HDFS5 group currently in use

SHOW [GROUP | DATASET | ATTRIBUTE |
[SOFT] LINK | EXTERNAL LINK]

Get HDF5 objects (i.e. groups, datasets, attributes, (soft) links or external links) or

check the existence of an object

SHOW TYPE

Get type of an HDF5 object (i.e. group, dataset or attribute)

SHOW DATA TYPE

Get data type of an HDF5 dataset or attribute or of its members

Version 2.4.0

Page 134 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

SHOW MEMBER Get members of an HDF5 dataset or attribute
SHOW MASK Get (filter) mask of an HDF5 dataset
SHOW ENDIANNESS Get endianness of an HDF5 dataset or attribute or of its members
SHOW CHARSET Get charset of an HDF5 dataset or attribute or of its members
SHOW STORAGE TYPE Get storage type (layout) of an HDF5 dataset
SHOW STORAGE ALLOCATION Get storage allocation of an HDF5 dataset
SHOW STORAGE DIMENSION Get storage dimensions of an HDF5 dataset
SHOW DIMENSION Get dimensions of an HDF5 dataset or attribute
SHOW ORDER Get (creation) order strategy of an HDF5 group or dataset
SHOW TAG Get tag of an HDF5 dataset or attribute or of its members
SHOW OFFSET Get member offsets of an HDF5 dataset or attribute
SHOW FILL TYPE Get fill type of an HDF5 dataset
SHOW FILL VALUE Get fill values of an HDF5 dataset
SHOW FILE SIZE Get size (in bytes) of a file or of the HDF5 file currently in use

Get size (in bytes) of a user-defined block of data stored within an HDF5 file or
SHOW USERBLOCK SIZE
within the HDF5 file currently in use

Get user-defined block of data stored within an HDF5 file or within the HDFS5 file
SHOW USERBLOCK
currently in use

SHOW [DATASET | ATTRIBUTE] SIZE Get size (in bytes) of an HDF5 dataset or attribute

SHOW HDFQL VERSION Get version of the HDFql library

SHOW HDF5 VERSION Get version of the HDFS5 library used by HDFql

SHOW MPI VERSION Get version of the MPI library used by HDFq|

SHOW DIRECTORY Get directory names within a directory or check the existence of a directory
SHOW FILE Get file names within a directory or check the existence of a file

SHOW EXECUTE STATUS Get status of the last executed operation
SHOW LIBRARY BOUNDS Get library bound values for creating or opening HDF5 files

Version 2.4.0 Page 135 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

SHOW CACHE Get cache parameters for accessing HDF5 files or datasets
SHOW ATOMIC Get atomicity for accessing HDFS5 files in an MPI environment
SHOW EXTERNAL LINK PREFIX Get prefix to prepend to file names stored in HDF5 external links
SHOW FLUSH Get status of the automatic flushing

Show (i.e. get) number of (CPU) threads to use when executing operations that
SHOW THREAD
support parallelism

Show (i.e. get) path where plugins (in the form of shared libraries) are searched for
SHOW PLUGIN PATH
and dynamically loaded by HDFql/HDFS5 library

SHOW DEBUG Get status of the debug mechanism
USE DIRECTORY Use (i.e. open) a directory for subsequent operations
USE FILE Use (i.e. open) an HDF5 file for subsequent operations
USE GROUP Use (i.e. open) an HDF5 group for subsequent operations
FLUSH Flush the entire virtual HDF5 file or only the HDFS5 file currently in use
CLOSE FILE Close a certain HDF5 file used (i.e. opened) or the HDF5 file currently in use
CLOSE ALL FILE Close all HDFS5 files in use
CLOSE GROUP Close the HDF5 group currently in use
SET LIBRARY BOUNDS Set library bound values for creating and opening HDFS5 files
SET CACHE Set cache parameters for accessing HDF5 files or datasets
SET CACHE Set atomicity for accessing HDF5 files in an MPI environment to enabled or disabled
SET EXTERNAL LINK PREFIX Set prefix to prepend to file names stored in HDF5 external links

Set automatic flushing of the entire virtual HDF5 file or only the HDFS5 file currently
SET FLUSH
in use to enabled or disabled

Set number of (CPU) threads to use when executing operations that support
SET THREAD
parallelism

Set path where plugins (in the form of shared libraries) are searched for and
SET PLUGIN PATH
dynamically loaded by HDFql/HDFS5 library

SET DEBUG Set debug mechanism to enabled or disabled

Table 6.2 — HDFql operations

Version 2.4.0 Page 136 of 346

Hierarchical Data Format query language (HDFql)

6.1 DATA TYPES

Reference Manual

A data type is a classification identifying one of various types of data such as integer, floating-point or string, which

determines the possible values for that type, the operations that can be done on values of that type, the meaning of the

data, and the way values of that type can be stored. In other words, a data type is a classification of data that tells HDFqgl

how the user intends to use it. The following table summarizes all existing HDFgl data types, their range of values and size

(in bytes).

Data Type Range of Values
TINYINT -128 to 127 1 byte
UNSIGNED TINYINT 0 to 255 1 byte
SMALLINT -32,768 to 32,767 2 bytes
UNSIGNED SMALLINT 0to 65,535 2 bytes
INT -2,147,483,648 to 2,147,483,647 4 bytes
UNSIGNED INT 0to 4,294,967,295 4 bytes
BIGINT -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 8 bytes
UNSIGNED BIGINT 0 to 18,446,744,073,709,551,615 8 bytes
FLOAT -3.4E+38to0 3.4E +38 4 bytes
DOUBLE -1.79E + 308 to 1.79E + 308 8 bytes
CHAR 0 to 255 1 byte
VARTINYINT -128 to 127 1 byte (per element)
UNSIGNED VARTINYINT 0to 255 1 byte (per element)

VARSMALLINT

-32,768 to 32,767

2 bytes (per element)

UNSIGNED VARSMALLINT

0to 65,535

2 bytes (per element)

VARINT

-2,147,483,648 to 2,147,483,647

4 bytes (per element)

UNSIGNED VARINT

0to 4,294,967,295

4 bytes (per element)

Version 2.4.0

Page 137 of 346

Hierarchical Data Format query language (HDFql)

Reference Manual

VARBIGINT

-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

8 bytes (per element)

UNSIGNED VARBIGINT

0to 18,446,744,073,709,551,615

8 bytes (per element)

VARFLOAT -3.4E+38t0 3.4E + 38 4 bytes (per element)

VARDOUBLE -1.79E + 308 to 1.79E + 308 8 bytes (per element)

VARCHAR 0to 255 1 byte (per element)
OPAQUE 0to 255 1 byte

ENUMERATION

-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

1,2, 4 or 8 bytes

COMPOUND

Varies (depends on members)

Varies (depends on members)

6.1.1 TINYINT

Table 6.3 — HDFql data types

The HDFql TINYINT data type stores a value between -128 and 127, and occupies 1 byte in memory. It represents the data

type of an HDF5 H5T_NATIVE_CHAR dataset/attribute or of a result set that stores elements within this range of values

(which can be retrieved using the HDFQL_CURSOR_GET_TINYINT function). Depending on the programming language

(supported by HDFql), the TINYINT data type is represented by:

e InC, the “char” data type.

e In C++, the “char” data type.

e InJava, the “byte” data type (or corresponding wrapper class “Byte”).

e In Python, the “int8” NumPy data type.

e In C#, the “SByte” data type (or corresponding alias “sbyte”).

e InFortran, the “INTEGER(KIND = 1)” data type.

Version 2.4.0

Page 138 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

e InR?Y the “integer” data type.

6.1.2 UNSIGNED TINYINT

The HDFgl UNSIGNED TINYINT data type stores a value between 0 and 255, and occupies 1 byte in memory. It represents
the data type of an HDF5 H5T_NATIVE_UCHAR dataset/attribute or of a result set that stores elements within this range of
values (which can be retrieved using the HDFQL_CURSOR_GET_UNSIGNED_TINYINT function). Depending on the

programming language (supported by HDFql), the UNSIGNED TINYINT data type is represented by:

In C, the “unsigned char” data type.

e In C++, the “unsigned char” data type.

e InJava? the “byte” data type (or corresponding wrapper class “Byte”).
e In Python, the “uint8” NumPy data type.

e In C#, the “Byte” data type (or corresponding alias “byte”).

e In Fortran3, the “INTEGER(KIND = 1)” data type.

e InR% the “integer” data type.

! By design, R does not have a data type that stores a value between -128 and 127 with exactly 1 byte in memory. As a substitute, the R “integer” data
type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower
performance (as bytes alignment must be made by HDFql).

2 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned number in Java.

3 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible
for making the conversion from a signed number to its equivalent unsigned number in Fortran.

4 By design, R does not have a data type that stores a value between 0 and 255 with exactly 1 byte in memory. As a substitute, the R “integer” data type

may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower performance (as
bytes alignment must be made by HDFql).

Version 2.4.0 Page 139 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

6.1.3 SMALLINT

The HDFql SMALLINT data type stores a value between -32,768 and 32,767, and occupies 2 bytes in memory. It represents
the data type of an HDF5 H5T_NATIVE_SHORT dataset/attribute or of a result set that stores elements within this range of
values (which can be retrieved using the HDFQL_CURSOR_GET_SMALLINT function). Depending on the programming
language (supported by HDFql), the SMALLINT data type is represented by:

e InC, the “short” data type.

e In C++, the “short” data type.

e InJava, the “short” data type (or corresponding wrapper class “Short”).
e In Python, the “int16” NumPy data type.

e InC#, the “Int16” data type (or corresponding alias “short”).

e In Fortran, the “INTEGER(KIND = 2)” data type.

e In R’ the “integer” data type.

6.1.4 UNSIGNED SMALLINT

The HDFgl UNSIGNED SMALLINT stores a value between 0 and 65,535, and occupies 2 bytes in memory. It represents the
data type of an HDF5 H5T_NATIVE_USHORT dataset/attribute or of a result set that stores elements within this range of
values (which can be retrieved using the HDFQL_CURSOR_GET_UNSIGNED_SMALLINT function). Depending on the

programming language (supported by HDFql), the UNSIGNED SMALLINT data type is represented by:
e InC, the “unsigned short” data type.
e In C++, the “unsigned short” data type.

e InJava® the “short” data type (or corresponding wrapper class “Short”).

5 By design, R does not have a data type that stores a value between -32,768 and 32,767 with exactly 2 bytes in memory. As a substitute, the R “integer”
data type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower
performance (as bytes alignment must be made by HDFql).

6 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned number in Java.

Version 2.4.0 Page 140 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

e In Python, the “uint16” NumPy data type.
e In C#, the “UInt16” data type (or corresponding alias “ushort”).
e InFortran’, the “INTEGER(KIND = 2)” data type.

e InR?® the “integer” data type.

6.1.5 INT

The HDFql INT data type stores a value between -2,147,483,648 and 2,147,483,647, and occupies 4 bytes in memory. It
represents the data type of an HDF5 H5T_NATIVE_INT dataset/attribute or of a result set that stores elements within this
range of values (which can be retrieved using the HDFQL_CURSOR_GET_INT function). Depending on the programming
language (supported by HDFql), the INT data type is represented by:

In C, the “int” data type.

e In C++, the “int” data type.

e InJava, the “int” data type (or corresponding wrapper class “Integer”).

e In Python, the “int32” NumPy data type.

o In C#, the “Int32” data type (or corresponding alias “int”).

e InFortran, the “INTEGER(KIND = 4)” or “INTEGER” data type.

e InR, the “integer” data type.

7 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible
for making the conversion from a signed number to its equivalent unsigned number in Fortran.

8 By design, R does not have a data type that stores a value between 0 and 65,535 with exactly 2 bytes in memory. As a substitute, the R “integer” data
type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower
performance (as bytes alignment must be made by HDFql).

Version 2.4.0 Page 141 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

6.1.6 UNSIGNED INT

The HDFgl UNSIGNED INT stores a value between 0 and 4,294,967,295, and occupies 4 bytes in memory. It represents the
data type of an HDF5 H5T_NATIVE_UINT dataset/attribute or of a result set that stores elements within this range of
values (which can be retrieved using the HDFQL_CURSOR_GET_UNSIGNED_INT function). Depending on the programming

language (supported by HDFql), the UNSIGNED INT data type is represented by:

In C, the “unsigned int” data type.

e In C++, the “unsigned int” data type.

e InJava®, the “int” data type (or corresponding wrapper class “Integer”).
e In Python, the “uint32” NumPy data type.

e In C#, the “UInt32” data type (or corresponding alias “uint”).

e InFortran'® the “INTEGER(KIND = 4)” or “INTEGER” data type.

e InR™Y, the “integer” data type.

6.1.7 BIGINT

The HDFql BIGINT data type stores a value between -9,223,372,036,854,775,808 and 9,223,372,036,854,775,807, and
occupies 8 bytes in memory. It represents the data type of an HDF5 H5T_NATIVE_LLONG dataset/attribute or of a result
set that stores elements within this range of values (which can be retrieved using the HDFQL_CURSOR_GET_BIGINT

function). Depending on the programming language (supported by HDFgl), the BIGINT data type is represented by:
e InC, the “long long” data type.

e In C++, the “long long” data type.

° By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned in Java.

10 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible
for making the conversion from a signed number to its equivalent unsigned in Fortran.

11 By design, R does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned in R.

Version 2.4.0 Page 142 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

In Java, the “long” data type (or corresponding wrapper class “Long”).

e In Python, the “int64” NumPy data type.

e In C#, the “Int64” data type (or corresponding alias “long”).

e In Fortran, the “INTEGER(KIND = 8)” data type.

e InR, the “integer64” bit64 data type.

6.1.8 UNSIGNED BIGINT

The HDFql UNSIGNED BIGINT data type stores a value between 0 and 18,446,744,073,709,551,615, and occupies 8 bytes in
memory. It represents the data type of an HDF5 H5T_NATIVE_ULLONG dataset/attribute or of a result set that stores
elements within this range of values (which can be retrieved using the HDFQL_CURSOR_GET_UNSIGNED_BIGINT function).

Depending on the programming language (supported by HDFqgl), the UNSIGNED BIGINT data type is represented by:

In C, the “unsigned long long” data type.

e In C++, the “unsigned long long” data type.

e InJava'? the “long” data type (or corresponding wrapper class “Long”).
e In Python, the “uint64” NumPy data type.

e InC#, the “UInt64” data type (or corresponding alias “ulong”).

e InFortran®?, the “INTEGER(KIND = 8)” data type.

e InR¥ the “integer64” bit64 data type.

12 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned in Java.

13 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible
for making the conversion from a signed number to its equivalent unsigned in Fortran.

4 By design, R does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned in R.

Version 2.4.0 Page 143 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

6.1.9 FLOAT

The HDFql FLOAT data type stores a value between -3.4E + 38 and 3.4E + 38, and occupies 4 bytes in memory. It
represents the data type of an HDF5 H5T_NATIVE_FLOAT dataset/attribute or of a result set that stores elements within
this range of values (which can be retrieved using the HDFQL_CURSOR_GET_FLOAT function). Depending on the

programming language (supported by HDFqgl), the FLOAT data type is represented by:
e InC, the “float” data type.

e In C++, the “float” data type.

e InJava, the “float” data type (or corresponding wrapper class “Float”).

e In Python, the “float32” NumPy data type.

e In C#, the “Single” data type (or corresponding alias “float”).

e In Fortran, the “REAL(KIND = 4)” or “REAL” data type.

e InR™, the “numeric” or “double” data type.

6.1.10 DOUBLE

The HDFgl DOUBLE data type sstores a value between -1.79E + 308 and 1.79E + 308, and occupies 8 bytes in memory. It
represents the data type of an HDF5 H5T_NATIVE_DOUBLE dataset/attribute or of a result set that stores elements within
this range of values (which can be retrieved using the HDFQL_CURSOR_GET_DOUBLE function). Depending on the

programming language (supported by HDFql), the DOUBLE data type is represented by:
e InC, the “double” data type.

e In C++, the “double” data type.

e InJava, the “double” data type (or corresponding wrapper class “Double”).

e In Python, the “float64” NumPy data type.

15 By design, R does not have a data type that stores a value between -3.4E + 38 and 3.4E + 38 with exactly 4 byte in memory. As a substitute, the R
“numeric” or “double” data types may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 8 bytes in
memory) and lower performance (as bytes alignment must be made by HDFql).

Version 2.4.0 Page 144 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

e In C#, the “Double” data type (or corresponding alias “double”).

e In Fortran, the “REAL(KIND = 8)” or “DOUBLE PRECISION” data type.

e InR, the “numeric” or “double” data type.

6.1.11 CHAR

The HDFgl CHAR data type stores a value between 0 and 255, and occupies size * 1 byte in memory (size being the length
of the string). It represents the data type of an HDF5 H5T_C_S1 dataset/attribute or of a result set that stores elements
within this range of values (which can be retrieved using the HDFQL_CURSOR_GET_UNSIGNED_TINYINT and
HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINT functions). The CHAR data type is useful for storing fixed-length strings.

Depending on the programming language (supported by HDFql), the CHAR data type is represented by:

In C, the “unsigned char [size]” data type.

e In C++, the “unsigned char [size]” data type.

e InJava, the “byte [size]” data type (or corresponding wrapper class “Byte [size]”).
e InPython, the “Ssize” NumPy data type.

e In C#, the “Byte [size]” data type (or corresponding alias “byte [size]”).

e InFortran, the “CHARACTER(LEN = size)” data type.

e InR, the “integer” data type.

6.1.12 VARTINYINT

The HDFgl VARTINYINT data type stores a value between -128 and 127, and occupies size * 1 byte in memory (size being
the number of elements composing the VARTINYINT data type). It represents the data type of an HDF5 (variable-length)

H5T_NATIVE_CHAR dataset/attribute or of a result set that stores (variable-length) elements within this range of values

16 By design, R does not have a data type that stores a value between 0 and 255 with exactly 1 byte in memory. As a substitute, the R “integer” data type
may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower performance (as
bytes alignment must be made by HDFql).

Version 2.4.0 Page 145 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

(which can be retrieved using the HDFQL_CURSOR_GET_TINYINT and HDFQL_SUBCURSOR_GET_TINYINT functions).

Depending on the programming language (supported by HDFgl), the VARTINYINT data type is represented by:

In C, the “char” data type.

e In C++, the “char” data type.

e InJava, the “byte” data type (or corresponding wrapper class “Byte”).
e In Python, the “int8” NumPy data type.

e In C#, the “SByte” data type (or corresponding alias “sbyte”).

e InFortran, the “INTEGER(KIND = 1)” data type.

e InRY, the “integer” data type.

6.1.13 UNSIGNED VARTINYINT

The HDFgl UNSIGNED VARTINYINT data type stores a value between 0 and 255, and occupies size * 1 byte in memory (size
being the number of elements composing the VARTINYINT data type). It represents the data type of an HDF5 (variable-
length) HS5T_NATIVE_UCHAR dataset/attribute or of a result set that stores (variable-length) elements within this range of
values (which can be retrieved using the HDFQL_CURSOR_GET_UNSIGNED_TINYINT and
HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINT functions). Depending on the programming language (supported by
HDFql), the UNSIGNED VARTINYINT data type is represented by:

In C, the “unsigned char” data type.

In C++, the “unsigned char” data type.

e InJava'® the “byte” data type (or corresponding wrapper class “Byte”).

In Python, the “uint8” NumPy data type.

17 By design, R does not have a data type that stores a value between -128 and 127 with exactly 1 byte in memory. As a substitute, the R “integer” data
type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower
performance (as bytes alignment must be made by HDFql).

18 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned number in Java.

Version 2.4.0 Page 146 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

e In C#, the “Byte” data type (or corresponding alias “byte”).
e InFortran®®, the “INTEGER(KIND = 1)” data type.

e InR%, the “integer” data type.

6.1.14 VARSMALLINT

The HDFql VARSMALLINT data type stores a value between -32,768 and 32,767, and occupies size * 2 bytes in memory
(size being the number of elements composing the VARSMALLINT data type). It represents the data type of an HDF5
(variable-length) H5T_NATIVE_SHORT dataset/attribute or of a result set that stores (variable-length) elements within this
range of values (which can be retrieved using the HDFQL_CURSOR_GET_SMALLINT and
HDFQL_SUBCURSOR_GET_SMALLINT functions). Depending on the programming language (supported by HDFql), the
VARSMALLINT data type is represented by:

In C, the “short” data type.

e In C++, the “short” data type.

e InJava, the “short” data type (or corresponding wrapper class “Short”).

e In Python, the “int16” NumPy data type.

e In C#, the “Int16” data type (or corresponding alias “short”).

e In Fortran, the “INTEGER(KIND = 2)” data type.

e InR?%, the “integer” data type.

19 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible
for making the conversion from a signed number to its equivalent unsigned number in Fortran.

20 By design, R does not have a data type that stores a value between 0 and 255 with exactly 1 byte in memory. As a substitute, the R “integer” data type
may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower performance (as
bytes alignment must be made by HDFql).

21 By design, R does not have a data type that stores a value between -32,768 and 32,767 with exactly 2 bytes in memory. As a substitute, the R “integer”
data type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower
performance (as bytes alignment must be made by HDFql).

Version 2.4.0 Page 147 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

6.1.15 UNSIGNED VARSMALLINT

The HDFql UNSIGNED VARSMALLINT data type stores a value between 0 and 65,535, and occupies size * 2 bytes in
memory (size being the number of elements composing the VARSMALLINT data type). It represents the data type of an
HDF5 (variable-length) H5T_NATIVE_USHORT dataset/attribute or of a result set that stores (variable-length) elements
within this range of values (which can be retrieved using the HDFQL CURSOR_GET_UNSIGNED_SMALLINT and
HDFQL_SUBCURSOR_GET_UNSIGNED_SMALLINT functions). Depending on the programming language (supported by
HDFql), the UNSIGNED VARSMALLINT data type is represented by:

In C, the “unsigned short” data type.

e In C++, the “unsigned short” data type.

e InJava??, the “short” data type (or corresponding wrapper class “Short”).
e In Python, the “uint16” NumPy data type.

e In C#, the “UInt16” data type (or corresponding alias “ushort”).

e InFortran??, the “INTEGER(KIND = 2)” data type.

e InR? the “integer” data type.

6.1.16 VARINT

The HDFgl VARINT data type stores a value between -2,147,483,648 and 2,147,483,647, and occupies size * 4 bytes in
memory (size being the number of elements composing the VARINT data type). It represents the data type of an HDF5
(variable-length) H5T_NATIVE_INT dataset/attribute or of a result set that stores (variable-length) elements within this
range of values (which can be retrieved using the HDFQL_CURSOR_GET_INT and HDFQL_SUBCURSOR_GET_INT functions).

Depending on the programming language (supported by HDFql), the VARINT data type is represented by:

22 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned number in Java.

2 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible
for making the conversion from a signed number to its equivalent unsigned number in Fortran.

24 By design, R does not have a data type that stores a value between 0 and 65,535 with exactly 2 bytes in memory. As a substitute, the R “integer” data

type may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 4 bytes in memory) and lower
performance (as bytes alignment must be made by HDFql).

Version 2.4.0 Page 148 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

In C, the “int” data type.

e In C++, the “int” data type.

e InJava, the “int” data type (or corresponding wrapper class “Integer”).

e In Python, the “int32” NumPy data type.

e In C#, the “Int32” data type (or corresponding alias “int”).

e In Fortran, the “INTEGER(KIND = 4)” data type.

e InR, the “integer” data type.

6.1.17 UNSIGNED VARINT

The HDFqgl UNSIGNED VARINT data type stores a value between 0 and 4,294,967,295, and occupies size * 4 bytes in
memory (size being the number of elements composing the UNSIGNED VARINT data type). It represents the data type of
an HDF5 (variable-length) H5T_NATIVE_UINT dataset/attribute or of a result set that stores (variable-length) elements
within this range of values (which can be retrieved using the HDFQL _CURSOR_GET_UNSIGNED_INT and
HDFQL_SUBCURSOR_GET_UNSIGNED_INT functions). Depending on the programming language (supported by HDFql), the
UNSIGNED VARINT data type is represented by:

In C, the “unsigned int” data type.

e In C++, the “unsigned int” data type.

e InJava®, the “int” data type (or corresponding wrapper class “Integer”).
e In Python, the “uint32” NumPy data type.

e In C#, the “UInt32” data type (or corresponding alias “uint”).

e InFortran?, the “INTEGER(KIND = 4)” data type.

25 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned number in Java.

26 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible
for making the conversion from a signed number to its equivalent unsigned number in Fortran.

Version 2.4.0 Page 149 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

e InR%, the “integer” data type.

6.1.18 VARBIGINT

The HDFgl VARBIGINT data type stores a value between -9,223,372,036,854,775,808 and 9,223,372,036,854,775,807, and
occupies size * 8 bytes in memory (size being the number of elements composing the VARBIGINT data type). It represents
the data type of an HDF5 (variable-length) H5T_NATIVE_LLONG dataset/attribute or of a result set that stores (variable-
length) elements within this range of values (which can be retrieved using the HDFQL_CURSOR_GET_BIGINT and
HDFQL_SUBCURSOR_GET_BIGINT functions). Depending on the programming language (supported by HDFql), the
VARBIGINT data type is represented by:

e InC, the “long long” data type.

e In C++, the “long long” data type.

e InJava, the “long” data type (or corresponding wrapper class “Long”).
e In Python, the “int64” NumPy data type.

e In C#, the “Int64” data type (or corresponding alias “long”).

e In Fortran, the “INTEGER(KIND = 8)” data type.

e InR, the “integer64” bit64 data type.

6.1.19 UNSIGNED VARBIGINT

The HDFql UNSIGNED VARBIGINT data type stores a value between 0 and 18,446,744,073,709,551,615, and occupies size *
8 bytes in memory (size being the number of elements composing the UNSIGNED VARBIGINT data type). It represents the
data type of an HDF5 (variable-length) H5T_NATIVE_ULLONG dataset/attribute or of a result set that stores (variable-
length) elements within this range of values (which can be retrieved using the HDFQL_CURSOR_GET_UNSIGNED_BIGINT
and HDFQL_SUBCURSOR_GET_UNSIGNED_BIGINT functions). Depending on the programming language (supported by
HDFql), the UNSIGNED VARBIGINT data type is represented by:

27 By design, R does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned number in R.

Version 2.4.0 Page 150 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

In C, the “unsigned long long” data type.

e In C++, the “unsigned long long” data type.

e InJava®, the “long” data type (or corresponding wrapper class “Long”).
e In Python, the “uint64” NumPy data type.

e In C#, the “UInt64” data type (or corresponding alias “ulong”).

e InFortran?’, the “INTEGER(KIND = 8)” data type.

e InR3 the “integer64” bit64 data type.

6.1.20 VARFLOAT

The HDFgl VARFLOAT data type stores a value between -3.4E + 38 and 3.4E + 38, and occupies size * 4 bytes in memory
(size being the number of elements composing the VARFLOAT data type). It represents the data type of an HDF5 (variable-
length) H5T_NATIVE_FLOAT dataset/attribute or of a result set that stores (variable-length) elements within this range of
values (which can be retrieved using the HDFQL_CURSOR_GET_FLOAT and HDFQL_SUBCURSOR_GET_FLOAT functions).

Depending on the programming language (supported by HDFgl), the VARFLOAT data type is represented by:

In C, the “float” data type.

e In C++, the “float” data type.

e InJava, the “float” data type (or corresponding wrapper class “Float”).

e In Python, the “float32” NumPy data type.

e In C#, the “Single” data type (or corresponding alias “float”).

In Fortran, the “REAL(KIND = 4)” data type.

28 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned number in Java.

29 Although there has been some effort to specify unsigned data types in Fortran, nothing concrete is available. Therefore, the programmer is responsible
for making the conversion from a signed number to its equivalent unsigned number in Fortran.

30 By design, R does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned number in R.

Version 2.4.0 Page 151 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

e InR3, the “numeric” or “double” data type.

6.1.21 VARDOUBLE

The HDFql VARDOUBLE data type stores a value between -1.79E + 308 and 1.79E + 308, and occupies size * 8 bytes in
memory (size being the number of elements composing the VARDOUBLE data type). It represents the data type of an
HDF5 (variable-length) H5T_NATIVE_DOUBLE dataset/attribute or of a result set that stores (variable-length) elements
within this range of values (which can be retrieved using the HDFQL_CURSOR_GET_DOUBLE and
HDFQL_SUBCURSOR_GET_DOUBLE functions). Depending on the programming language (supported by HDFql), the
VARDOUBLE data type is represented by:

e InC, the “double” data type.

e In C++, the “double” data type.

e InJava, the “double” data type (or corresponding wrapper class “Double”).
e In Python, the “float64” NumPy data type.

e InC#, the “Double” data type (or corresponding alias “double”).

e In Fortran, the “REAL(KIND = 8)” or “DOUBLE PRECISION” data type.

e InR, the “numeric” or “double” data type.

6.1.22 VARCHAR

The HDFql VARCHAR data type stores a value between 0 and 255, and occupies size * 1 byte in memory (size being the
length of the string). It represents the data type of an HDF5 (variable-length) H5T_C_S1 dataset/attribute or of a result set
that stores (variable-length) elements within this range of values (which can be retrieved using the
HDFQL_CURSOR_GET_CHAR function). The VARCHAR data type is useful for storing variable-length strings. Depending on

the programming language (supported by HDFql), the VARCHAR data type is represented by:

31 By design, R does not have a data type that stores a value between -3.4E + 38 and 3.4E + 38 with exactly 4 byte in memory. As a substitute, the R
“numeric” or “double” data types may be used with the penalties of more memory being unnecessarily reserved (as this data type occupies 8 bytes in
memory) and lower performance (as bytes alignment must be made by HDFql).

Version 2.4.0 Page 152 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

In C, the “unsigned char *” data type.

e In C++, the “unsigned char *” data type.

e InJava, the “String” object.

e In Python, the “Ssize” NumPy data type.

e In C#, the “String” data type (or corresponding alias “string”).
e In Fortran, the “CHARACTER(LEN = *)” data type.

e InR, the “character” data type.

6.1.23 OPAQUE

The HDFgl OPAQUE data type stores a value between 0 and 255, and occupies 1 byte in memory. It represents the data
type of an HDF5 H5T_OPAQUE dataset/attribute or of a result set that stores elements within this range of values (which
can be retrieved using the HDFQL_CURSOR_GET_UNSIGNED_TINYINT and HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINT
functions). The OPAQUE data type is useful for representing data that should not be interpreted/rearranged by the HDF5
library when reading/writing it from/into in a dataset or attribute. Depending on the programming language (supported

by HDFql), the OPAQUE data type is represented by:

e InC, the “unsigned char” data type.

e In C++, the “unsigned char” data type.

e InJava®, the “byte” data type (or corresponding wrapper class “Byte”).
e In Python, the “ubyte” NumPy data type.

e In C#, the “Byte” data type (or corresponding alias “byte”).

e In Fortran, the “CHARACTER” data type.

e InR,the “raw” data type.

32 By design, Java does not support unsigned data types. Therefore, the programmer is responsible for making the conversion from a signed number to its
equivalent unsigned number in Java.

Version 2.4.0 Page 153 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

6.1.24 ENUMERATION

The HDFgl ENUMERATION data type is composed of one or more members that store values between -
9,223,372,036,854,775,808 and 9,223,372,036,854,775,807, and occupies 1, 2, 4 or 8 bytes in memory (depending on the
range of values stored). It represents the data type of an HDF5 H5T_ENUM dataset/attribute or of a result set that stores
elements within this range of values (which can be retrieved using the HDFQL_CURSOR_GET_TINYINT,
HDFQL_CURSOR_GET_SMALLINT, HDFQL_CURSOR_GET_INT or HDFQL_CURSOR_GET_BIGINT functions). Depending on

the programming language (supported by HDFql), the ENUMERATION data type is represented by:

e InC, the “char”, “short”, “int” or “long long” data type.

”ou ”ou;

e In C++, the “char”, “short”, “int” or “long long” data type.

e In Java, the “byte”, “short”, “int” or “long” data type (or corresponding wrapper class “Byte”, “Short”, “Integer” or

”Long”)-

e In Python, the “int8”, “int16”, “int32” or “int64” NumPy data type.

” o ou »n u

e In C#, the “SByte”, “Int16”, “Int32” or “Int64” data type (or corresponding alias “sbyte”, “short”, “int” or “long”).

e In Fortran, the “INTEGER(KIND = 1)”, “INTEGER(KIND = 2)”, “INTEGER(KIND = 4)”, “INTEGER” or “INTEGER(KIND = 8)”

data type.

e InR,the “integer” or “integer64” bit64 data type.

6.1.25 COMPOUND

The HDFgl COMPOUND data type is composed of one or more members that store values of different nature (i.e. data
types), including other (nested) compounds. It represents the data type of an HDF5 H5T_COMPOUND dataset/attribute or
of a result set that stores elements of this data type (which can be retrieved using the HDFQL_CURSOR_GET_TINYINT,
HDFQL_CURSOR_GET_UNSIGNED_TINYINT, HDFQL_CURSOR_GET_SMALLINT,
HDFQL_CURSOR_GET_UNSIGNED_SMALLINT, HDFQL_CURSOR_GET_INT, HDFQL_CURSOR_GET_UNSIGNED_INT,
HDFQL_CURSOR_GET_BIGINT, HDFQL_CURSOR_GET_UNSIGNED_BIGINT, HDFQL_CURSOR_GET_FLOAT,
HDFQL_CURSOR_GET_DOUBLE, HDFQL_SUBCURSOR_GET_TINYINT, HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINT,
HDFQL_SUBCURSOR_GET_SMALLINT, HDFQL_SUBCURSOR_GET_UNSIGNED_SMALLINT, HDFQL_SUBCURSOR_GET_INT,

Version 2.4.0 Page 154 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

HDFQL_SUBCURSOR_GET_UNSIGNED_INT, HDFQL_SUBCURSOR_GET_BIGINT,
HDFQL_SUBCURSOR_GET_UNSIGNED_BIGINT, HDFQL_SUBCURSOR_GET_FLOAT, HDFQL_SUBCURSOR_GET_DOUBLE or
HDFQL_CURSOR_GET_CHAR functions).

6.2 POST-PROCESSING

Post-processing options enable transforming results of a query according to the programmer’s needs such as ordering or
truncating. These options are optional and may be used to create a (linear) pipeline to further process result sets returned
by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION LANGUAGE (DIL) operations. In case a pipeline is composed
of two or more options, the order in which they are used affects the final outcome (e.g. usage of ORDER ASC followed by
TOP 2 in a result set composed of 4, 2, 3 and 1, returns 1 and 2; usage of these same two options inversed —i.e. TOP 2
followed by ORDER ASC — returns 2 and 4 instead). The next subsections describe the post-processing options provided by
HDFql.

Post-processing Option Description
ORDER Order (i.e. sort) a result set in an ascending, descending or reverse way
TOP Truncate a result set after a certain given position in a topmost way
BOTTOM Truncate a result set after a certain given position in a bottommost way
FROM TO Retain a result set within a certain given range
STEP Step (i.e. jump) the result set at every given position

Table 6.4 — HDFql post-processing options

6.2.1 ORDER

Syntax

ORDER {{ASC | DESC | REV} | {, {ASC | DESC | REV}} | {{ASC | DESC | REV}, {ASC | DESC | REV}}}

Version 2.4.0 Page 155 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Order (i.e. sort) a result set in an ascending, descending or reverse way by specifying either the keyword ASC, DESC or REV
respectively. When in an ascending or descending order, HDFql automatically uses a certain number of (CPU) threads (that
may have been set through the operation SET THREAD) to speed-up the task completion33. Additionally, if the result set is
of data type HDFQL_CHAR, HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT,
HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT,
HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE or HDFQL_OPAQUE, the result subset can be
ordered (i.e. sorted) in an ascending, descending or reverse way by specifying a comma (,) and either the keyword ASC,
DESC or REV, respectively. Of note, when the result set is of data type HDFQL_COMPOUND then the ordering is ignored

(i.e. has no effect).
Parameter(s)
None

Return

The result set and/or subset is ordered (i.e. sorted) in an ascending, descending or reverse way depending on whether the

keyword ASC, DESC or REV is specified respectively.

Example(s)

create an HDF5 dataset named "my datasetO" of data type float of four dimensions (size
5x8x4x7)
CREATE DATASET my datasetO AS FLOAT(5, 8, 4, 7)

show (i.e. get) dimensions of dataset "my dataset(0" and populate cursor in use with these
(should be 5, 8, 4, 7)
SHOW DIMENSION my datasetO

show (i.e. get) dimensions of dataset "my dataset0" and populate cursor in use with these in
ascending order (should be 4, 5, 7, 8)
SHOW DIMENSION my dataset(O ORDER ASC

show (i.e. get) dimensions of dataset "my dataset0" and populate cursor in use with these in

descending order (should be 8, 7, 5, 4)

3 Through a parallelized Quicksort algorithm.

Version 2.4.0 Page 156 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

SHOW DIMENSION my dataset(O ORDER DESC

show (i.e. get) dimensions of dataset "my dataset0" and populate cursor in use with these in
reversed order (should be 7, 4, 8, 5)

SHOW DIMENSION my dataset(O ORDER REV

create an HDF5 dataset named "my datasetl" of data type double of two dimensions (size 3x2)

CREATE DATASET my datasetl AS DOUBLE (3,)

Iinsert (i.e. write) values into dataset "my datasetl"

INSERT INTO my datasetl VALUES((5.-2, 1.3), (0, 0.2), (9.1, 6.5))

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with it (should
be 3.2, 1.3, 0, 0.2, 9.1, 6.5)
SELECT FROM my datasetl

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with it in
ascending order (should be 0, 0.2, 1.3, 3.2, 6.5, 9.1)
SELECT FROM my datasetl ORDER ASC

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with it in
descending order (should be 9.1, 6.5, 3.2, 1.3, 0.2, 0)
SELECT FROM my datasetl ORDER DESC

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with it in
reversed order (should be 6.5, 9.1, 0.2, 0, 1.3, 3.2)
SELECT FROM my datasetl ORDER REV

create an HDF5 dataset named "my dataset2" of data type variable-length double of one
dimension (size 3)

CREATE DATASET my dataset2 AS VARDOUBLE (3)

insert (i.e. write) values into dataset "my dataset2"

INSERT INTO my dataset2 VALUES((3.2, 1.3), (0, 0.2), (9.1, 7.4, 6.5))

select (i.e. read) data from dataset "my dataset2" and populate cursor in use with it (should
be 3.2, 1.3, 0, 0.2, 9.1, 7.4, 6.5)
SELECT FROM my dataset2

select (i.e. read) data from dataset "my dataset2" and populate cursor in use with it in
ascending order on the result subset only (should be 1.3, 3.2, 0, 0.2, 6.5, 7.4, 9.1)
SELECT FROM my dataset2 ORDER , ASC

Version 2.4.0 Page 157 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

select (i.e. read) data from dataset "my dataset2" and populate cursor in use with it in
descending order on the result subset only (should be 3.2, 1.3, 0.2, 0, 9.1, 7.4, 6.5)
SELECT FROM my dataset? ORDER , DESC

select (i.e. read) data from dataset "my dataset2" and populate cursor in use with it 1in
reversed order on the result set only (should be 9.1, 7.4, 6.5, 0, 0.2, 3.2, 1.3)
SELECT FROM my dataset? ORDER REV

select (i.e. read) data from dataset "my dataset2" and populate cursor in use with it in
reversed order on the result subset only (should be 1.3, 3.2, 0.2, 0, 6.5, 7.4, 9.1)
SELECT FROM my dataset2? ORDER , REV

select (i.e. read) data from dataset "my dataset2" and populate cursor in use with it in
reversed order on both the result set and result subset (should be 6.5, 7.4, 9.1, 0.2, 0, 1.3,
3.2)

SELECT FROM my dataset2? ORDER REV, REV

6.2.2 TOP

Syntax

TOP {top_value | {, subtop_value} | {top_value, subtop_value}}

Description

Truncate a result set after position top_value in a topmost way. In other words, all elements after position top_value are
discarded from the result set. Additionally, if the result set is of data type HDFQL _CHAR, HDFQL_VARTINYINT,
HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT,
HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE

or HDFQL_OPAQUE, the result subset can be truncated in a topmost way by specifying a comma (,) and subtop_value.

Parameter(s)

top_value — optional integer that specifies the position of the truncation of a result set in a topmost way. If negative, the

TOP option will behave as the BOTTOM option with a positive top_value.

subtop_value — optional integer that specifies the position of the truncation of a result set in a topmost way. If negative,
the TOP option will behave as the BOTTOM option with a positive subtop_value. Of note, this parameter is only applicable

for a result set of one of the aforementioned data types and ignored otherwise.

Version 2.4.0 Page 158 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Return

The result set and/or subset is truncated in a topmost way in function of the position provided.

Example(s)

create an HDF5 dataset named "my datasetO" of data type float of four dimensions (size
5x8x4x7)
CREATE DATASET my dataset0 AS FLOAT (5, &8, 4, 7)

show (i.e. get) dimensions of dataset "my dataset(0" and populate cursor in use with these
(should be 5, 8, 4, 7)
SHOW DIMENSION my datasetO

show (i.e. get) dimensions of dataset "my dataset0" and populate cursor in use with the
topmost (i.e. first) dimension (should be 5)

SHOW DIMENSION my dataset(O TOP I

show (i.e. get) dimensions of dataset "my datasetO" and populate cursor in use with the two
topmost dimensions (should be 5, 8)

SHOW DIMENSION my dataset(O TOP ~

show (i.e. get) dimensions of dataset "my dataset0O" and populate cursor in use with the two
bottommost dimensions (should be 4, 7)

SHOW DIMENSION my dataset(O TOP -2

create an HDF5 dataset named "my datasetl" of data type variable-length int of one dimension
(size 3) with initial values of 12, 14 and 16 for the first position, 18 for the second
position, and 20, 22, 24 and 26 for the third position

CREATE DATASET my datasetl AS VARINT(3) VALUES((12, 14, 16), (18), (20, 22, 24, 26))

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with it (should
be 12, 14, 16, 18, 20, 22, 24, 26)
SELECT FROM my datasetl

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with values of
the topmost (i.e. first) position (should be 12, 14, 16)
SELECT FROM my datasetl TOP 1

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with values of
the two topmost positions (should be 12, 14, 18, 20, 22)
SELECT FROM my datasetl TOP , ”

Version 2.4.0 Page 159 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with the
topmost value of the two bottommost positions (should be 18, 20)
SELECT FROM my datasetl TOP --,

6.2.3 BOTTOM

Syntax

BOTTOM {bottom_value | {, subbottom_value} | {bottom_value, subbottom_value}}

Description

Truncate a result set after position bottom_value in a bottommost way. In other words, all elements before position
bottom_value are discarded from the result set. Additionally, if the result set is of data type HDFQL _CHAR,
HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT,
HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT,
HDFQL_VARDOUBLE or HDFQL_OPAQUE, the result subset can be truncated in a bottommost way by specifying a comma

(,) and subbottom_value.

Parameter(s)

bottom_value — optional integer that specifies the position of the truncation of a result set in a bottommost way. If

negative, the BOTTOM option will behave as the TOP option with a positive bottom_value.

subbottom_value — optional integer that specifies the position of the truncation of a result set in a bottommost way. If
negative, the BOTTOM option will behave as the TOP option with a positive subbottom_value. Of note, this parameter is

only applicable for a result set of one of the aforementioned data types and ignored otherwise.
Return

The result set and/or subset is truncated in a bottommost way in function of the position provided.

Example(s)

create an HDF5 dataset named "my datasetO" of data type float of four dimensions (size
5x8x4x7)
CREATE DATASET my dataset(O AS FLOAT(5, &8, 4, 7)

Version 2.4.0 Page 160 of 346

Hierarchical Data Format query language (HDFql)

Reference Manual

show (i.e. get) dimensions of dataset "my datasetQ"

(should be 5,

8, 4, 7)

SHOW DIMENSION my dataset(

show (i.e. get) dimensions of dataset "my datasetO"

bottommost (i.e.

last) dimension (should be 7)

SHOW DIMENSION my dataset(BOTTOM I

show (i.e. get) dimensions of dataset "my datasetO"

bottommost dimensions (should be 4, 7)

SHOW DIMENSION my dataset(BOTTOM ”

show (i.e. get) dimensions of dataset "my dataset0O"

topmost dimensions (should be 5, 8)

SHOW DIMENSION my dataset(O BOTTOM --

and populate

and populate

and populate

and populate

cursor

cursor

cursor

cursor

in

in

in

in

use

use

use

use

create an HDF5 dataset named "my datasetl" of data type variable-length int of

(size 3) with initial values of 12,
22, 24 and 26 for the third position
CREATE DATASET my datasetl AS VARINT(3) VALUES((12, 14, 16),

position,

and 20,

14 and 16 for the first position,

(18),

select (i.e. read) data from dataset "my datasetl" and populate

be 12, 14,

18, 20, 22, 24, 26)

SELECT FROM my datasetl

select (i.e. read) data from dataset "my datasetl" and populate

the bottommost (i.e.

SELECT FROM my datasetl BOTTOM !

last) position (should be 20, 22, 24, 26)

select (i.e. read) data from dataset "my datasetl" and populate

the two bottommost positions (should be 14,

SELECT FROM my datasetl BOTTOM ,

16, 24,

26)

select (i.e. read) data from dataset "my datasetl" and populate

bottommost value of the two topmost positions (should be 16,

SELECT FROM my datasetl BOTTOM -2, |

18)

(20, 22

cursor

cursor

cursor

cursor

2
’

in

in

in

in

18 for the

24,

use

use

use

use

with

with

with

with

one

these

the

the two

the two

dimension

second

26))

with

with

with

with

it (should

values of

values of

the

Version 2.4.0

Page 161 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

6.2.4 FROMTO

Syntax

FROM {from_value | {, subfrom_value} | {from_value, subfrom value}} TO {to_value | {, subto_value} | {to_value,

subto_value}}

Description

Retain a result set from from_value to to_value. In other words, all elements before position from_value and after position
to_value are discarded from the result set. The first element of the result set is at position zero, while the last element is
located at the position returned by hdfgl_cursor_get_count - 1. Additionally, if the result set is of data type HDFQL_CHAR,
HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT,
HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT,
HDFQL_VARDOUBLE or HDFQL_OPAQUE, the result subset can be retained by specifying a comma (,), subfrom_value

and/or subto_value.

Parameter(s)

from_value — optional integer that specifies the starting position to retain elements of a result set. If negative, the FROM

option will retain elements of a result set starting from its end.

subfrom_value — optional integer that specifies the starting position to retain elements of a result set. If negative, the
FROM option will retain elements of a result set starting from its end. Of note, this parameter is only applicable for a result

set of one of the aforementioned data types and ignored otherwise.

to_value — optional integer that specifies the ending position to retain elements of a result set. If negative, the TO option

will retain elements of a result set starting from its end.

subto_value — optional integer that specifies the ending position to retain elements of a result set. If negative, the TO
option will retain elements of a result set starting from its end. Of note, this parameter is only applicable for a result set of

one of the aforementioned data types and ignored otherwise.
Return

The result set and/or subset is retained in function of the position provided.

Version 2.4.0 Page 162 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

create an HDF5 dataset named "my dataset0O" of data type float of four dimensions (size
5x8x4x7)
CREATE DATASET my dataset0 AS FLOAT(5, &8, 4, 7)

show (i.e. get) dimensions of dataset "my dataset(0" and populate cursor in use with these
(should be 5, 8, 4, 7)
SHOW DIMENSION my datasetO

show (i.e. get) dimensions of dataset "my dataset(0" and populate cursor in use with the
first, second and third dimensions (should be 5, 8, 4)

SHOW DIMENSION my dataset(O FROM (TO ~

show (i.e. get) dimensions of dataset "my dataset0" and populate cursor in use with the
second and third dimensions (should be 8, 4)

SHOW DIMENSION my dataset(O FROM 1 TO 2

show (i.e. get) dimensions of dataset "my dataset0" and populate cursor in use with the
second, third and fourth dimensions (should be 8, 4, 7)

SHOW DIMENSION my dataset(O FROM -3 TO -1

show (i.e. get) dimensions of dataset "my dataset0" and populate cursor in use with the
second and third dimensions (should be 8, 4)

SHOW DIMENSION my dataset(O FROM |1 TO -2

create an HDF5 dataset named "my datasetl" of data type variable-length int of one dimension
(size 3) with initial values of 12, 14 and 16 for the first position, 18 for the second
position, and 20, 22, 24 and 26 for the third position

CREATE DATASET my datasetl AS VARINT(3) VALUES((12, 14, 1¢6), (18), (20, 22,

N
N
~
N
&)
-
N

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with it (should
be 12, 14, 16, 18, 20, 22, 24, 26)
SELECT FROM my datasetl

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with values of
the second position (should be 18)
SELECT FROM my datasetl FROM | TO I

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with values of
the second and third positions (should be 18, 20, 22, 24, 26)
SELECT FROM my datasetl FROM -2 TO -1

Version 2.4.0 Page 163 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with the second
and third values of all positions (should be 14, 16, 22, 24)
SELECT FROM my datasetl FROM , TO ,

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with second
bottommost and bottommost values of the first position (should be 14, 16)

SELECT FROM my datasetl FROM 0, -2 TO 0, -

6.2.5 STEP

Syntax

STEP {step_value | {, substep_value} | {step_value, substep_value}}

Description

Step (i.e. jump) the result set at every step_value position. In other words, all elements between steps are discarded from
the result set. Additionally, if the result set is of data type HDFQL CHAR, HDFQL VARTINYINT,
HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT,
HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE

or HDFQL_OPAQUE, the result subset can be stepped (i.e. jumped) by specifying a comma (,) and substep_value.

Parameter(s)

step_value — optional integer that specifies the position to step (i.e. jump) a result set. If step_value is negative, the STEP

option will step (i.e. jump) the result set starting from its end.

substep_value — optional integer that specifies the position to step (i.e. jump) a result set. If substep_value is negative, the
STEP option will step (i.e. jump) the result set starting from its end. Of note, this parameter is only applicable for a result

set of one of the aforementioned data types and ignored otherwise.
Return

The result set and/or subset is stepped (i.e. jumped) in function of the position provided.

Example(s)

create an HDF5 dataset named "my datasetO" of data type float of four dimensions (size

5x8x4x7)

Version 2.4.0 Page 164 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE DATASET my dataset(O AS FLOAT(5, 8, 4, 7)

show (i.e. get) dimensions of dataset "my dataset(0" and populate cursor in use with these
(should be 5, 8, 4, 7)
SHOW DIMENSION my dataset(

show (i.e. get) dimensions of dataset "my dataset(0" and populate cursor in use with these
(should be 5, 8, 4, 7)
SHOW DIMENSION my dataset(O STEP |

show (i.e. get) dimensions of dataset "my dataset(0" and populate cursor in use with every
second dimension (should be 5, 4)

SHOW DIMENSION my dataset(O STEP

show (i.e. get) dimensions of dataset "my dataset(0" and populate cursor in use with every
second dimension starting from the end (should be 8, 7)

SHOW DIMENSION my dataset(O STEP -2

show (i.e. get) dimensions of dataset "my datasetO" and populate cursor in use with every
third dimension (should be 5, 7)
SHOW DIMENSION my dataset(O STEP 3

create an HDF5 dataset named "my datasetl" of data type variable-length int of one dimension
(size 3) with initial values of 12, 14 and 16 for the first position, 18 for the second
position, and 20, 22, 24 and 26 for the third position

CREATE DATASET my datasetl AS VARINT (3) VALUES((12, 14, 1¢6), (18), (20, 22, 24, 26))

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with it (should
be 12, 14, 16, 18, 20, 22, 24, 26)
SELECT FROM my datasetl

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with values of
every second position (should be 12, 14, 16, 20, 22, 24, 26)
SELECT FROM my datasetl STEP ~

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with every
third value of all positions (should be 12, 18, 20, 26)
SELECT FROM my datasetl STEP , 35

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with every
second value of every second position (should be 12, 16, 22, 26)

SELECT FROM my datasetl STEP -, -~

Version 2.4.0 Page 165 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

6.3 REDIRECTING

Redirecting options enable reading data from the cursor in use, a (text, binary or Excel) file or memory (i.e. user-defined
variable) and writing it into an HDF5 dataset or attribute through a CREATE DATASET, CREATE ATTRIBUTE or INSERT
operation. It also enables writing result sets (i.e. data) returned by DATA QUERY LANGUAGE (DQL) and DATA
INTROSPECTION LANGUAGE (DIL) operations into the cursor in use, a (text, binary or Excel) file or memory. The next

subsections describe the redirecting options provided by HDFq|l.

Redirecting Option Description

Read data from the cursor in use, a (text, binary or Excel) file or memory and write it
FROM
into an HDF5 dataset or attribute
INTO Write result sets into the cursor in use, a (text, binary or Excel) file or memory
Table 6.5 — HDFql redirecting options
6.3.1 FROM

Syntax

FROM {CURSOR | {[DOS | UNIX] [TEXT] FILE file_name [NO SEPARATOR | SEPARATOR {separator_value | {,
subseparator_value} | {separator_value, subseparator_value}}] [SKIP skip_valuel} | {BINARY FILE file_name [SKIP
skip_value]} | {EXCEL [XLS | XLSX] FILE file_name [SHEET sheet_name] [SKIP skip_value]} | {MEMORY

variable_number [SIZE variable_size] [OFFSET (member_offset [, member_offset]*)] [MAX max_elements]}}

Description

Read data from the cursor in use (default behavior when no redirecting option is specified), a (text, binary or Excel) file or
memory (i.e. user-defined variable) and write it into an HDF5 dataset or attribute through a CREATE DATASET, CREATE
ATTRIBUTE or INSERT operation. In detail, this procedure (which is known as input redirecting option) can be performed

from:

e The cursor in use. Example: “CREATE DATASET my_dataset AS FLOAT VALUES FROM CURSOR” or “INSERT INTO
my_dataset VALUES FROM CURSOR”.

Version 2.4.0 Page 166 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

e A text file. Example: “CREATE DATASET my_dataset AS FLOAT VALUES FROM TEXT FILE my _file.txt” or “INSERT INTO
my_dataset VALUES FROM TEXT FILE my_file.txt”.

e A binary file. Example: “CREATE DATASET my_dataset AS FLOAT VALUES FROM BINARY FILE my_file.bin” or “INSERT
INTO my_dataset VALUES FROM BINARY FILE my_file.bin”.

o An Excel file (in XLS or XLSX format). Example: “CREATE DATASET my_dataset AS FLOAT VALUES FROM EXCEL XLS FILE
my_file.xIs” or “INSERT INTO my_dataset VALUES FROM EXCEL FILE input.xIsx”. Of note, for HDFgl to be able to read
data from an Excel file it needs to find and dynamically load a shared library named “libxl” (which is responsible for
handling files of this type). The specification of the path where HDFql/HDFS5 library may find shared libraries is done
through the operation SET PLUGIN PATH.

e A user-defined variable that was previously registered through the function hdfqgl_variable_register. Example:
“CREATE DATASET my_dataset AS FLOAT VALUES FROM MEMORY 0” or “INSERT INTO my_dataset VALUES FROM
MEMORY 2”. Of note, when working in Java, HDFql has to copy each element of the Java variable into the HDF5
dataset or attribute (managed by the underlying HDFqgl C library) as the JVM does not provide a direct access to the
memory associated to the variable, which induces a performance penalty. This penalty is not present when working in
other programming languages supported by HDFgl — namely C, C++, Python, C#, Fortan and R — as these provide a way

for the underlying HDFql C library to access the variable directly.

Parameter(s)

file_name — optional string that specifies the name of a text, binary or Excel file to read data from.

sheet_name — optional string that specifies the name of an Excel sheet to read data from. If not specified, the sheet to

read data from is the one currently selected for viewing/editing within the Excel file.

separator_value — optional string that specifies the separator to use between elements (of the data) when reading these

from a text file. If not specified, its default value is a comma (,).

subseparator_value — optional string that specifies the subseparator to use between elements (of the data) when reading
these from a text file. The subseparator is only applicable when the data type of the HDF5 dataset or attribute is either
HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT,
HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT,
HDFQL_VARDOUBLE or HDFQL_OPAQUE, and ignored otherwise. If not specified, its default value is a space.

skip_value — optional integer that specifies the number of initial lines (delimited by an end of line (EOL) terminator or a

separator) to skip (i.e. ignore) in case the file (to read data from) is a text, the number of initial cells in the sheet to skip in

Version 2.4.0 Page 167 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

case the file (to read data from) is an Excel, or the number of initial bytes to skip in case the file (to read data from) is a

binary. If not specified, nothing is skipped.

variable_number — optional integer that specifies the number of the variable whose data will be written into the HDF5
dataset or attribute. The number is returned by the function hdfql_variable_register upon registering the variable or,

subsequently, returned by the function hdfqgl_variable_get_number.

variable_size — optional integer that specifies the size (in bytes) of the variable whose data will be written into the HDF5
dataset or attribute. Of note, the specification of a size only has effect for a dataset or attribute of data type

HDFQL_COMPOUND (for any other data type the specification is ignored — i.e. has no effect).

member_offset — optional integer that specifies the (memory) member offsets that compose the variable whose data will
be written into the HDF5 dataset or attribute. Multiple offsets are separated with a comma (,). If specified, the variable is
assumed to be a C padded struct data type (i.e. its members may not be contiguous in memory due to padding between
these) and is used as such by HDFql. If not specified, the variable is assumed to be a C primitive or packed struct data type
(i.e. its members are contiguous in memory and have no padding between these) and is used as such by HDFgl. Of note,
the specification of an offset only has effect for a dataset or attribute of data type HDFQL_COMPOUND (for any other data

type the specification is ignored — i.e. has no effect).

max_elements — optional integer that specifies the maximum number of elements of the data stored in the variable to
write into the HDF5 dataset or attribute. In other words, only the first max_elements of the data will be written into the
dataset or attribute. Of note, max_elements may be smaller than the number of elements that the dataset or attribute

may store (in this case, the remainder of the dataset or attribute will be zeroed if a number or emptied if a string).

Example(s)

use (i.e. open) an HDF5 file named "my file.h5"
USE FILE my file.h5

show (i.e. get) HDF5 file currently in use and populate cursor in use with it

SHOW USE FILE

create an HDF5 dataset named "my datasetO" of data type variable-length char with initial
values from the cursor in use

CREATE DATASET my dataset(O AS VARCHAR VALUES FROM CURSOR

select (i.e. read) data from dataset "my datasetO" and populate cursor in use with it (should
be "my file.h5")
SELECT FROM my dataset(

Version 2.4.0 Page 168 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

create an HDF5 dataset named "my datasetl" of data type char of one dimension (size 3)

CREATE DATASET my datasetl AS TINYINT (3)

insert (i.e. write) values from a text file named "my file0.txt" into dataset "my datasetl"
(assume that the file "my file(.txt" exists and contains "65,66,67")
INSERT INTO my datasetl VALUES FROM FILE my_fileO.txt

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with it (should
be 65, 66, 67)
SELECT FROM my datasetl

insert (i.e. write) values from a text file named "my filel.txt" into dataset "my datasetl"
(assume that the file "my filel.txt" exists and contains "90**92*%*94")

INSERT INTO my datasetl VALUES FROM TEXT FILE my filel.txt SEPARATOR **

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with it (should
be 90, 92, 94)
SELECT FROM my datasetl

insert (i.e. write) values from a binary file named "my file.bin" into dataset "my datasetl”
(assume that the file "my file.bin" exists and contains "ABC")

INSERT INTO my datasetl VALUES FROM BINARY FILE my file.bin

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with it (should
be 65, 66, 67)
SELECT FROM my datasetl

insert (i.e. write) values from an Excel file named "my file(.xlsx" stored in the sheet
currently selected for viewing/editing within the file into dataset "my datasetl" (assume that
the file "my file(O.xlsx" exists and contains three cells with values 10, 20 and 30)

INSERT INTO my datasetl VALUES FROM EXCEL FILE my file(.xlsx

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with it (should
be 10, 20, 30)
SELECT FROM my datasetl

insert (i.e. write) values from an Excel file named "my filel.xlsx" stored in a sheet named
"my sheet" into dataset "my datasetl" (assume that the file "my filel.xlsx" exists and contains
three cells with values 5, 6 and 7)

INSERT INTO my datasetl VALUES FROM EXCEL FILE my filel.xlsx SHEET my sheet

select (i.e. read) data from dataset "my datasetl" and populate cursor in use with it (should

be 5, 6, 7)

Version 2.4.0 Page 169 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

SELECT FROM my datasetl

// declare variables
char script[1024];
double data[3][2];
int x;

int y;

// create an HDF5 dataset named "my dataset2" of data type double of two dimensions (size 3x2)
hdfql execute("CREATE DATASET my dataset2 AS DOUBLE (3, 2)");

// populate variable "data" with certain values
data[0][0] = 3.2;

data[0][1] = 1.3;

data[l1][0] = 0;

datal[l][1] = 0.2;

data[”][0] = 9.1;

data[’][1] = 6.5;

// register variable "data" for subsequent use (by HDFgl)
hdfql variable register(data);

// prepare script to insert (i.e. write) values from variable "data" into dataset "my dataset2"
sprintf(script, "INSERT INTO my dataset2 VALUES FROM MEMORY 3d",

hdfql variable get number (data));

// execute script

hdfql execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)
hdfql variable unregister(data);

// select (i.e. read) data from dataset "my dataset2" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset2");

// display content of cursor in use (should be 3.2, 1.3, 0, 0.2, 9.1, 6.5)
while (hdfql cursor next (NULL) == HDFQL SUCCESS)

{
printf("5f\n", *hdfql cursor get double(NULL));

Version 2.4.0 Page 170 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// declare variables
char script[1024];

HDFQL VARIABLE LENGTH datal[3];

// create an HDF5 dataset named "my dataset3" of data type variable-length double of one
dimension (size 3)

hdfql execute ("CREATE DATASET my dataset3 AS VARDOUBLE (3)");

// allocate memory in variable "data"
data[0].address = malloc(”? * sizeof (double));,;
data[0].count = 2;

data[l].address = malloc (3 * sizeof (double)),;
data[l].count = 3;

data[”].address = malloc(l * sizeof(double));,;

data[”].count = 1;

// populate variable "data" with certain values
*((double *) data[(U].address + (0) = 3.2;
*((double *) data[(U].address + 1) = 1.3;

*((double *) data[!].address + 0) = 0;

*((double *) data[l].address + 1) = 0.2;
*((double *) data[l].address + 2) = 9.1;
*((double *) data[’].address + 0) = 6.5;

// register variable "data" for subsequent use (by HDFgl)
hdfql variable register(data);

// prepare script to insert (i.e. write) values from variable '"data" into dataset "my dataset3"
sprintf(script, "INSERT INTO my dataset3 VALUES FROM MEMORY 3%d",
hdfql variable get number(data));

// execute script

hdfql execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)
hdfql variable unregister(data);

// select (i.e. read) data from dataset "my dataset3" and populate cursor in use with it

hdfql execute ("SELECT FROM my dataset3");

// display content of cursor in use (should be 3.2, 1.3, 0, 0.2, 9.1, 6.5)
while (hdfql cursor next (NULL) == HDFQL SUCCESS)

{
while (hdfql subcursor next (NULL) == HDFQL SUCCESS)

Version 2.4.0 Page 171 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

printf("$f\n", *hdfqgl subcursor get double (NULL));

// release memory allocated in variable "data"
free(data[(0] .address) ;
free(data[l].address);
free(data[”] .address) ;

// declare variables
char script[1024];

char *data[3];

// create an HDF5 dataset named "my dataset4" of data type variable-length char of one
dimension (size 3)

hdfqgl execute ("CREATE DATASET my dataset4 AS VARCHAR(3)");

// allocate memory in variable '"data"
data[0] = malloc(l3 * sizeof (char));
data[l] = malloc(5 * sizeof(char));,;

data[”] = malloc(7 * sizeof(char));,;

// populate variable "data" with certain values
strcpy (data[0], "Hierarchical');

strcpy (data[l1], "Data");

strcpy (data[”Z], "Format");

// register variable "data" for subsequent use (by HDFgl)
hdfql variable register (data);

// prepare script to insert (i.e. write) values from variable '"data" into dataset "my dataset4"
sprintf(script, "INSERT INTO my dataset4 VALUES FROM MEMORY 3%d",

hdfql variable get number (data));

// execute script

hdfql execute(script);

// unregister variable '"data'" as it is no longer used/needed (by HDFql)
hdfql variable unregister(data);

// select (i.e. read) data from dataset "my dataset4" and populate cursor in use with it

Version 2.4.0 Page 172 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

hdfql execute ("SELECT FROM my dataset4");

// display content of cursor in use (should be "Hierarchical", "Data", "Format")
while (hdfql cursor next (NULL) == HDFQL SUCCESS)
{

printf("%s\n", hdfqgl cursor get char (NULL));

// release memory allocated in variable "data"
free(data[(0]);
free(data[l]),
free (datal[”]);

// declare structure
struct data
{
char description[7];
int index;

¥

// declare variables
char script[1024];
struct data cities[3];

int number;

// create an HDF5 dataset named "my datasetb" of data type compound of one dimension (size 3)
composed of two members named "description" (of data type char) and "index" (of data type int)
hdfqgl execute ("CREATE DATASET my dataset5 AS COMPOUND (description AS CHAR(7), index AS

INT) (3)");

// populate variable "cities" with certain values
memcpy (cities[0] .description, "Toronto", 7);
cities[0U].index = 10,

memcpy (cities[1].description, "Nairobi'", 7);
cities[]l].index = 12;

memcpy (cities[”] .description, "Caracas", 7);

cities[”].index = 11;

// register variable "cities" for subsequent use (by HDFql)

number = hdfql variable register(cities);

// prepare script to insert (i.e. write) values from variable "cities" into dataset

Version 2.4.0 Page 173 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

"my datasetb5"

sprintf(script, "INSERT INTO my dataset5 VALUES FROM

7 %d SIZE %d OFFSET(%d, 2d)",

number, sizeof (struct data), offsetof(struct data, description), offsetof(struct data,

index));

// execute script

hdfql execute(script);

// unregister variable "cities'" as it is no longer used/needed (by HDFql)

hdfql variable unregister(cities);

6.3.2 INTO

Syntax

INTO {CURSOR | {[TRUNCATE] [DOS | UNIX] [TEXT] FILE file_name [HEADER header_value [, header value]*] [NO
SEPARATOR | SEPARATOR {separator_value | {, subseparator_value} | {separator_value, subseparator_value}}]
[SPLIT split_valuel} | {[TRUNCATE] BINARY FILE file_name} | {[TRUNCATE] EXCEL [XLS | XLSX] FILE file_name
[SHEET sheet_name] [HEADER header_value [, header_value]*]} | {MEMORY variable_number [SIZE variable_size]

[OFFSET (member_offset [, member_offset]*)] [MAX max_elements]}}

Description

Write result sets (i.e. data) returned by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION LANGUAGE (DIL)
operations into the cursor in use (default behavior when no redirecting option is specified), a (text, binary or Excel) file or
memory (i.e. user-defined variable). In detail, this procedure (which is known as output redirecting option) can be

performed into:
e The cursorin use. Example: “SELECT FROM my_dataset INTO CURSOR” or “SHOW USE DIRECTORY INTO CURSOR”.

e Atext file. Example: “SELECT FROM my_dataset INTO TEXT FILE my_file.txt” or “SHOW USE DIRECTORY INTO TEXT FILE

output.txt”.

e A binary file. Example: “SELECT FROM my_dataset INTO BINARY FILE my_file.bin” or “SHOW USE DIRECTORY INTO
BINARY FILE output.bin”. When redirecting data of type HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT,
HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT, HDFQL_UNSIGNED_VARINT,
HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT or HDFQL_VARDOUBLE into a binary file, each

Version 2.4.0 Page 174 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

result subset to be written is preceeded by its number of elements (as a C “unsigned int” data type with a 4 bytes

size). This is to enable a correct parsing/interpretation of the binary file when reading it afterwards.

e An Excel file (in XLS or XLSX format). Example: “SELECT FROM my_dataset INTO EXCEL XLS FILE my_file.xIs” or “SHOW
USE DIRECTORY |INTO EXCEL FILE output.xlsx”. When redirecting data of type HDFQL_VARTINYINT,
HDFQL_UNSIGNED_VARTINYINT, = HDFQL_VARSMALLINT, = HDFQL_UNSIGNED_VARSMALLINT, = HDFQL_VARINT,
HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT or
HDFQL_VARDOUBLE into an Excel file, each result subset to be written is preceeded by its number of elements. This is
to enable a correct parsing/interpretation of the Excel file when reading it afterwards. Of note, for HDFgl to be able to
redirect data into an Excel file it needs to find and dynamically load a shared library named “libxl” (which is
responsible for handling files of this type). The specification of the path where HDFqgl/HDF5 library may find shared
libraries is done through the operation SET PLUGIN PATH.

e Auser-defined variable that was previously registered through the function hdfql_variable_register. Example: “SELECT
FROM my_dataset INTO MEMORY 0" or “SHOW USE DIRECTORY INTO MEMORY 2”. When redirecting data of type
HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT,
HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT,
HDFQL_VARDOUBLE or HDFQL_VARCHAR into a user-defined variable, the programmer is responsible for releasing
the memory (allocated by HDFql) afterwards. Of note, when working in Java, HDFql has to copy each element of the
result set (managed by the underlying HDFql C library) into the Java variable as the JVM does not provide a direct
access to the memory associated to the variable, which induces a performance penalty. This penalty is not present
when working in other programming languages supported by HDFgl — namely C, C++, Python, C#, Fortan and R — as

these provide a way for the underlying HDFql C library to access the memory of the variable directly.

When redirecting a result set into a text file, binary file or a sheet of an Excel file that already exists, the result set is
appended to it. To overwrite an existing text file, binary file or a sheet of an Excel file, specify the keyword TRUNCATE (all

data stored in the file or in the sheet will be permanently lost).

Parameter(s)

file_name — optional string that specifies the name of a text, binary or Excel file to redirect (i.e. write) a result set into.

sheet_name — optional string that specifies the name of an Excel sheet to redirect (i.e. write) a result set into. If not
specified, the sheet to redirect (i.e. write) a result set into is the one currently selected for viewing/editing within the Excel

file.

header_value — optional string that specifies the header to write in a text or an Excel file before redirecting (i.e. writing) a

result set into. Multiple headers are separated with a comma (,).

Version 2.4.0 Page 175 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

separator_value — optional string that specifies the separator to use between elements (of the result set) when redirecting

(i.e. writing) these in a text file. If not specified, its default value is a comma (,).

subseparator_value — optional string that specifies the subseparator to use between elements (of the result subset) when
redirecting (i.e. writing) these in a text file. The subseparator is only applicable when the data type of the result set is
either HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT,
HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT,
HDFQL_VARDOUBLE or HDFQL_OPAQUE, and ignored otherwise. If not specified, its default value is a space.

split_value — optional integer that specifies the number of elements (of the result set) to redirect (i.e. write) per line
before starting writing remaining elements in a new line in a text or an Excel file. If split_value is specified it must be equal
to or greater than zero (otherwise an error will be raised). Otherwise, if it is not specified, no splitting is done which means

that all elements (of the result set) are redirectered (i.e. written) in the same line.

variable_number — optional integer that specifies the number of the variable that will store the result set (i.e. data)
returned by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION LANGUAGE (DIL) operations. The number is
returned by the function hdfql_variable_register upon registering the variable or, subsequently, returned by the function

hdfgl_variable_get_number.

variable_size — optional integer that specifies the size (in bytes) of the variable that will store the result set (i.e. data). Of
note, the specification of a size only has effect for a result set of data type HDFQL_COMPOUND (for any other data type

the specification is ignored — i.e. has no effect).

member_offset — optional integer that specifies the (memory) member offsets that compose the variable that will store
the result set (i.e. data). Multiple offsets are separated with a comma (,). If specified, the variable is assumed to be a C
padded struct data type (i.e. its members may not be contiguous in memory due to padding between these) and is used as
such by HDFql. If not specified, the variable is assumed to be a C primitive or packed struct data type (i.e. its members are
contiguous in memory and have no padding between these) and is used as such by HDFqgl. Of note, the specification of an
offset only has effect for a result set of data type HDFQL_COMPOUND (for any other data type the specification is ignored

—i.e. has no effect).

max_elements — optional integer that specifies the maximum number of elements to use from the variable to store the
result set (i.e. data). In other words, only the first max_elements of the variable will be used to store the result set. Of
note, max_elements may be smaller than the number of elements that the result set may store (in this case, the
remainder of the result set is discarded). If max_elements is specified it must be equal to or greater than zero (otherwise
an error will be raised). Otherwise, if it is not specified, the variable must have enough space to store the entire result set

(otherwise an error may occur such as a segmentation fault).

Version 2.4.0 Page 176 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

create an HDF5 dataset named "my datasetO" of data type char of one dimension (size 3)

CREATE DATASET my dataset(O AS TINYINT (3)

insert (i.e. write) values into dataset "my dataset0"

INSERT INTO my dataset(O VALUES (65, 66, 67)

select (i.e. read) data from dataset "my dataset(0" and populate cursor in use with it (should
be 65, 66, 67)
SELECT FROM my dataset(

select (i.e. read) data from dataset "my dataset(0" and populate cursor in use with it (should
be 65, 66, 67)
SELECT FROM my dataset(INTO CURSOR

select (i.e. read) data from dataset "my datasetO" and write it into a text file named
"my file0.txt" using default separator "," (should be "65,66,67," in one single line)
SELECT FROM my dataset(INTO FILE my file(.txt

select (i.e. read) data from dataset "my dataset(O" and write it into a text file named
"my filel.txt" using separator "**" (should be "65**66**67**" in one single line)

SELECT FROM my dataset(INTO TEXT FILE my filel.txt SEPARATOR **

select (i.e. read) data from dataset "my datasetO" and write it into a text file named
"my fileZ.txt" splitting every two values in a new line using a UNIX-based EOL terminator
(should be "65,65" in the first line and "67" in the second line)
SELECT FROM my dataset(INTO UNIX TEXT FILE my file2.txt SPLIT ”

select (i.e. read) data from dataset "my datasetO" and write it into a binary file named
"my file.bin" (truncate it if it already exists) (should be "ABC")
SELECT FROM my_datasetO INTO TRUNCATE BINARY FILE my_file.bin

select (i.e. read) data from dataset "my dataset(0" and write it into an Excel file named
"my file0O.xlsx" in the sheet currently selected for viewing/editing within the file (should be
65, 66, 67)

SELECT FROM my dataset(INTO EXCEL FILE my file(0.xlsx

select (i.e. read) data from dataset "my dataset(0" and write it into an Excel file named
"my filel.xlsx" in a sheet named "my sheet" (truncate it if it already exists) (should be 65,
66, 67)

SELECT FROM my dataset(INTO TRUNCATE EXCEL FILE my filel.xlsx SHEET my sheet

Version 2.4.0 Page 177 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// declare variables
char script[1024];
double datal[3][2];
int x;

int y;

// create an HDF5 dataset named "my datasetl" of data type double of two dimensions (size 3x2)
hdfql execute ("CREATE DATASET my datasetl AS DOUBLE (3, 2)");

// insert (i.e. write) values into dataset "my datasetl"
Y

hdfql execute("INSERT INTO my datasetl VALUES((3.2, 1.3), (0, 0.2), (9.1, 6.5))");

// register variable "data" for subsequent use (by HDFgl)
hdfql variable register(data);

// prepare script to select (i.e. read) data from dataset "my datasetl" and populate variable
"data" with it
sprintf(script, "SELECT FROM my datasetl INTO MEMORY %d", hdfqgl variable get number (data));

// execute script

hdfqgl execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)
hdfql variable unregister(data);

// display content of variable "data" (should be 3.2, 1.3, 0, 0.2, 9.1, 6.5)
for(x = 0; x < 3; x++)

{
for(y = 0; y < 2; y++)
{
printf("sd\n", data[x][y]):;
}
}

// declare variables

char script[1024];

HDFQL VARIABLE LENGTH data[3];
int x;

int y;

int count;

// create an HDF5 dataset named "my dataset2" of data type variable-length double of one

Version 2.4.0 Page 178 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

dimension (size 3)

hdfql execute ("CREATE DATASET my dataset2 AS VARDOUBLE (3)");

// insert (i.e. write) values into dataset "my dataset2"

hdfqgl execute("INSERT INTO my dataset2 VALUES((3.2, 1.3), (0, 0.2), (9.1, 7.4, 6.5))");

// register variable "data" for subsequent use (by HDFgl)
hdfql variable register(data);

// prepare script to select (i.e. read) data from dataset "my dataset2" and populate variable
"data" with it
sprintf(script, "SELECT FROM my dataset2 INTO MEMORY 3d", hdfgl variable get number(data));

// execute script

hdfql execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)
hdfql variable unregister (data);

// display content of variable "data" (should be 3.2, 1.3, 0, 0.2, 9.1, 7.4, 6.5)
for(x = 0; x < 3; x++)

{
count = data[x].count;,
for(y = 0; y < count; y++)
{
printf("%f\n", *((double *) data[x].address + y));
}
}

// release memory allocated (by HDFgl) in variable "data"
for(x = 0; x < 3; x++)
{

free(data[x] .address);

// declare variables
char script[1024];
char *data[3];

int x;

// create an HDF5 dataset named "my dataset3" of data type variable-length char of one

dimension (size 3)

Version 2.4.0 Page 179 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

hdfqgl execute ("CREATE DATASET my dataset3 AS VARCHAR(3)");

// insert (i.e. write) values into dataset "my dataset3"
y_

hdfgl execute("INSERT INTO my dataset3 VALUES (\"Hierarchical\", \"Data\", \"Format\")");

// register variable "data'" for subsequent use (by HDFgl)
hdfql variable register(data);

// prepare script to select (i.e. read) data from dataset "my dataset3" and populate variable
"data" with it
sprintf(script, "SELECT FROM my dataset3 INTO MEMORY 3d", hdfgl variable get number(data));

// execute script

hdfql execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)
hdfql variable unregister(data);

// display content of variable "data'" (should be "Hierarchical'", "Data", "Format")
for(x = 0; x < 3; x++)
{

printf("2s\n", data[x]);

// release memory allocated (by HDFgl) in variable '"data"
for(x = 0; x < 3; x++)
{

free(data[x]);

// declare structure
struct data
{
char description[7];
int index;

};

// declare variables
char script[1024];
struct data cities[7];
int number;

int i,

Version 2.4.0 Page 180 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// create an HDF5 dataset named "my dataset4" of data type compound of one dimension (size 3)
composed of two members named "description" (of data type char) and "index" (of data type int),
and with initial values of "Toronto" and 10 for the first position, "Nairobi" and 12 for the
second position, and "Caracas" and 11 for the third position

hdfql_execute("CREATE DATASET my dataset4 AS COMPOUND (description AS CHAR(7), index AS INT) (3)

VALUES ((Toronto, 10), (Nairobi, 12), (Caracas, 11))");

// register variable "cities" for subsequent use (by HDFql)

number = hdfql variable register (cities);

// prepare script to select (i.e. read) data from dataset "my dataset4" and populate variable
"cities" with it
sprintf(script, "SELECT FROM my dataset4 INTO MEMORY %d SIZE %d OFFSET(%d, 3%d)'", number,

sizeof (struct data), offsetof(struct data, description), offsetof(struct data, index));

// execute script

hdfql execute(script);

// unregister variable "cities" as it is no longer used/needed (by HDFgl)

hdfgl variable unregister(cities);

// display content of variable "cities" (should be "The city of Toronto has index 10", "The
city of Nairobi has index 12", "The city of Caracas has index 11")

for(i = 0; 1 < 3; 1i++)

{

printf("The city of %s has index %d\n", cities[i].description, cities[i].index);

6.4 DATA DEFINITION LANGUAGE (DDL)

Data Definition Language (DDL) is, generally speaking, syntax for defining and modifying structures that store data. In
HDFql, the DDL assembles the operations that enable the creation, alteration, renaming, copying and deletion of HDF5
files, groups, datasets, attributes and links. These operations begin either with the keyword CREATE, ALTER, RENAME,
COPY or DROP.

Version 2.4.0 Page 181 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

6.4.1 CREATE DIRECTORY

Syntax

CREATE [AND USE] DIRECTORY directory_name [, directory_name]*

Description

Create a directory named directory_name. Multiple directories can be created at once by separating these with a comma
(,). If directory_name already exists, it will not be overwritten, no subsequent directories are created, and an error is
raised. In case the keyword AND USE is specified, the directory is used (i.e. opened) after being successfully created
(please refer to the operation USE DIRECTORY for additional information). In case directory_name has intermediate
directories that do not exist, besides directory_name being created, all these intermediate directories will be created on
the fly (e.g. when creating the directory “my_directory/my_subdirectory/my_subsubdirectory”, besides

“my_subsubdirectory” being created, “my_directory” and “my_subdirectory” will be created in case they do not exist).

Parameter(s)

directory_name — mandatory string that specifies the name of the directory to create. Multiple directories are separated
with a comma (,). As a general rule, in case directory_name is composed of spaces, special characters or reserved
keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by double-quotes,
the directory will not be created and an error is raised. This rule also applies to any other HDFgl operation that works with

directory names (e.g. RENAME DIRECTORY).
Return

Nothing

Example(s)

create a directory named "my directory0" (the directory will not be overwritten if it already
exists)

CREATE DIRECTORY my directory(

create a directory named "my directoryl" in a root directory named '"data" (neither directory
will be overwritten if they already exist,; directory "data" will be created on the fly if it
does not exist)

CREATE DIRECTORY /data/my directoryl

create two directories named "my directory2" and "my directory3" (neither directory will be

Version 2.4.0 Page 182 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

overwritten if they already exist)

CREATE DIRECTORY my directory2, my directory3

create a directory named "this is a long directory name" (the directory will not be
overwritten if it already exists) and use (i.e. open) it for subsequent operations

CREATE AND USE DIRECTORY "this is a long directory name'

6.4.2 CREATE FILE

Syntax
CREATE [TRUNCATE] [AND USE] FILE file_name [, file_name]* [IN PARALLEL]
[LIBRARY BOUNDS [FROM {EARLIEST | LATEST | V18 | DEFAULT}] [TO {LATEST | V18 | DEFAULT}]]

[USERBLOCK SIZE userblock_size [VALUES {(userblock value [, userblock_valuel*) | input_redirecting_option}]]

Description

Create an HDF5 file named file_name. Multiple files can be created at once by separating these with a comma (,). If
file_name already exists, it will not be overwritten, no subsequent files are created, and an error is raised. To overwrite an
existing file, specify the keyword TRUNCATE (all data stored in the file will be permanently lost). In case the keyword AND
USE is specified, the file is used (i.e. opened) after being successfully created (please refer to the operation USE FILE for
additional information). In case the keyword IN PARALLEL3 is specified, HDFql creates the file in parallel using all the MPI
processes specified upon launching the program (that employs HDFql). In case the keyword LIBRARY BOUNDS is specified,
HDFql creates the file using these bounds (instead of the library bounds that may have been set through the operation SET
LIBRARY BOUNDS). In case the keyword USERBLOCK is specified, a user-defined block of data may be specified and stored

within the file in a space reserved for this purpose.

Parameter(s)

file_name — mandatory string that specifies the name of the HDF5 file to create. Multiple files are separated with a comma
(,)- As a general rule, in case file_name is composed of spaces, special characters or reserved keywords (e.g. SELECT), it

should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by double-quotes, the file will not be

34 This option is not allowed in Windows as HDFgl does not support the parallel HDF5 (PHDF5) library in this platform currently.

Version 2.4.0 Page 183 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

created and an error is raised. This rule also applies to any other HDFql operation that works with file names (e.g. RENAME

FILE).

userblock_size — optional integer that specifies the size (in bytes) of a user-defined block of data stored within the HDF5

file to create. The size must be equal to a power of 2 starting at 512 (e.g. 512, 2048) (any other value will raise an error).

userblock _value — optional integer, float or string to write as a user-defined block of data stored within the HDF5 file to

create. Multiple values are separated with a comma (,).

input_redirecting_option — optional option that specifies a file or memory to read data from in order to write it into a user-

defined block within the HDF5 file to create (please refer to the subsection FROM for additional information).
Return

Nothing

Example(s)

create an HDF5 file named "my file0.h5" (the file will not be overwritten if it already
exists)

CREATE FILE my file0.h5

create an HDF5 file named "my filel.h5" in a root directory named "data" (the file will not
be overwritten if it already exists)

CREATE FILE /data/my filel.h5

create two HDF5 files named "my file2.h5" and "my file3.h5" (both files will be overwritten
if they already exist)
CREATE TRUNCATE FILE my file2.h5, my file3.h5

create an HDF5 file named "my file4.h5" (the file will not be overwritten if it already
exists) with the latest version of the HDF5 library
CREATE FILE my file4.h5 LIBRARY BOUNDS FROM LATEST TO LATEST

create an HDF5 file named '"this is a long file name.h5" (the file will not be overwritten if
it already exists) and use (i.e. open) it for subsequent operations

CREATE AND USE FILE "this is a long file name.hb"

create an HDF5 file named "my file5.h5" (the file will not be overwritten if it already
exists) in parallel (i.e. all the MPI processes specified upon launching the program (that
employs HDFql) will collectively create the file - e.g. if the program is launched as "mpiexec

-n 3 my program", all three MPI processes will participate in the creation of the file)

Version 2.4.0 Page 184 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE FILE my file5.h5 IN PARALLEL

create an HDF5 file named "my file6.h5" (the file will be overwritten if it already exists)
with a user-defined block of data (size 512) storing values 50, 60 and 70
CREATE TRUNCATE FILE my_fileé.h5 USERBLOCK SIZE VALUES (50, o)

6.4.3 CREATE GROUP

Syntax

CREATE [TRUNCATE] [AND USE] GROUP [file_name] group_name |, [file_name] group_namel*
[ORDER {TRACKED | INDEXED}]
[STORAGE COMPACT object_max_compact DENSE object_min_dense]

[ATTRIBUTE [ORDER {TRACKED | INDEXED}] [STORAGE COMPACT attribute_max_compact DENSE

attribute_min_dense]]

Description

Create an HDF5 group named group_name. Multiple groups can be created at once by separating these with a comma (,).
If group_name already exists, it will not be overwritten, no subsequent groups are created, and an error is raised. To
overwrite an existing group, specify the keyword TRUNCATE (all data stored in the group will be permanently lost). In case
the keyword AND USE is specified, the group is used (i.e. opened) after being successfully created (please refer to the
operation USE GROUP for additional information). In case group_name has intermediate groups that do not exist, besides
group_name being created, all these intermediate groups will be created on the fly (e.g. when creating the group
“my_group/my_subgroup/my_subsubgroup”, besides “my_subsubgroup” being created, “my_group” and “my_subgroup”
will be created in case they do not exist). By default, group_name does not track objects (i.e. groups, datasets, (soft) links
or external links) stored within it by their creation order. To track the creation order of objects stored in group_name, the
keyword ORDER TRACKED must be specified. In case the keyword ORDER INDEXED is specified, objects stored within
group_name are also tracked by their creation order and using an index (to speed-up retrieval of object names). By
default, group_name does not track attributes stored within it by their creation order. To track the creation order of
attributes stored in group_name, the keyword ATTRIBUTE ORDER TRACKED must be specified. In case the keyword
ATTRIBUTE ORDER INDEXED is specified, attributes stored within group_name are also tracked by their creation order and

using an index (to speed-up retrieval of attribute names).

Version 2.4.0 Page 185 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

file_name — optional string that specifies the name of the HDF5 file in which the group is created. If file_name is specified,
the file is opened on the fly, the group is created within it and, afterwards, the file is closed. Otherwise, if it is not
specified, the group is created in the file currently in use. As a general rule, in case file_name is composed of spaces,
special characters or reserved keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not
surrounded by double-quotes, the group will not be created and an error is raised. This rule also applies to any other

HDFql operation that works with file names (e.g. RENAME FILE).

group_name — mandatory string that specifies the name of the HDF5 group to create. Multiple groups are separated with
a comma (,). As a general rule, in case group_name is composed of spaces, special characters or reserved keywords (e.g.
SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by double-quotes, the group will
not be created and an error is raised. This rule also applies to any other HDFql operation that works with group names

(e.g. RENAME GROUP).

object_max_compact — optional integer that specifies the maximum number of links (i.e. objects) to store in the compact
format. In case the number of links (stored in group_name) exceeds object_max_compact, the storage of links switches to

the dense format. If not specified, its default value is 8 (defined by the HDF5 library).

object_min_dense — optional integer that specifies the minimum number of links (i.e. objects) to store in the dense
format. In case the number of links (stored in group_name) falls below object_min_dense, the storage of links switches to

the compact format. If not specified, its default value is 6 (defined by the HDFS5 library).

attribute_max_compact — optional integer that specifies the maximum number of attributes to store in the compact
format. In case the number of attributes (stored in group_name) exceeds attribute_max_compact, the storage of

attributes switches to the dense format. If not specified, its default value is 8 (defined by the HDF5 library).

attribute_min_dense — optional integer that specifies the minimum number of attributes to store in the dense format. In
case the number of attributes (stored in group_name) falls below attribute_min_dense, the storage of attributes switches

to the compact format. If not specified, its default value is 6 (defined by the HDF5 library).
Return

Nothing

Example(s)

create an HDF5 group named "my groupO" (the group will not be overwritten if it already

exists)

Version 2.4.0 Page 186 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE GROUP my group(

create an HDF5 group named "my subgroup0" in a root group named "my groupl" (neither group
will be overwritten if they already exist; group "my groupl" will be created on the fly if it
does not exist)

CREATE GROUP /my groupl/my subgroup0

create two HDF5 groups named "my group2" and "my group3" (both groups will be overwritten if
they already exist)
CREATE TRUNCATE GROUP my groupZ2, my group3

create an HDF5 group named "this is a long group name" (the group will not be overwritten if
it already exists) and use (i.e. open) it for subsequent operations

CREATE AND USE GROUP '"this is a long group name'"

create an HDF5 group named "my group4" that tracks the objects’ (i.e. groups and datasets)
creation order within the group and using compact storage

CREATE GROUP my group4 ORDER TRACKED STORAGE COMPACT |(DENSE 7/

create an HDF5 group named "my group5" that indexes the attributes’ creation order

CREATE GROUP my groupb5 ATTRIBUTE ORDER INDEXED

use (i.e. open) an HDF5 file named "my file.h5"
USE FILE my file.h5

create an HDF5 group named "my group6" in the HDF5 file currently in use (i.e. file
"my file.h5")
CREATE GROUP my group6

close HDF5 file currently in use (i.e. file "my file.h5")
CLOSE FILE

create an HDF5 group named "my group7" in file "my file.h5"
CREATE GROUP my file.h5 my group?7

Version 2.4.0 Page 187 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

6.4.4 CREATE DATASET

Syntax

CREATE [TRUNCATE] [EARLY | INCREMENTAL | LATE] [CONTIGUOUS | COMPACT | {CHUNKED [(chunk_dim [,
chunk_dim]*)]}] DATASET [file_name] dataset_name [, [file_name] dataset_namel* AS data_type [(UNLIMITED |
{dataset_dim [TO {dataset_max_dim | UNLIMITED}]} [, UNLIMITED | {dataset dim [TO {dataset_max_dim |
UNLIMITED}]}*)]

[SIZE compound_size]
[TAG tag_value]
[NO FILL | FILL {(fill_value [, fill_value]*) | UNDEFINED}]

[ATTRIBUTE [ORDER {TRACKED | INDEXED}] [STORAGE COMPACT attribute_max_compact DENSE

attribute_min_dense]]

[ENABLE [NBIT PRECISION nbit_precision_value OFFSET nbit_offset_value] [SCALEOFFSET scaleoffset_value]
[SHUFFLE] [ZLIB [LEVEL zlib_level]] [FLETCHER32]]

[VALUES {(initial_value [, initial_valuel*) | input_redirecting_option}]

data_type := [NATIVE | LITTLE ENDIAN | BIG ENDIAN | ASCIl | UTF8] {TINYINT | UNSIGNED TINYINT |
SMALLINT | UNSIGNED SMALLINT | INT | UNSIGNED INT | BIGINT | UNSIGNED BIGINT | FLOAT | DOUBLE |
CHAR | VARTINYINT | UNSIGNED VARTINYINT | VARSMALLINT | UNSIGNED VARSMALLINT | VARINT |
UNSIGNED VARINT | VARBIGINT | UNSIGNED VARBIGINT | VARFLOAT | VARDOUBLE | VARCHAR | OPAQUE |
{ENUMERATION (member_name [AS member_value] [, member_name [AS member_value]]*)} | {COMPOUND
(member_name AS data_type [(member_dim [, member_dim]*)] [SIZE compound_size] [OFFSET member_offset]
[TAG tag_value] [, member_name AS data_type [(member_dim [, member_dim]*)] [SIZE compound_size] [OFFSET
member_offset] [TAG tag_value]l*)1}}

Description

Create an HDF5 dataset named dataset_name. Multiple datasets can be created at once by separating these with a
comma (,). If dataset_name already exists, it will not be overwritten, no subsequent datasets are created, and an error is
raised. To overwrite an existing dataset, specify the keyword TRUNCATE (all data stored in the dataset will be permanently

lost). In case dataset_name has intermediate groups that do not exist, besides dataset_name being created, all these

Version 2.4.0 Page 188 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

intermediate groups will be created on the fly (e.g. when creating the dataset “my_group/my_subgroup/my_dataset”,
besides “my_dataset” being created as a dataset, “my_group” and “my_subgroup” will be created as groups in case they
do not exist). By default, dataset_name does not track attributes stored within it by their creation order. To track the
creation order of attributes stored in dataset_name, the keyword ATTRIBUTE ORDER TRACKED must be specified. In case
the keyword ATTRIBUTE ORDER INDEXED is specified, attributes stored within dataset_name are also tracked by their

creation order and using an index (to speed-up retrieval of attribute names).

By default, if no storage type (layout) is specified and (1) the dataset is not extendible and (2) no HDF5 pre-defined filter is
used, the dataset will be created as contiguous. To specify a certain storage type (layout), one of the following keywords

may be employed:
e CONTIGUOUS —the data is stored in the HDF5 file in one contiguous block.

e COMPACT - the data is stored in the object header of the dataset. This storage type (layout) should only be used for

data with a size limit of 65520 bytes (otherwise an error is raised).

e CHUNKED - the data is stored in equal-sized blocks or chunks of a pre-defined size. This storage type (layout) should

be used when the dataset is extendible and/or HDF5 pre-defined filters are specified (otherwise an error is raised).

By default, if no storage allocation is specified, the dataset will have an early, incremental or late storage allocation
depending on whether its storage type (layout) is compact, chunked or contiguous, respectively. To specify a certain

storage allocation, one of the following keywords may be employed:
e EARLY —the space necessary to store the entire dataset is immediately allocated (i.e. reserved) in the HDF5 file.

e INCREMENTAL — the space necessary to store the dataset is incrementally allocated (i.e. reserved) according to the

ongoing needs in the HDF?5 file.

e LATE — the space necessary to store the entire dataset is only allocated (i.e. reserved) in the HDF5 file when data is

written into the dataset for the first time.

To create an extendible dataset®, the keyword TO may be employed when specifying the dimensions that are extendible
(i.e. that can grow) along with the initial size of the dimension (dataset_dim) and the maximum size (dataset_max_dim)

that it may grow to. If a dimension is expected to grow infinitely, the keyword UNLIMITED should be specified. Of note,

35 An extendible HDF5 dataset is one whose one or more dimensions can grow. These dimensions start with an initial size and may be increased in a later
stage. To be able to create an extendible dataset, the storage type (layout) of the dataset must be chunked (otherwise an error is raised). In case the
storage type (layout) is not specified, HDFql will automatically set it to chunked and calculate an appropriate value for the chunk size.

Version 2.4.0 Page 189 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

when a dimension has an initial size of one and is expected to grow infinitely, the keyword TO along with dataset_dim and

dataset_max_dim may simply be replaced by the keyword UNLIMITED.

In case the keyword ENABLE is specified, one or more HDF5 pre-defined filters®® may be used to create a (linear) pipeline

by additionaly specifying one or more of the following keywords:

e NBIT — Compresses the data of an n-bit data type (including arrays and the n-bit fields of compound data types) by
packing n-bit data on output (i.e. stripping off all unused bits) and unpacking on input (i.e. restoring the extra bits
required by the computation). This filter may only be used for integer and floating-point data types (otherwise an

error is raised).

e SCALEOFFSET — Compresses the data by performing a scale and/or offset operation on each element and truncates
the result to a minimum number of bits. This filter may only be used for integer and floating-point data types

(otherwise an error is raised).

e SHUFFLE — Rearranges the bytes in the chunk by de-interlacing a block of data, which may lead to a better

compression ratio. This filter is usually used in conjunction with the ZLIB filter.
e ZLIB— Compresses the data using the ZLIB library which is based on the Deflate lossless data compression algorithm.

e FLETCHER32 — Adds a checksum to each chunk to detect data corruption. In case a chunk gets corrupted, any attempt

to read it afterwards will raise an error.

Parameter(s)

chunk_dim — optional integer that specifies the chunk size of the dimension in question. Multiple chunk sizes are
separated with a comma (,). If chunk_dim is specified it must be equal to or greater than one (otherwise an error will be
raised). Otherwise, if it is not specified and in case the keyword CHUNKED is specified, HDFqgl will automatically calculate

an appropriate value®” and assign it to chunk_dim.

file_name — optional string that specifies the name of the HDF5 file in which the dataset is created. If file_name is
specified, the file is opened on the fly, the dataset is created within it and, afterwards, the file is closed. Otherwise, if it is

not specified, the dataset is created in the file currently in use. As a general rule, in case file_name is composed of spaces,

36 To be able use HDF5 pre-defined filters the storage type (layout) of the HDF5 dataset must be chunked (otherwise an error is raised). In case the
storage type (layout) is not specified, HDFql will automatically set it to chunked and calculate an appropriate value for the chunk size.

37 This calculated value may not be optimal as it is based on a best guess approach with the main purpose of alleviating the programmer from specifying

it. In case performance is critical, the chunk size of the dimension in question should be explicitly specified taking into account how the data (stored in
the HDF5 dataset) is accessed as it greatly influences performance (HDFgl does not have enough information on how this access is ultimately done).

Version 2.4.0 Page 190 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

special characters or reserved keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not
surrounded by double-quotes, the dataset will not be created and an error is raised. This rule also applies to any other

HDFqgl operation that works with file names (e.g. RENAME FILE).

dataset_name — mandatory string that specifies the name of the HDF5 dataset to create. Multiple datasets are separated
with a comma (,). As a general rule, in case dataset_name is composed of spaces, special characters or reserved keywords
(e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by double-quotes, the
dataset will not be created and an error is raised. This rule also applies to any other HDFgl operation that works with

dataset names (e.g. RENAME DATASET).

data_type — mandatory keyword that specifies the data type of (the member that composes) the HDF5 dataset to create.

member_name — mandatory string that specifies the name of the member that composes the HDF5 dataset of data type
HDFQL_ENUMERATION or HDFQL_COMPOUND. Multiple members are separated with a comma (,). As a general rule, in
case member_name is composed of spaces, special characters or reserved keywords (e.g. SELECT), it should be surrounded
by double-quotes (“). Otherwise, if it is not surrounded by double-quotes, the dataset will not be created and an error is

raised. This rule also applies to any other HDFgl operation that works with member names (e.g. SHOW MEMBER).

member_value — optional integer that specifies the value to assign to the member that composes the HDF5 dataset of
data type HDFQL_ENUMERATION. If not specified, its value is the value assigned to the previous member incremented by

one. Of note, the default value assigned to the first member (of the enumeration) is 0 (unless explicitly specified).

member_dim — optional integer that specifies the size of the dimension of the member that composes the HDF5 dataset of

data type HDFQL_COMPOUND. Multiple dimensions are separated with a comma (,).

dataset_dim — optional integer that specifies the size of the dimension. Multiple dimensions are separated with a comma

(,). If not specified, the size of the dimension is zero.

dataset_max_dim — optional integer that specifies the maximum size of the dimension. Multiple dimensions are separated
with a comma (,). To specify an unlimited size, the keyword UNLIMITED should be specified for this purpose. If
dataset_max_dim is specified it must be equal to or greater than dataset_dim and the keyword CHUNKED should be

specified (otherwise an error will be raised).

compound_size — optional integer that specifies the size (in bytes) of the HDF5 (nested) compound dataset. If not
specified, HDFgl automatically calculates the size by either 1) summing the size (in bytes) of all members of the compound
if member_offset is not specified or 2) taking the highest sum of the member_offset with its size (in bytes) if
member_offset is specified. Of note, the specification of a size is only available for a dataset of data type

HDFQL_COMPOUND (any other data type will raise an error).

Version 2.4.0 Page 191 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

member_offset — optional integer that specifies the (memory) member offsets that compose the HDF5 dataset. If
specified, the dataset is assumed to store a C padded struct data type (i.e. its members may not be contiguous in memory
due to padding between these) and is used as such by HDFq|l. If not specified, the dataset is assumed to store a C primitive
or packed struct data type (i.e. its members are contiguous in memory and have no padding between these) and is used as
such by HDFgl. Of note, the specification of an offset is only available for a dataset of data type HDFQL_COMPOUND (any

other data type will raise an error).

tag_value — optional string that specifies the value of a tag attached to the HDF5 dataset or to its member(s). Of note, the
specification of a tag is only available for a dataset or a member of data type HDFQL_OPAQUE (any other data type will

raise an error).

fill_value — optional integer, float or string that specifies the (default) value to return in case of reading the HDF5 dataset
when no data has ever been written into it. Multiple fill values are separated with a comma (,). If not specified, the dataset

will be zeroed or emptied depending on whether the dataset is a number or a string, respectively.

attribute_max_compact — optional integer that specifies the maximum number of attributes to store in the compact
format. In case the number of attributes (stored in dataset_name) exceeds attribute_max_compact, the storage of

attributes switches to the dense format. If not specified, its default value is 8 (defined by the HDF5 library).

attribute_min_dense — optional integer that specifies the minimum number of attributes to store in the dense format. In
case the number of attributes (stored in dataset_name) falls below attribute_min_dense, the storage of attributes

switches to the compact format. If not specified, its default value is 6 (defined by the HDF5 library).

nbit_precision_value — optional integer that specifies the precision of the N-bit filter.

nbit_offset_value — optional integer that specifies the N-bit filter offset.

scaleoffset_value — optional integer that specifies the scale-offset filter offset. The scaleoffset_value must be equal to or
greater than zero (otherwise an error is raised). In case the HDF5 dataset is of integer data type, scaleoffset value
specifies the number of bits to retain (of note, if scaleoffset_value is zero, the HDF5 library automatically calculates the
number of bits required for lossless compression). In case the dataset is of floating-point data type, scaleoffset_value

specifies the number of digits after the decimal point to retain.

zlib_level — optional integer that specifies the compression level of the ZLIB filter. The zlib_level must be between 0 (no
compression) and 9 (best compression) (otherwise an error is raised). If not specified and in case the keyword ZLIB is

specified, its default value is 9.

initial_value — optional integer, float or string to write into HDF5 dataset to create. Multiple values are separated with a

comma (,).

Version 2.4.0 Page 192 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

input_redirecting_option — optional option that specifies a file or memory to read data from in order to write it into the

HDF5 dataset to create (please refer to the subsection FROM for additional information).
Return

Nothing

Example(s)

create an HDF5 dataset named "my datasetO" of data type int (the dataset will not be
overwritten if it already exists)

CREATE DATASET my dataset(AS INT

create an HDF5 dataset named "my datasetl" of data type char in a root group named "my group"
(the dataset will not be overwritten if it already exists)

CREATE DATASET /my group/my datasetl AS CHAR

create two HDF5 datasets named "my dataset2" and "my dataset3" of data type short (both
datasets will be overwritten if they already exist)

CREATE TRUNCATE DATASET my dataset2, my dataset3 AS SMALLINT

create an HDF5 dataset named "this is a long dataset name'" of data type float (the dataset
will not be overwritten if it already exists)

CREATE DATASET "this is a long dataset name" AS FLOAT

create an HDF5 dataset named "my dataset4" of data type unsigned long long using the big
endian representation

CREATE DATASET my dataset4 AS BIG ENDIAN UNSIGNED BIGINT

create an HDF5 dataset named "my dataset5" of data type int using the little endian
representation with an initial value of 80178

CREATE DATASET my dataset5 AS LITTLE ENDIAN INT VALUES (50178)

create an HDF5 dataset named "my dataset6" of data type char using an ASCII representation

CREATE DATASET my dataset6 AS ASCII CHAR

create an HDF5 dataset named "my dataset7" of data type float of one dimension (size 1024)
with a fill value of 85.2

CREATE DATASET my dataset7 AS FLOAT (I /) FILL(85.2)

Version 2.4.0 Page 193 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

create a compact HDF5 dataset named "my dataset8" of data type double of three dimensions
(size 2x5x10)
CREATE COMPACT DATASET my dataset8 AS DOUBLE (2, 5, 10)

create a chunked (size 20x100) HDF5 dataset named "my dataset9" of data type unsigned char of

two dimensions (size 500x1000)

CREATE CHUNKED (2?0, 100) DATASET my dataset9 AS UNSIGNED TINYINT (500, 1000)

create an HDF5 dataset named "my datasetl(0" of data type int of two dimensions (size 20x400)
using the N-bit data compression filter

CREATE DATASET my datasetl(0 AS INT (20, 400) ENABLE NBIT PRECISION !¢ OFFSET 4

create an HDF5 dataset named "my datasetll" of data type float of one dimension (size 500000)
using both the ZLIB data compression and Fletcher32 checksum error detection filters

CREATE DATASET my datasetll AS FLOAT (500000) ENABLE ZLIB LEVEL 5 FLETCHER32

create an HDF5 dataset named "my datasetl2" of data type variable-length float
CREATE DATASET my datasetl2? AS VARFLOAT

create an HDF5 dataset named "my datasetl3" of data type variable-length short of one
dimension (size 5) with initial values from a text file named "my file.txt"

CREATE DATASET my datasetl3 AS VARSMALLINT (5) VALUES FROM FILE my file.txt

create an HDF5 dataset named "my datasetl4" of data type variable-length char with an initial
value of "Hierarchical Data Format"

CREATE DATASET my datasetl4 AS VARCHAR VALUES ("Hierarchical Data Format'")

create an HDF5 dataset named "my datasetl5" of data type opaque
CREATE DATASET my datasetl5 AS OPAQUE

create an HDF5 dataset named "my datasetl6" of data type opaque of one dimension (size 6)
with initial (ASCII) values of 72, 68, 70, 0, 113 and 108 (i.e. "HDF\0gl")
CREATE DATASET my datasetl6é AS OPAQUE (/) VALUES(7/2, 65, 70, 0, 113, 108)

create an HDF5 dataset named "my datasetl7" of data type opaque of two dimensions (size
10x1024) with a tag value "Raw data”
CREATE DATASET my datasetl?7 AS OPAQUE (10, 1024) TAG "Raw data'

Version 2.4.0 Page 194 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

create a chunked (size 2) HDF5 dataset named "my datasetl8" of data type float of one
dimension (size 5 and extendible up to 10)

CREATE CHUNKED (”) DATASET my datasetl8 AS FLOAT (5 TO 10)

create a chunked (with an automatically calculated size) HDF5 dataset named "my datasetl9" of
data type variable-length int of one dimension (size 1 and extendible to an unlimited size)

CREATE CHUNKED DATASET my datasetl9 AS VARINT (UNLIMITED)

create a chunked (with an automatically calculated size) HDF5 dataset named "my dataset20" of
data type double of three dimensions (first dimension with size 3 and extendible up to 5;
second dimension with size 7; third dimension with size 20 and extendible to an unlimited size)

CREATE CHUNKED DATASET my dataset20 AS DOUBLE (3 TO 5, 7/, 20 TO UNLIMITED)

create an HDF5 dataset named "my dataset21" of data type enumeration composed of three
members named "Lisbon" (with value 0), "New York" (with value 1) and "Tokyo" (with value 2)

CREATE DATASET my dataset2l AS ENUMERATION (Lisbon, "New York", Tokyo)

create an HDF5 dataset named "my dataset22" of data type enumeration composed of three
members named "red" (with value 0), "green" (with value 15) and "blue" (with value 16)

CREATE DATASET my dataset2? AS ENUMERATION (red, green AS 15, blue)

create an HDF5 dataset named "my dataset23" of data type enumeration of one dimension (size
4) composed of two members named "car" (with value 100) and "plane" (with value 200), with a
fill value of "plane" (i.e. 200)

CREATE DATASET my dataset23 AS ENUMERATION (car AS 100, plane AS 200) (4) FILL(plane)

create an HDF5 dataset named "my dataset24" of data type compound composed of three members
named "person" (of data type variable-length char), "age" (of data type unsigned int) and
"weight" (of data type float)

CREATE DATASET my dataset24 AS COMPOUND (person AS VARCHAR, age AS UNSIGNED INT, weight AS
FLOAT)

create an HDF5 dataset named "my dataset25" of data type compound composed of four members
named "id" (of data type long long), "description" (of data type variable-length char),
"position" (of data type compound composed of two members named "x" (of data type short) and
"y" (of data type short)) and "temperature" (of data type enumeration composed of three members
named "cold" (with value 0), "warm" (with value 1) and "hot" (with value 10))

CREATE DATASET my dataset25 AS COMPOUND(id AS BIGINT, description AS VARCHAR, position AS
COMPOUND (x AS SMALLINT, y AS SMALLINT), temperature AS ENUMERATION (cold, warm, hot AS 10))

Version 2.4.0 Page 195 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

create an HDF5 dataset named "my dataset26" of data type compound of one dimension (size 5)
composed of three members named '"state" (of data type enumeration composed of two members named
"off" (with value 0) and "on" (with value 1)), "readings" (of data type int of two dimensions
(size 3x4)) and "factors" (of data type compound composed of two members named "first" (of data
type float) and "second" (of data type double))

CREATE DATASET my dataset26 AS COMPOUND (state AS ENUMERATION (off, on), readings AS INT (3, 4),
factors AS COMPOUND (first AS FLOAT, second AS DOUBLE)) (5)

create an HDF5 dataset named "my dataset27" of data type compound of one dimension (size 1
and extendible to an unlimited size) composed of two members named "m0O" (of data type double)
and "ml" (of data type float)

CREATE DATASET my dataset27 AS COMPOUND (m0O AS DOUBLE, ml AS FLOAT) (UNLIMITED)

use (i.e. open) an HDF5 file named "my file.h5"
USE FILE my file.h5

create an HDF5 dataset named "my dataset28" of data type double in the HDF5 file currently in
use (i.e. file "my file.h5")
CREATE DATASET my dataset28 AS DOUBLE

close HDF5 file currently in use (i.e. file "my file.h5")
CLOSE FILE

create an HDF5 dataset named "my dataset29" of data type int in file "my file.hb5"
CREATE DATASET my file.h5 my dataset29 AS INT

6.4.5 CREATE ATTRIBUTE

Syntax

CREATE [TRUNCATE] ATTRIBUTE [file_name] attribute_name |, [file_name] attribute_namel* AS data_type

[(attribute_dim [, attribute_dim]*)]
[SIZE compound_size]
[TAG tag_value]

[VALUES {(initial_value [, initial_valuel*) | input_redirecting_option}]

Version 2.4.0 Page 196 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

data_type := [NATIVE | LITTLE ENDIAN | BIG ENDIAN | ASCIl | UTF8] {TINYINT | UNSIGNED TINYINT |
SMALLINT | UNSIGNED SMALLINT | INT | UNSIGNED INT | BIGINT | UNSIGNED BIGINT | FLOAT | DOUBLE |
CHAR | VARTINYINT | UNSIGNED VARTINYINT | VARSMALLINT | UNSIGNED VARSMALLINT | VARINT |
UNSIGNED VARINT | VARBIGINT | UNSIGNED VARBIGINT | VARFLOAT | VARDOUBLE | VARCHAR | OPAQUE |
{ENUMERATION (member_name [AS member_value] [, member_name [AS member_value]]*)} | {COMPOUND
(member_name AS data_type [(member_dim [, member_dim]*)] [SIZE compound_size] [OFFSET member_offset]
[TAG tag_value] [, member_name AS data_type [(member_dim [, member_dim]*)] [SIZE compound_size] [OFFSET
member_offset] [TAG tag_value]l*)1}}

Description

Create an HDF5 attribute named attribute_name. Multiple attributes can be created at once by separating these with a
comma (,). If attribute_name already exists, it will not be overwritten, no subsequent attributes are created, and an error
is raised. To overwrite an existing attribute, specify the keyword TRUNCATE (all data stored in the attribute will be

permanently lost).

Parameter(s)

file_name — optional string that specifies the name of the HDF5 file in which the attribute is created. If file_name is
specified, the file is opened on the fly, the attribute is created within it and, afterwards, the file is closed. Otherwise, if it is
not specified, the attribute is created in the file currently in use. As a general rule, in case file_name is composed of
spaces, special characters or reserved keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if
it is not surrounded by double-quotes, the attribute will not be created and an error is raised. This rule also applies to any

other HDFql operation that works with file names (e.g. RENAME FILE).

attribute_name — mandatory string that specifies the name of the HDF5 attribute to create. Multiple attributes are
separated with a comma (,). As a general rule, in case attribute_name is composed of spaces, special characters or
reserved keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by
double-quotes, the attribute will not be created and an error is raised. This rule also applies to any other HDFql operation

that works with attribute names (e.g. RENAME ATTRIBUTE).
data_type — mandatory keyword that specifies the data type of (the member that composes) the HDF5 attribute to create.

member_name — mandatory string that specifies the name of the member that composes the HDF5 attribute of data type
HDFQL_ENUMERATION or HDFQL_COMPOUND. Multiple members are separated with a comma (,). As a general rule, in
case member_name is composed of spaces, special characters or reserved keywords (e.g. SELECT), it should be surrounded
by double-quotes (“). Otherwise, if it is not surrounded by double-quotes, the attribute will not be created and an error is

raised. This rule also applies to any other HDFgl operation that works with member names (e.g. SHOW MEMBER).

Version 2.4.0 Page 197 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

member_value — optional integer that specifies the value to assign to the member that composes the HDF5 attribute of
data type HDFQL_ENUMERATION. If not specified, its value is the value assigned to the previous member incremented by

one. Of note, the default value assigned to the first member (of the enumeration) is 0 (unless explicitly specified).

member_dim — optional integer that specifies the size of the dimension of the member that composes the HDF5 attribute

of data type HDFQL_COMPOUND. Multiple dimensions are separated with a comma (,).

attribute_dim — optional integer that specifies the size of the dimension. Multiple dimensions are separated with a comma

()

compound_size — optional integer that specifies the size (in bytes) of the HDF5 (nested) compound attribute. If not
specified, HDFqgl automatically calculates the size by summing the size of all members of the compound. Of note, the
specification of a size is only available for an attribute of data type HDFQL_COMPOUND (any other data type will raise an

error).

member_offset — optional integer that specifies the (memory) member offsets that compose the HDF5 attribute. If
specified, the attribute is assumed to store a C padded struct data type (i.e. its members may not be contiguous in
memory due to padding between these) and is used as such by HDFqgl. If not specified, the attribute is assumed to store a
C primitive or packed struct data type (i.e. its members are contiguous in memory and have no padding between these)
and is used as such by HDFqgl. Of note, the specification of an offset is only available for an attribute of data type

HDFQL_COMPOUND (any other data type will raise an error).

tag_value — optional string that specifies the value of a tag attached to the HDF5 attribute or to its member(s). Of note,
the specification of a tag is only available for an attribute or a member of data type HDFQL_OPAQUE (any other data type

will raise an error).

initial_value — optional integer, float or string to write into the HDF5 attribute to create. Multiple values are separated
with a comma (,). In case initial_value is not specified, the element in question will be zeroed or emptied depending on

whether the attribute is a number or a string, respectively.

input_redirecting_option — optional option that specifies a file or memory to read data from in order to write it into the

HDF5 attribute to create (please refer to the subsection FROM for additional information).

Return

Nothing

Version 2.4.0 Page 198 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

create an HDF5 attribute named "my attributeO" of data type int (the attribute will not be
overwritten if it already exists)

CREATE ATTRIBUTE my attribute0O AS INT

create an HDF5 attribute named "my attributel"” of data type char in a root object (either a
_ J

group or dataset) named "my object" (the attribute will not be overwritten if it already

exists)

CREATE ATTRIBUTE /my object/my attributel AS CHAR

create two HDF5 attributes named "my attribute2" and "my attribute3" of data type short (both
attributes will be overwritten if they already exist)

CREATE TRUNCATE ATTRIBUTE my attribute2, my attribute3 AS SMALLINT

create an HDF5 attribute named "this is a long attribute name" of data type float (the
attribute will not be overwritten if it already exists)

CREATE ATTRIBUTE '"this is a long attribute name" AS FLOAT

create an HDF5 attribute named "my attribute4" of data type unsigned long long using the big
endian representation

CREATE ATTRIBUTE my attribute4 AS BIG ENDIAN UNSIGNED BIGINT

create an HDF5 attribute named "my attributeb" of data type int using the little endian
representation with an initial value of 80178

CREATE ATTRIBUTE my attribute5 AS LITTLE ENDIAN INT VALUES (50178)

create an HDF5 attribute named "my attribute6" of data type char using an UTF8 representation

CREATE ATTRIBUTE my attribute6 AS UTF8 CHAR

create an HDF5 attribute named "my attribute7" of data type float of one dimension (size 512)
CREATE ATTRIBUTE my attribute7 AS FLOAT(512)

create an HDF5 attribute named "my attribute8" of data type unsigned char of two dimensions
(size 500x1000)
CREATE ATTRIBUTE my attribute8 AS UNSIGNED TINYINT (500, 1000)

Version 2.4.0 Page 199 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

create an HDF5 attribute named "my attribute9" of data type variable-length float
CREATE ATTRIBUTE my attribute9 AS VARFLOAT

create an HDF5 attribute named "my attributelO" of data type variable-length short of one
dimension (size 5) with initial values from a text file named "my file.txt"

CREATE ATTRIBUTE my attributel(O AS VARSMALLINT (5) VALUES FROM FILE my file.txt

create an HDF5 attribute named "my attributell" of data type variable-length char with an
initial value of "Hierarchical Data Format"

CREATE ATTRIBUTE my attributell AS VARCHAR VALUES ("Hierarchical Data Format')

create an HDF5 attribute named "my attributel2" of data type opaque
CREATE ATTRIBUTE my attributel2? AS OPAQUE

create an HDF5 attribute named "my attributel3" of data type opaque of one dimension (size 6)
with initial (ASCII) values 72, 68, 70, 0, 113 and 108 (i.e. "HDF\0gl")
CREATE ATTRIBUTE my attributel3 AS OPAQUE (¢) VALUES (72, ©s8, /0, 0, 113, 108)

create an HDF5 attribute named "my attributel4" of data type opaque of two dimensions (size
10x1024) with a tag value "Raw data"
CREATE ATTRIBUTE my_attributel4 AS OPAQUE (10, 1024) TAG "Raw data"

create an HDF5 attribute named "my attributelb" of data type enumeration composed of three
members named "Lisbon" (with value 0), "New York" (with value 1) and "Tokyo" (with value 2)

CREATE ATTRIBUTE my attributel5 AS ENUMERATION (Lisbon, "New York'", Tokyo)

create an HDF5 attribute named "my attributelé6" of data type enumeration composed of three
members named "red" (with value 0), "green" (with value 15) and "blue" (with value 16)

CREATE ATTRIBUTE my attributel6 AS ENUMERATION (red, green AS 15, blue)

create an HDF5 attribute named "my attributel7" of data type enumeration of two dimensions
(size 4x5) composed of two members named "car" (with value 10) and "plane" (with value 20)

CREATE ATTRIBUTE my attributel7 AS ENUMERATION (car AS 10, plane AS 20) (4, 5)

create an HDF5 attribute named "my attributel8" of data type compound composed of three
members named "person" (of data type variable-length char), "age" (of data type unsigned int)
and "weight" (of data type float)

CREATE ATTRIBUTE my attributel8 AS COMPOUND (person AS VARCHAR, age AS UNSIGNED INT, weight AS
FLOAT)

Version 2.4.0 Page 200 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

create an HDF5 attribute named "my attributel9" of data type compound composed of four
members named "id" (of data type long long), "description" (of data type variable-length char),
"position" (of data type compound composed of two members named "x'" (of data type short) and
"y" (of data type short)) and "temperature" (of data type enumeration composed of three members
named "cold" (with value 0), "warm" (with value 1) and "hot" (with value 10))

CREATE ATTRIBUTE my attributel9 AS COMPOUND(id AS BIGINT, description AS VARCHAR, position AS
COMPOUND (x AS SMALLINT, y AS SMALLINT), temperature AS ENUMERATION (cold, warm, hot AS 10))

create an HDF5 attribute named "my attribute20" of data type compound of one dimension (size
5) composed of three members named '"state" (of data type enumeration composed of two members
named "off" (with value 0) and "on'" (with value 1)), "readings" (of data type int of two
dimensions (size 3x4)) and "factors" (of data type compound composed of two members named
"first" (of data type float) and "second" (of data type double))

CREATE ATTRIBUTE my attribute20 AS COMPOUND (state AS ENUMERATION (off, on), readings AS INT (3,
1), factors AS COMPOUND (first AS FLOAT, second AS DOUBLE)) (5)

use (i.e. open) an HDF5 file named "my file.h5"
USE FILE my file.h5

create an HDF5 attribute named "my attribute2l" of data type double in the HDF5 file
currently in use (i.e. file "my file.h5")

CREATE ATTRIBUTE my attribute2l AS DOUBLE

close HDF5 file currently in use (i.e. file "my file.h5")
CLOSE FILE

create an HDF5 attribute named "my attribute2l" of data type int in file "my file.h5"
CREATE ATTRIBUTE my file.h5 my attribute2l AS INT

6.4.6 CREATE [SOFT | HARD] LINK

Syntax

CREATE [TRUNCATE] [SOFT | HARD] LINK ([file_name] link_name [, [file_name] link_name]* TO object_name |,

object_namel*

Version 2.4.0 Page 201 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Create an HDF5 soft or hard link named link_name to a group or dataset named object_name. Multiple links can be
created at once by separating these with a comma (,). If link_name already exists, it will not be overwritten, no
subsequent links are created, and an error is raised. To overwrite an existing link, specify the keyword TRUNCATE. If
neither the keyword SOFT nor HARD is specified, a soft link is created by default. To create a hard link, the keyword HARD

must be specified.

Parameter(s)

file_name — optional string that specifies the name of the HDFS5 file in which the soft or hard link is created. If file_name is
specified, the file is opened on the fly, the soft or hard link is created within it and, afterwards, the file is closed.
Otherwise, if it is not specified, the soft or hard link is created in the file currently in use. As a general rule, in case
file_name is composed of spaces, special characters or reserved keywords (e.g. SELECT), it should be surrounded by
double-quotes (“). Otherwise, if it is not surrounded by double-quotes, the link will not be created and an error is raised.

This rule also applies to any other HDFql operation that works with file names (e.g. RENAME FILE).

link_name — mandatory string that specifies the name of the HDF5 soft or hard link to create. Multiple links are separated
with a comma (,). As a general rule, in case link_name is composed of spaces, special characters or reserved keywords (e.g.
SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by double-quotes, the link will
not be created and an error is raised. This rule also applies to any other HDFql operation that works with link names (e.g.

RENAME LINK).

object_name — mandatory string that specifies the name of the HDF5 group or dataset that link_name points to. Multiple
objects are separated with a comma (,). As a general rule, in case object_ name is composed of spaces, special characters
or reserved keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by
double-quotes, the link will not be created and an error is raised. This rule also applies to any other HDFgl operation that

works with link names (e.g. RENAME LINK).
Return

Nothing

Example(s)

create an HDF5 group named "my groupO"
CREATE GROUP my group(

Version 2.4.0 Page 202 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

create an HDF5 dataset named "my dataset(0" of data type variable-length unsigned int
CREATE DATASET my dataset(O AS UNSIGNED VARINT

create an HDF5 soft link named "my 1ink0" to group "my groupO" (the soft link will not be
overwritten if it already exists)

CREATE LINK my 1ink0O TO my groupO

create an HDF5 soft link named "my 1inkl" to dataset "my dataset(0" (the soft link will not be
overwritten if it already exists)

CREATE SOFT LINK my linkl TO my dataset0

create two HDF5 soft links named "my 1ink2" and "my 1ink3" to dataset "my datasetO" and group
"my groupO" respectively (both soft links will be overwritten if they already exist)

CREATE TRUNCATE SOFT LINK my link2, my 1ink3 TO my dataset(0, my groupO

create an HDF5 soft link named "this is a long link name" to dataset "my dataset(0" (the soft
link will not be overwritten if it already exists)

CREATE LINK "this is a long link name'" TO my dataset(

create an HDF5 group named "my groupl"
CREATE GROUP my groupl

create an HDF5 dataset named "my datasetl" of data type variable-length unsigned int
CREATE DATASET my datasetl AS UNSIGNED VARINT

create an HDF5 hard link named "my 1ink4" to group "my groupl" (the hard link will not be
overwritten if it already exists)

CREATE HARD LINK my link4 TO my groupl

create an HDF5 hard link named "my 1ink5" to dataset "my datasetl" (the hard link will not be
overwritten if it already exists)

CREATE HARD LINK my link5 TO my datasetl

create two HDF5 hard links named "my 1ink6" and "my 1ink7" to dataset "my datasetl" and group
"my groupl" respectively (both hard links will be overwritten if they already exist)
CREATE TRUNCATE HARD LINK my link6, my 1link7 TO my datasetl, my groupl

use (i.e. open) an HDF5 file named "my file.h5"
USE FILE my file.h5

Version 2.4.0 Page 203 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

create an HDF5 soft link named "my 1ink8" to object "my object0" in the HDF5 file currently
in use (i.e. file "my file.h5")

CREATE LINK my 1ink8 TO my objectO

close HDF5 file currently in use (i.e. file "my file.hb5")
CLOSE FILE

create an HDF5 soft link named "my 1ink9" to object "my objectl”" in file "my file.h5"
CREATE LINK my file.h5 my 1ink9 TO my objectl

6.4.7 CREATE EXTERNAL LINK

Syntax

CREATE [TRUNCATE] EXTERNAL LINK [file_name] link_name |, [file_name] link_name]* TO target_file_name

object_name [, target_file_name object_name]*

Description

Create an HDF5 external link named link_name to a group or dataset named object_name belonging to another HDF5 file
named target_file_name. Multiple external links can be created at once by separating these with a comma (,). If link_name
already exists, it will not be overwritten, no subsequent external links are created, and an error is raised. To overwrite an

existing external link, specify the keyword TRUNCATE.

Parameter(s)

file_name — optional string that specifies the name of the HDF5 file in which the external link is created. If file_name is
specified, the file is opened on the fly, the external link is created within it and, afterwards, the file is closed. Otherwise, if
it is not specified, the external link is created in the file currently in use. As a general rule, in case file_name is composed of
spaces, special characters or reserved keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if
it is not surrounded by double-quotes, the link will not be created and an error is raised. This rule also applies to any other

HDFql operation that works with file names (e.g. RENAME FILE).

link_name — mandatory string that specifies the name of the HDF5 external link to create. Multiple external links are
separated with a comma (,). As a general rule, in case link_name is composed of spaces, special characters or reserved

keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by double-quotes,

Version 2.4.0 Page 204 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

the link will not be created and an error is raised. This rule also applies to any other HDFql operation that works with

external link names (e.g. RENAME EXTERNAL LINK).

target_file_name — mandatory string that specifies the name of the HDF5 file where object_name is stored and link_name
points to. Multiple files are separated with a comma (,). As a general rule, in case target_file_name is composed of spaces,
special characters or reserved keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not
surrounded by double-quotes, the link will not be created and an error is raised. This rule also applies to any other HDFq|

operation that works with file names (e.g. RENAME FILE).

object_name — mandatory string that specifies the name of the HDF5 group or dataset (stored in file_name) that
link_name points to. As a general rule, in case object_name is composed of spaces, special characters or reserved
keywords (e.g. SELECT), it should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by double-quotes,
the link will not be created and an error is raised. This rule also applies to any other HDFgl operation that works with

external link names (e.g. RENAME EXTERNAL LINK).
Return

Nothing

Example(s)

use (i.e. open) an HDF5 file named "my file(0.h5"
USE FILE my file(O.hb

create an HDF5 group named "my groupO"
CREATE GROUP my group0

create an HDF5 dataset named "my datasetQ" of data type variable-length unsigned int
CREATE DATASET my dataset(AS UNSIGNED VARINT

create an HDF5 external link named "my 1ink0" to object "my group0" in file "my file0O.h5"
(the external link will not be overwritten if it already exists)

CREATE EXTERNAL LINK my 1inkO TO my file0O.h5 my group0

create an HDF5 external link named "my 1inkl" to object "my object0" in file "my filel.h5"
(the external link will be overwritten if it already exists)

CREATE TRUNCATE EXTERNAL LINK my linkl TO my filel.h5 my objectO

create two HDF5 external links named "my 1ink2" and "my 1ink3" to object "my objectl" in file
"my filel.h5" and object "my object2" in file "my file2.h5" respectively (neither external

links will be overwritten if they already exist)

Version 2.4.0 Page 205 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE EXTERNAL LINK my link2, my 1ink3 TO my filel.h5 my objectl, my fileZ.h5 my object2

create an HDF5 external link named "this is a long external link name" to object "my object3"
in file "my file3.h5" (the external link will not be overwritten if it already exists)

CREATE EXTERNAL LINK "this is a long external link name"” TO my file3.h5 my object3

use (i.e. open) an HDF5 file named "my file4.h5"
USE FILE my filed.h5

create an HDF5 external link named "my 1ink4" in the HDF5 file currently in use (i.e. file
"my file4.h5") to object "my object4" in file "my file5.h5"
CREATE EXTERNAL LINK my link4 TO my file5.h5 my object4

close HDF5 file currently in use (i.e. file "my file4.h5")
CLOSE FILE

create an HDF5 external link named "my 1ink5" in file "my file4.h5" to object "my object5" in
file "my file6.h5"
CREATE EXTERNAL LINK my file4.h5 my 1ink5 TO my file6.h5 my object)b

6.4.8 ALTER DIMENSION

Syntax

ALTER DIMENSION [file_name] dataset_name |, [file_name] dataset_name]* TO dataset_dim [, dataset_dim]*

Description

Alter (i.e. change) the dimensions of an existing HDF5 dataset named dataset_name. Multiple datasets can have their
dimensions altered at once by separating these with a comma (,). If dataset_name was not found or its dimensions could
not be altered (due to its storage type not being HDFQL_CHUNKED or for unknown/unexpected reasons), no subsequent

datasets are altered, and an error is raised.

Parameter]s[

file_name — optional string that specifies the name of the HDF5 file which stores the dataset to alter (i.e. change)

dimensions. If file_name is specified, the file is opened on the fly, the dimensions of the dataset are altered and,

Version 2.4.0 Page 206 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

afterwards, the file is closed. Otherwise, if it is not specified, the dataset to alter the dimensions is stored in the file

currently in use.

dataset_name — mandatory string that specifies the name of the HDF5 dataset whose dimensions are to be altered (i.e.

changed). Multiple datasets are separated with a comma (,).

dataset_dim — mandatory integer that specifies the new size for the dimension in question. Multiple dimensions are
separated with a comma (,). Depending on the prefix of the value specified in dataset_dim, one of the following behaviors

applies:
o Ifits prefix is “+”, the dimension will have its size increased by this value.

“un

o Ifits prefix is “-”, the dimension will have its size decreased by this value.

“n

e Incase its prefix is neither “+” nor “-”, the dimension will have exactly the size of this value.
To preserve the value of a certain dimension (i.e. for its size not to be altered), it should be skipped with a comma (,).

Return

Nothing

Example(s)

create an HDF5 dataset named "my dataset" of data type double of three dimensions (first
dimension with size 2 and extendible up to 10, second dimension with size 7; third dimension
with size 20 and extendible to an unlimited size)

CREATE CHUNKED DATASET my dataset AS DOUBLE (Z TO r 7, TO UNLIMITED)

show (i.e. get) current dimensions of dataset "my dataset" (should be 2, 7, 20)

SHOW DIMENSION my dataset

alter (i.e. change) dimensions of dataset "my dataset" to set its first dimension size to 6,
and increase the third dimension size by 10 (the second dimension size remains intact)

ALTER DIMENSION my dataset TO 6, , +

show (i.e. get) current dimensions of dataset "my dataset" (should be 6, 7, 30)

SHOW DIMENSION my dataset

alter (i.e. change) dimensions of dataset "my dataset" to increase its first dimension size
by 2, to set the second dimension size to 3, and to decrease the third dimension size by 5

ALTER DIMENSION my dataset TO +-2, 3, -

Version 2.4.0 Page 207 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

show (i.e. get) current dimensions of dataset "my dataset" (should be 8, 3, 25)

SHOW DIMENSION my dataset

6.4.9 RENAME DIRECTORY

Syntax

RENAME DIRECTORY directory_name |, directory_namel* AS new_directory_name [, new_directory_name]*

Description

Rename (or move) an existing directory named directory_name as new_directory_name. Multiple directories can be
renamed (or moved) at once by separating these with a comma (,). If new_directory_name already exists, it will not be

overwritten, no subsequent directories are renamed (or moved), and an error is raised.

Parameter(s)

directory_name — mandatory string that specifies the name of the directory to rename (or move). Multiple directories are

separated with a comma (,).

new_directory_name — mandatory string that specifies the new name and/or location (in the file system) to use for

renaming and/or moving directory_name. Multiple directories are separated with a comma (,).
Return

Nothing

Example(s)

rename a directory named "my directory0" as "my directoryl" (the directory "my directoryl"
will not be overwritten if it already exists)

RENAME DIRECTORY my directory(0 AS my directoryl
rename two directories named "my directory2" and "my directory3" as "my directory4" and
"my directory5" respectively (neither directory will be overwritten if it already exists)

RENAME DIRECTORY my directory?2, my directory3 AS my directory4, my directoryb

move a directory named "my directory6" into a root directory named "data" and rename it as

Version 2.4.0 Page 208 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

"my directory7" (the directory "my directory?7" will not be overwritten if it already exists)

RENAME DIRECTORY my directory6 AS /data/my directory7

move a directory named "my directory8" into a relative directory named "backup" (the
directory "my directory8" will not be overwritten if it already exists)

RENAME DIRECTORY my directory8 AS backup/

6.4.10 RENAME FILE

Syntax

RENAME [TRUNCATE] FILE file_name |, file_namel]* AS new_file_name [, new_file_name]*

Description

Rename (or move) an existing file named file_name as new_file_name. Multiple files can be renamed (or moved) at once
by separating these with a comma (,). If new_file_name already exists, it will not be overwritten, no subsequent files are
renamed (or moved), and an error is raised. To overwrite an existing file, specify the keyword TRUNCATE (all data stored in

the file will be permanently lost).

Parameterls[

file_name — mandatory string that specifies the name of the file to rename (or move). Multiple files are separated with a

comma (,).

new_file_name — mandatory string that specifies the new name and/or location (in the file system) to use for renaming

and/or moving file_name. Multiple files are separated with a comma (,).
Return

Nothing

Example(s)

rename a file named "my file(0.h5" as "my filel.h5" (the file "my filel.h5" will not be
overwritten if it already exists)

RENAME FILE my fileO.h5 AS my filel.hb

rename a file named "my file2.h5" as "my file3.h5" (the file "my file3.h5" will be

Version 2.4.0 Page 209 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

overwritten if it already exists)

RENAME TRUNCATE FILE my file2.h5 AS my file3.h5

rename two files named "my file4.h5" and "my file5.h5" as "my file6.h5" and "my file7.h5"
respectively (both files "my file6.h5" and "my file7.h5" will be overwritten if they already
exist)

RENAME TRUNCATE FILE my file4.h5, my file5.h5 AS my file6.h5, my file7.h5

move a file named "my file8.h5" into a root directory named "data" and rename it as
"my file9.h5" (the file "my file9.h5" will not be overwritten if it already exists in this
directory)

RENAME FILE my file8.h5 AS /data/my file9.hb

move a file named "my filel0.h5" into a relative directory named "backup" (the file
"my filelO.h5" will not be overwritten if it already exists in this directory)

RENAME FILE my filel(O.h5 AS backup/

6.4.11 RENAME [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK]

Syntax

RENAME [TRUNCATE] [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK] [file_name] object_name

[, [file_name] object_namel* AS new_object_ name [, new_object_name]*

Description

Rename (or move) an existing HDF5 group, dataset, attribute, (soft) link or external link named object_name as
new_object_name. Multiple groups, datasets, attributes, (soft) links or external links can be renamed (or moved) at once
by separating these with a comma (,). If new_object_name already exists, it will not be overwritten, no subsequent objects
are renamed (or moved), and an error is raised. To overwrite an existing object, specify the keyword TRUNCATE (all data
stored in the object will be permanently lost). In case (1) a group and an attribute or (2) a dataset and an attribute with
identical names (object_name) are stored in the same location (i.e. group) and neither the keyword GROUP, DATASET nor
ATTRIBUTE is specified, the object to be renamed is the group or dataset, respectively. To explicitly rename an object
according to its type, the keyword GROUP, DATASET, ATTRIBUTE, [SOFT] LINK or EXTERNAL LINK must be specified. While
the renaming (or moving) of groups and datasets to a different location is supported by the HDF5 library, this is not the
case for attributes; HDFql overcomes this limitation by (1) creating a new attribute with the same characteristics as the
existing one (e.g. data type, number of dimensions) using the new specified location and name, (2) writing the data from

the existing attribute to the newly created attribute, and (3) deleting the existing attribute.

Version 2.4.0 Page 210 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

file_name — optional string that specifies the name of the HDF5 file which stores the object to rename (or move). If
file_name is specified, the file is opened on the fly, the object is renamed (or moved) and, afterwards, the file is closed.

Otherwise, if it is not specified, the object to rename (or move) is stored in the file currently in use.

object_name — mandatory string that specifies the name of the object to rename (or move). Multiple objects are

separated with a comma (,).

new_object_name — mandatory string that specifies the new name and/or location (within the HDF5 file) to use for

renaming and/or moving object_name. Multiple objects are separated with a comma (,).
Return

Nothing

Example(s)

create two HDF5 groups named "my group0" and "my groupl"
CREATE GROUP my group(O, my groupl

create two HDF5 datasets named "my dataset" and "my common" of data type short

CREATE DATASET my dataset, my common AS SMALLINT

create two HDF5 attributes named "my attribute"” and "my common" of data type float

CREATE ATTRIBUTE my attribute, my common AS FLOAT

rename an object named "my groupO" as "my group" (the object "my group" will not be
overwritten if it already exists)

RENAME my group(O AS my group

move an object named "my groupl" into object "my group" and rename it as "my subgroup" (the
object "my subgroup" will be overwritten if it already exists in object "my group")

RENAME TRUNCATE my groupl AS my group/my subgroup

move two objects named "my dataset" and "my attribute" into objects "my group" and
"my group/my subgroup" respectively (both objects "my dataset" and "my attribute" will not be
overwritten if they already exist in objects "my group" and "my group/my subgroup")

RENAME my dataset, my attribute AS my group/, my group/my subgroup/

rename attribute "my common" as "my attribute" (the attribute "my attribute" will not be

overwritten if it already exists)

Version 2.4.0 Page 211 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

RENAME ATTRIBUTE my common AS my attribute

rename dataset "my common" as "my dataset" (the dataset "my dataset" will not be overwritten
if it already exists)

RENAME DATASET my common AS my dataset

6.4.12 COPY FILE

Syntax

COPY [TRUNCATE] FILE file_name [, file_namel* TO new_file_name [, new_file_namel*

Description

Copy an existing file named file_name to new_file_name. Multiple files can be copied at once by separating these with a
comma (,). If new_file_name already exists, it will not be overwritten, no subsequent files are copied, and an error is

raised. To overwrite an existing file, specify the keyword TRUNCATE (all data stored in the file will be permanently lost).
Parameter(s)

file_name — mandatory string that specifies the name of the file to copy. Multiple files are separated with a comma (,).

new_file_name — mandatory string that specifies the new name and/or location (in the file system) to use for copying

file_name. Multiple files are separated with a comma (,).
Return

Nothing

Example(s)

copy a file named "my file0O.h5" to "my filel.h5" (the file "my filel.h5" will not be
overwritten if it already exists)

COPY FILE my file(O.h5 TO my filel.h5
copy a file named "my file2.h5" to "my file3.h5" (the file "my file3.h5" will be overwritten
if it already exists)

COPY TRUNCATE FILE my file2.h5 TO my file3.h5

copy two files named "my file4.h5" and "my file5.h5" to "my file6.h5" and "my file7.h5"

Version 2.4.0 Page 212 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

respectively (both files "my file6.h5" and "my file7.h5" will be overwritten if they already
exist)

COPY TRUNCATE FILE my file4.h5, my file5.h5 TO my file6.h5, my file7.h5

copy a file named "my file8.h5" into a root directory named "data" and rename it as
"my file9.h5" (the file "my file9.h5" will not be overwritten if it already exists in this
directory)

COPY FILE my file8.h5 TO /data/my file9.h5

copy a file named "my filel0.h5" into a relative directory named "backup" (the file
"my filelO.h5" will not be overwritten if it already exists in this directory)

COPY FILE my filel0.h5 TO backup/

6.4.13 COPY [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK]

Syntax

COPY [TRUNCATE] [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK] [file_name] object_name |,

[file_name] object_name]* TO [target file_name] new_object name [, [target file_name] new_object_name]*

Description

Copy an existing HDF5 group, dataset, attribute, (soft) link or external link named object_name to new_object_name.
Multiple groups, datasets, attributes, (soft) links or external links can be copied at once by separating these with a comma
(,). If new_object_name already exists, it will not be overwritten, no subsequent objects are copied, and an error is raised.
To overwrite an existing object, specify the keyword TRUNCATE (all data stored in the object will be permanently lost). In
case (1) a group and an attribute or (2) a dataset and an attribute with identical names (object_name) are stored in the
same location (i.e. group) and neither the keyword GROUP, DATASET nor ATTRIBUTE is specified, the object to be copied is
the group or dataset, respectively. To explicitly copy an object according to its type, the keyword GROUP, DATASET,
ATTRIBUTE, [SOFT] LINK or EXTERNAL LINK must be specified.

Parameter(s)

file_name — optional string that specifies the name of the HDF5 file which stores the object to copy. If file_name is
specified, the file is opened on the fly, the object is copied and, afterwards, the file is closed. Otherwise, if it is not

specified, the object to copy is stored in the file currently in use.

object_name — mandatory string that specifies the name of the object to copy. Multiple objects are separated with a

comma (,).

Version 2.4.0 Page 213 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

target_file_name — optional string that specifies the name of the HDF5 file in which to copy the object. Multiple files are

separated with a comma (,).

new_object_name — mandatory string that specifies the new name and/or location (within the HDFS5 file or in another

HDFS5 file specified by target_file_name) to use for copying object_name. Multiple objects are separated with a comma (,).
Return

Nothing

Example(s)

create two HDF5 groups named "my group0" and "my groupl"
CREATE GROUP my group(O, my groupl

create two HDF5 datasets named "my dataset(0" and "my common" of data type short

CREATE DATASET my dataset(O, my common AS SMALLINT

create two HDF5 attributes named "my attribute(0" and "my common" of data type float
CREATE ATTRIBUTE my attributeO, my common AS FLOAT

copy an object named "my group0" to "my group2" (the object "my group2" will not be
overwritten if it already exists)

COPY my group(O TO my groupZ2

copy an object named "my groupl" into object "my groupO" and rename it as "my subgroup0" (the
object "my subgroup0" will be overwritten if it already exists in object "my group0")

COPY TRUNCATE my groupl TO my groupO/my subgroup(

copy two objects named "my dataset(0" and "my attributeO" into objects "my group0" and
"my group0/my subgroup0" respectively (both objects "my dataset(0" and "my attribute0" will not
be overwritten if they already exist in objects "my group0" and "my groupO/my subgroup0")

COPY my dataset(0, my attribute(TO my group0/, my group0/my subgroup0/

copy attribute "my common" to "my attributel" (the attribute "my attributel” will not be
overwritten if it already exists)

COPY ATTRIBUTE my common TO my attributel

copy dataset "my common" to "my datasetl" (the dataset "my datasetl" will not be overwritten
if it already exists)

COPY DATASET my common TO my datasetl

Version 2.4.0 Page 214 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

copy an object named "my group3" from the file currently in use to "my group4" in an HDF5
file named "my.file0O.h5" (the object "my group4" will not be overwritten if it already exists
in the file)

COPY my group3 TO my file0O.h5 my group4

copy an object named "my groupb" from an HDF5 file named "my filel.h5" to "my group6" in the
file currently in use (the object "my group6" will not be overwritten if it already exists in
the file)

COPY my filel.hb5 my group5 TO my group6

copy an object named "my group7" from an HDF5 file named "my file2.h5" to "my group8" in an
HDF5 file named "my.file3.h5" (the object "my group8" will not be overwritten if it already
exists in the file)

COPY my fileZ.h5 my group7 TO my file3.h5 my groupé8

6.4.14 DROP DIRECTORY

Syntax
DROP DIRECTORY directory_name |, directory_namel*

Description

Drop (i.e. delete) an existing directory named directory_name. Multiple directories can be dropped at once by separating
these with a comma (,). If directory_name contains directories or files (i.e. if it is not empty), it will not be dropped, no

subsequent directories are dropped, and an error is raised.

Parameter(s)

directory_name — mandatory string that specifies the name of the directory to drop (i.e. delete). Multiple directories are

separated with a comma (,).
Return

Nothing

Example(s)

create two directories named "my directory0" and "my directoryl" within the current working

directory

Version 2.4.0 Page 215 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE DIRECTORY my directory(0, my directoryl

create two directories named "my subdirectory0O" and "my subdirectoryl" within the directory
"my directory0"

CREATE DIRECTORY my directory0/my subdirectoryO, my directory0O/my subdirectoryl

drop (i.e. delete) directory "my directoryl" within the current working directory

DROP DIRECTORY my directoryl

drop (i.e. delete) directory "my subdirectoryO" within directory "my directoryO"

DROP DIRECTORY my directory0/my subdirectory0

6.4.15 DROP FILE

Syntax
DROP FILE file_name [, file_name]*

Description

Drop (i.e. delete) an existing file named file_name. Multiple files can be dropped at once by separating these with a
comma (,). If file_name was not found or could not be dropped (due to unknown/unexpected reasons), no subsequent

files are dropped, and an error is raised.

Parameter(s)

file_name — mandatory string that specifies the name of the file to drop (i.e. delete). Multiple files are separated with a

comma (,).
Return

Nothing

Example(s)

create two HDF5 files named "my file(O.h5" and "my filel.h5" within the current working
directory

CREATE FILE my file0O.h5, my filel.hb

create two HDF5 files named "my file2.h5" and "my file3.h5" within a directory named

Version 2.4.0 Page 216 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

"my directory"

CREATE FILE my directory/my file2.h5, my directory/my file3.hb

drop (i.e. delete) file "my filel.h5" within the current working directory

DROP FILE my filel.hb

drop (i.e. delete) file "my file2.h5" within directory "my directory"”
DROP FILE my directory/my fileZ2.hb

6.4.16 DROP [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK]

Syntax

DROP {GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK} | {{GROUP | DATASET | ATTRIBUTE |
[SOFT] LINK | EXTERNAL LINK] [{[file_name] object_name [, [file_name] object_namel*} | {[[file_name]

object_name] LIKE regular_expression [DEEP deep_value [, deep_value]*1}]}

Description

Drop (i.e. delete) an existing HDF5 group, dataset, attribute, (soft) link or external link named object_name. Multiple
groups, datasets, attributes, (soft) links or external links can be dropped at once by separating these with a comma (,). If
object_name was not found or could not be dropped (due to unknown/unexpected reasons), no subsequent objects are
dropped, and an error is raised. In case (1) a group and an attribute or (2) a dataset and an attribute with identical names
(object_name) are stored in the same location (i.e. group) and neither the keyword GROUP, DATASET nor ATTRIBUTE is
specified, the object to be dropped is the group or dataset, respectively. To explicitly drop an object according to its type,
the keyword GROUP, DATASET, ATTRIBUTE, [SOFT] LINK or EXTERNAL LINK must be specified. If the keyword LIKE is
specified, only objects with names complying with a regular expression named regular_expression will be dropped (in
HDFql, regular expressions are the ones specified by PCRE which closely follow PERL5 syntax — please refer to
http://www.pcre.org and http://perldoc.perl.org/perire.html for additional information). As a general rule, in case
regular_expression is composed of spaces, special characters or reserved keywords (e.g. SELECT), it should be surrounded
by double-quotes (“). Otherwise, if it is not surrounded by double-quotes, objects will not be dropped and an error is
raised. If regular_expression includes “**”, recursive search is performed (i.e. HDFgl will search in all existing groups and
subgroups for objects). To limit the recursiveness, the keyword DEEP may be specified along with a value deep_value

representing the maximum recursiveness limit.

Version 2.4.0 Page 217 of 346

http://www.pcre.org/
http://perldoc.perl.org/perlre.html

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

file_name — optional string that specifies the name of the HDF5 file which stores the object to drop (i.e. delete). If
file_name is specified, the file is opened on the fly, the object is dropped and, afterwards, the file is closed. Otherwise, if it

is not specified, the object to drop is stored in the file currently in use.

object_name — mandatory string that specifies the name of the object to drop (i.e. delete). Multiple objects are separated

with a comma (,).

regular_expression — optional string that specifies the regular expression which only names of objects that comply with it

are dropped. If regular_expression includes “**”, recursive search is performed.

deep_value — optional integer that specifies the maximum recursiveness limit (i.e. how deep recursive search is

performed).
Return

Nothing

Example(s)

create three HDF5 groups named "my groupO", "my groupl" and "my group2"

CREATE GROUP my group(O, my groupl, my groupZ

create two HDF5 datasets named "my dataset(0" and "my datasetl" of data type short in group
"my group2"
CREATE DATASET my groupZ2/my dataset(, my group2/my datasetl AS SMALLINT

create two HDF5 datasets named "my dataset2" and "my common" of data type short

CREATE DATASET my dataset2, my common AS SMALLINT

create two HDF5 attributes named "my attribute0" and "my common" of data type float

CREATE ATTRIBUTE my attributeO, my common AS FLOAT

drop (i.e. delete) an object named "my groupO" (and all objects that may eventually be stored
in 1t)

DROP my group(

drop (i.e. delete) attribute "my common"

DROP ATTRIBUTE my common

drop (i.e. delete) all existing datasets in group "my group2" (should be "my dataset2" and

Version 2.4.0 Page 218 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

"my dataset3")
DROP DATASET my group2/

drop (i.e. delete) all existing groups (should be "my groupl" and "my group2")
DROP GROUP

drop (i.e. delete) all existing objects (should be "my dataset2", "my common" and
"my attribute(0")
DROP /

6.5 DATA MANIPULATION LANGUAGE (DML)

Data Manipulation Language (DML) is, generally speaking, syntax for defining and modifying data stored in structures. In
HDFql, the DML is composed of only one operation (INSERT), which enables the insertion (i.e. writing) of data into HDF5
datasets or attributes. Moreover, it supports REDIRECTING options to redirect the input source according to the

programmer’s needs.

6.5.1 INSERT

Syntax

INSERT [DIRECTLY [MASK mask_value] [SIZE data_size]] INTO [DATASET | ATTRIBUTE] [file_name] object_name
[(selection)] [, [file_name] object_name [(selection)]]* [{IN PARALLEL [NO VALUES]} | {[IN PARALLEL] [VALUES

{(value [, valuel*) | input_redirecting_option}]}]

selection := {[start]:[stride]:[count]:[block] [, [start]:[stride]:[count]:[block]]* [, {OR | AND | XOR | NOTA | NOTB}
[start]:[stride]:[count]:[block] [, [start]:[stride]:[count]:[block]]1*1*} | {coord [, coord]* [; coord [, coord]*]*} |

{chunk_number [, chunk_number]*}

Description

Insert (i.e. write) data into an HDF5 dataset or attribute named object_name. Multiple datasets or attributes can be
written at once by separating these with a comma (,). If object_name was not found or could not be written (due to

unknown/unexpected reasons), no subsequent objects are written, and an error is raised. In case a dataset and an

Version 2.4.0 Page 219 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

attribute with identical names (object_name) are stored in the same location (i.e. group) and neither the keyword
DATASET nor ATTRIBUTE is specified, the object that will have data written into it is the dataset. To explicitly write data

into an object according to its type, the keyword DATASET or ATTRIBUTE must be specified.

In case the keyword DIRECTLY?® is specified, HDFql writes data chunks directly into a dataset bypassing several internal

processing steps of the HDF5 library itself (e.g. data conversion, filter pipeline), which can lead to a much faster writing.

By default, the entire object_name is written when performing an insert operation. To write only a subset (i.e. portion) of
object_name, hyperslab and point selections can be used®’. To enable a (regular) hyperslab selection, the start, stride,
count and block parameters may be specified and separated with a colon (:). For each dimension of object_name, a set of
such parameters may be specified and each set should be separated with a comma (,). Multiple hyperslab selections can
be enabled at once (in this case, the hyperslab will be considered irregular). This is enabled by using the following boolean

operators:

OR —adds the new selection to the existing selection.

e AND - retains only the overlapping portions of the new selection and the existing selection.

e XOR —retains only the elements that are members of the new selection or the existing selection, excluding elements

that are members of both selections.

e NOTA —retains only elements of the new selection that are not in the existing selection.

e NOTB —retains only elements of the existing selection that are not in the new selection.

To enable a point selection, a set of coordinates may be specified. Each coordinate is separated with a comma (,). More
than one set of coordinates (i.e. points) may be specified and each set should be separated with a semicolon (;). Of note,
hyperslab and point selections cannot be used both at the same time (i.e. be mixed) in an insert operation. Since
hyperslab and point selections can be complicated to set up, it is highly recommended to first read
https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-

Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_|_0.htm%23T
OC_7_4_1 Data_Selectionbc-7 and eventually enable the debug mechanism (through the operation SET DEBUG) when

working with these to obtain debug information in case of errors.

38 Only available for HDF5 datasets as, by design, direct insert (i.e. write) for HDF5 attributes is not supported by the HDF5 library. Moreover, the library
does not support writing data directly into a dataset of data type variable-length or compound with a member of data type variable-length.

40 Only available for HDF5 datasets as, by design, both hyperslab and point selections for HDF5 attributes are not supported by the HDF5 library.

Version 2.4.0 Page 220 of 346

https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_I_O.htm%23TOC_7_4_1_Data_Selectionbc-7
https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_I_O.htm%23TOC_7_4_1_Data_Selectionbc-7
https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_I_O.htm%23TOC_7_4_1_Data_Selectionbc-7

Hierarchical Data Format query language (HDFql) Reference Manual

In case the keyword IN PARALLEL*! %2 is specified, HDFqgl writes data into a dataset in parallel using all the MPI processes
specified upon launching the program (that employs HDFql). Of note, a dataset may only be written in parallel if the HDF5
file was opened in parallel in the first place (please refer to the operation USE FILE for additional information). In case the
keyword NO VALUES is specified, no data is actually written by the MPI process in question (which may be useful in certain
situations) only forcing it to participate in the operation (as when working in parallel it is mandatory that all MPI processes

work collectively).

HDFql provides several ways of writing data into a dataset or attribute, namely either from a cursor (e.g. “INSERT INTO
my_dataset”), direct values (e.g. “INSERT INTO my_dataset VALUES(O, 2, 4, 6, 8)"), or an input redirecting option (e.g.
“INSERT INTO my_dataset VALUES FROM FILE my_file.txt”).

Parameter(s)

mask_value — optional integer that specifies which filters have been applied to the data chunk. A filter is skipped if the bit
corresponding to the position of the filter in the pipeline is turned on. If mask_value is specified it must be equal to or
greater than zero (otherwise an error will be raised). Otherwise, if it is not specified and in case the keyword DIRECTLY is

specified, its default value is 0 (meaning that all filters have been applied to the data chunk).

data_size — optional integer that specifies the size (in bytes) of the data to insert (i.e. write) into the HDF5 dataset. If
data_size is specified it must be greater than zero (otherwise an error will be raised). Otherwise, if it is not specified and in
case the keyword DIRECTLY is specified, HDFgl automatically calculates the size by multiplying all storage dimensions of

the dataset with its data type size.

file_name — optional string that specifies the name of the HDF5 file in which the HDF5 dataset or attribute to insert (i.e.
write) data into is stored. If file_name is specified, the file is opened on the fly, the dataset or attribute is inserted and,
afterwards, the file is closed. Otherwise, if it is not specified, the dataset or attribute (whose data is to be inserted) is

stored in the file currently in use.

object_name — mandatory string that specifies the name of the HDF5 dataset or attribute to insert (i.e. write) data into.

Multiple datasets or attributes are separated with a comma (,).

start — optional integer that specifies the starting location of the hyperslab selection. If not specified, its default value is 0
(i.e. the first position of the dimension in question). If negative, its value will be the last position of the dimension in

question minus the value of start.

41 This option is not allowed in Windows as HDFql does not support the parallel HDF5 (PHDF5) library in this platform currently.

42 Only available for HDF5 datasets as, by design, inserting (i.e. writing) data into HDF5 attributes is not supported in parallel. Moreover, the library does
not support writing data into a dataset of data type variable-length or compound with a member of data type variable-length in parallel.

Version 2.4.0 Page 221 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

stride — optional integer that specifies the number of elements to separate each block to be selected. If not specified, its

default value is equal to the value of block.

count — optional integer that specifies the number of blocks to select along each dimension. If not specified, its default

value is 1.

block — optional integer that specifies the size of the block selected (i.e. number of elements) from the HDF5 dataset. If
not specified, its default value is the size of the dimension in question minus the value of start divided by the value of

count.

coord — optional integer that specifies the point of interest (i.e. to insert) for the point selection. If negative, its value will

be the last position of the dimension in question minus the value of coord.

chunk_number — optional integer that specifies the number of the chunk to insert (i.e. write) data into. Multiple chunk
numbers are separated with a comma (,). If chunk_number is specified it must either be between 0 and the storage
dimension in question - 1 (otherwise an error will be raised) or negative (in this case its value will be the last position of
the storage dimension in question minus the value of chunk_number). Otherwise, if it is not specified and in case the

keyword DIRECTLY is specified, its default value is 0 (i.e. first chunk of the storage dimension in question).

value — optional integer, float or string to insert (i.e. write) into the HDF5 dataset or attribute. Multiple values are
separated with a comma (,). In case value is not specified, the element in question will be zeroed or emptied depending on

whether the dataset/attribute is a number or a string, respectively.

input_redirecting_option — optional option that specifies a file or memory to read data from in order to write it into an

HDFS5 dataset or attribute (please refer to the subsection FROM for additional information).
Return

Nothing

Example(s)

create an HDF5 dataset named "my datasetO" of data type short of one dimension (size 3)

CREATE DATASET my dataset(O AS SMALLINT (3)

create an HDF5 dataset named "my datasetl" of data type int of one dimension (size 5)

CREATE DATASET my datasetl AS INT(5)

insert (i.e. write) values 65, 66 and 67 into dataset "my dataset0"

INSERT INTO my dataset(O VALUES (05, v)

Version 2.4.0 Page 222 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

select (i.e. read) data from dataset "my dataset0" and populate cursor in use with it (should
be 65, 66, 67)
SELECT FROM my dataset(

Iinsert (i.e. write) values into dataset "my datasetl" from cursor in use (should be 65, 66,
67, 0, 0)
INSERT INTO my datasetl

create an HDF5 attribute named "my attributeO" of data type short
CREATE ATTRIBUTE my attribute0O AS SMALLINT

insert (i.e. write) value 95 into attribute "my attribute0"

INSERT INTO my attribute(VALUES (95)

create an HDF5 attribute named "my attributel" of data type unsigned short of one dimension
(size 2)

CREATE ATTRIBUTE my attributel AS UNSIGNED SMALLINT (Z)

insert (i.e. write) values 95 and 97 into attribute "my attributel”

INSERT INTO my attributel VALUES (95, 97)

create an HDF5 dataset named "my dataset2" of data type float of one dimension (size 512)

CREATE DATASET my dataset2 AS FLOAT(512)

insert (i.e. write) values into dataset "my dataset2" from a text file named "my file0.txt"
that has values separated with "," (i.e. default separator)

INSERT INTO my datasetZ VALUES FROM FILE my fileO.txt

insert (i.e. write) values into dataset "my dataset2" from a text file named "my filel.txt"
that has a DOS-based end of line (EOL) terminator and values separated with "**"

INSERT INTO my dataset2? VALUES FROM DOS TEXT FILE my filel.txt SEPARATOR **

insert (i.e. write) values into dataset "my dataset2" from a binary file named "my file.bin"

INSERT INTO my datasetZ VALUES FROM BINARY FILE my file.bin

create an HDF5 dataset named "my dataset3" of data type short of one dimension (size 5)

CREATE DATASET my dataset3 AS SMALLINT (5)

insert (i.e. write) value 9 into position #3 of dataset "my dataset3" using a hyperslab

Version 2.4.0 Page 223 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

selection

INSERT INTO my dataset3(3:::) VALUES(9)

select (i.e. read) data from dataset "my dataset3" and populate cursor in use with it (should
be 0, 0, 0, 9, 0)
SELECT FROM my dataset3

insert (i.e. write) value 9 into position #4 of dataset "my dataset3" using a hyperslab
selection

INSERT INTO my dataset3(-I1:::) VALUES(7)

select (i.e. read) data from dataset "my dataset3" and populate cursor in use with it (should
be 0, 0, 0, 9, 7)
SELECT FROM my dataset3

insert (i.e. write) values 5 and 3 into positions #1 and #2 of dataset "my dataset3" using a
hyperslab selection

INSERT INTO my dataset3(l:::2) VALUES (5, 3)

select (i.e. read) data from dataset "my dataset3" and populate cursor in use with it (should
be 0, 5, 3, 9, 7)
SELECT FROM my dataset3

create an HDF5 dataset named "my dataset4" of data type int of two dimensions (size 3x3)

CREATE DATASET my dataset4 AS INT(3, 3)

insert (i.e. write) value 8 into position #2 of the first dimension and position #1 of the
second dimension of dataset "my dataset4" using a hyperslab selection

INSERT INTO my datasetd4(Z:::, 1:::) VALUES (&)

select (i.e. read) data from dataset "my dataset4" and populate cursor in use with it (should
be 0, 0, 0, 0, 0, 0, 0, 8, 0)
SELECT FROM my dataset4

insert (i.e. write) value 4 into position #2 of the first dimension and position #0 of the
second dimension, and value 6 into position #2 of the first dimension and position #2 of the
second dimension of dataset "my dataset4" using a hyperslab selection

INSERT INTO my dataset4(”:::, 0:2:2:1) VALUES (4, ©)
select (i.e. read) data from dataset "my dataset4" and populate cursor in use with it (should
be 0, 0, 0, 0, 0, 0, 4, 8, 6)

SELECT FROM my dataset4

create an HDF5 dataset named "my datasetb5" of data type short of one dimension (size 10)

Version 2.4.0 Page 224 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE DATASET my datasetb5 AS SMALLINT (10)

insert (i.e. write) values 90, 91 and 92 into positions #2, #3 and #4, value 93 into
position#5, and values 94 and 95 into positions #7 and #8 of dataset "my dataset5" using an
irregular hyperslab selection

INSERT INTO my dataset5(”::3:1 OR 4::2:1 OR /::2:1) VALUES (90, 91, 92, 93, 9

N

~
e}
$)]

~

select (i.e. read) data from dataset "my datasetb" and populate cursor in use with it (should
be 0, 0, 90, 91, 92, 93, 0, 94, 95, 0)
SELECT FROM my datasetb

create an HDF5 dataset named "my dataset6" of data type long long of one dimension (size 15)

CREATE DATASET my dataset6 AS BIGINT(15)

insert (i.e. write) values 75 and 77 into positions #5 and #6 of dataset "my dataset6" using
an irregular hyperslab selection

INSERT INTO my dataset6(5::4:1 AND 5::3:1) VALUES(/5, /7,

~
o

, 81, 83, 85, 87)

select (i.e. read) data from dataset "my dataseté6" and populate cursor in use with it (should
be 0, 0, 0, 0, 0, 75, 77, 0, 0, 0, 0, 0, 0, 0, 0)
SELECT FROM my dataset6

create an HDF5 dataset named "my dataset7" of data type float of one dimension (size 8)

CREATE DATASET my dataset7 AS FLOAT(8)

insert (i.e. write) values 7.5, 7.7 and 7.9 into positions #2, #4 and #7 of dataset
"my dataset7" using a point selection

INSERT INTO my dataset?7(Z; 4; /) VALUES(/.5, 7.7, 7.9)

select (i.e. read) data from dataset "my dataset7" and populate cursor in use with it (should
be 0, 0, 7.5, 0, 7.7, 0, 0, 7.9)
SELECT FROM my dataset?7

create an HDF5 dataset named "my dataset8" of data type double of two dimensions (size 4x3)

CREATE DATASET my dataset8 AS DOUBLE (4, 3)

insert (i.e. write) value 15.2 into position #1 of the first dimension and position #2 of the
second dimension, and value 18.5 into position #3 of the first dimension and position #0 of the
second dimension of dataset "my dataset8" using a point selection

INSERT INTO my dataset8(1, 2; 3, 0) VALUES(15.2, 18.5)

select (i.e. read) data from dataset "my dataset8" and populate cursor in use with it (should

be 0, 0, 0, 0, 0, 15.2, 0, 0, 0, 18.5, 0, 0)

Version 2.4.0 Page 225 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

SELECT FROM my dataseté8

use (i.e. open) an HDF5 file named "my file.h5"
USE FILE my file.h5

create an HDF5 dataset named "my dataset9" of data type double in the HDF5 file currently in
use (i.e. file "my file.hb5")
CREATE DATASET my dataset9 AS DOUBLE

insert (i.e. write) value 6.5 into dataset "my dataset9"

INSERT INTO my dataset9 VALUES (6.5)

select (i.e. read) data from dataset "my dataset9" and populate cursor in use with it (should
be 6.5)
SELECT FROM my dataset9

close HDF5 file currently in use (i.e. file "my file.h5")
CLOSE FILE

insert (i.e. write) value 3.2 into dataset "my dataset9" in file "my file.h5"

INSERT INTO my file.h5 my dataset9 VALUES(5.Z2)

select (i.e. read) data from dataset "my dataset9" in file "my file.h5" and populate cursor
in use with it (should be 3.2)
SELECT FROM my file.h5 my dataset9

create an HDF5 dataset named "my datasetl0" of data type enumeration composed of three
members named "helium" (with value 0), "oxygen" (with value 1) and "argon" (with value 2)

CREATE DATASET my datasetl0 AS ENUMERATION (helium, oxygen, argon)

insert (i.e. write) value 1 (i.e. "oxygen'") into dataset "my datasetl0"

INSERT INTO my datasetl(0 VALUES (oxygen)

select (i.e. read) data from dataset "my datasetlO" and populate cursor in use with it
(should be 1 - i.e. "oxygen")
SELECT FROM my datasetl0

create an HDF5 attribute named "my attribute2" of data type enumeration of one dimension
(size 4) composed of three members named "red" (with value 0), "green" (with value 50) and

"blue" (with value 51)

Version 2.4.0 Page 226 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE ATTRIBUTE my attribute2 AS ENUMERATION (red, green AS 50, blue) (4)

insert (i.e. write) values 51 (i.e. "blue"), "red" (i.e. 0), "green" (i.e. 50) and "blue"
(i.e. 51) into attribute "my attribute2"
INSERT INTO my attribute? VALUES (51, red, green, blue)

select (i.e. read) data from attribute "my attributel2" and populate cursor in use with it
(should be 51 - i.e. "blue"”, 0 - i.e. '"red", 50 - i.e. '"green", 51 - i.e. "blue")

SELECT FROM my attributeZ

create a chunked (size 2) HDF5 dataset named "my datasetll" of data type int of one dimension
(size 6)
CREATE CHUNKED (”) DATASET my datasetll AS INT(0)

insert (i.e. write) values 60 and 61 directly into chunk #0 of dataset "my datasetll" using a
(filter) mask equal to 8
INSERT DIRECTLY MASK & INTO my datasetll VALUES (60, ©1)

insert (i.e. write) values 62 and 63 directly into chunk #1 of dataset "my datasetll" using a
(filter) mask equal to 255 (i.e. OXFF)
INSERT DIRECTLY MASK (UxI'F INTO my datasetll(l) VALUES(6-2, 63)

insert (i.e. write) values 64 and 65 directly into chunk #2 of dataset "my datasetll" using a
(filter) mask equal to 0 (i.e. default value)
INSERT DIRECTLY INTO my datasetll(?) VALUES (64, 65)

select (i.e. read) data from dataset "my datasetll" and populate cursor in use with it
(should be 60, 61, 62, 63, 64, 65)
SELECT FROM my datasetll

// declare variables
char script[1024];

double data[3];

// create an HDF5 dataset named "my datasetl2" of data type double of one dimension (size 3)
hdfql execute ("CREATE DATASET my datasetl2 AS DOUBLE (3)");

// populate variable "data" with certain values
datal[0] = 21.1;
data[l] = 18.8;

Version 2.4.0 Page 227 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

data[’] = 75.6;

// register variable "data" for subsequent use (by HDFgl)
hdfql variable register(data);

// prepare script to insert (i.e. write) values from variable '"data" into dataset
"my datasetl2"
sprintf(script, "INSERT INTO my datasetl2 VALUES FROM MEMORY 3d",

hdfql variable get number (data));

// execute script

hdfql execute(script);

// unregister variable '"data" as it 1s no longer used/needed (by HDFql)
hdfql variable unregister(data);

// declare variables
char script[1024];

HDFQL VARIABLE LENGTH datal[3];

// create an HDF5 dataset named "my datasetl3" of data type variable-length double of one
dimension (size 3)

hdfql execute ("CREATE DATASET my datasetl3 AS VARDOUBLE (3)");

// allocate memory in variable '"data"
data[0].address = malloc(” * sizeof(double)),;
data[0].count = 2;

data[l].address = malloc (3 * sizeof(double));,;
data[l].count = 3;

data[”].address = malloc (] * sizeof (double)),;

data[”].count = 1;

// populate variable "data" with certain values

*((double *) data[(0].address + 0) = 3.2;

*((double *) data[(0].address + 1) = 1.3;
*((double *) data[l].address + 0) = 0;

*((double *) data[l].address + 1) = 0.2;
*((double *) data[l].address + 2) = 9.1;
*((double *) data[’].address + 0) = 6.5;

// register variable "data" for subsequent use (by HDFgl)
hdfqgl variable register(data);

Version 2.4.0 Page 228 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// prepare script to insert (i.e. write) values from variable '"data" into dataset
"my datasetl3"
sprintf(script, "INSERT INTO my datasetl3 VALUES FROM MEMORY 3d",

hdfql variable get number (data));

// execute script

hdfql execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)
hdfql variable unregister(data);

// select (i.e. read) data from dataset "my datasetl3" and populate cursor in use with it

hdfql execute("SELECT FROM my datasetl3");

// display content of cursor in use (should be 3.2, 1.3, 0, 0.2, 9.1, 6.5)

while (hdfql cursor next (NULL) == HDFQL SUCCESS)

{
while (hdfql subcursor next (NULL) == HDFQL SUCCESS)
{

printf("5f\n", *hdfqgl subcursor get double (NULL));

// release memory allocated in variable "data"
free(data[(0] .address) ;
free(data[l].address);
free (data[”] .address);

// declare variables
char script[1024];

char *data[3];

// create an HDF5 dataset named "my datasetl4" of data type variable-length char of one
dimension (size 3)

hdfql execute("CREATE DATASET my datasetl4 AS VARCHAR(3)");

// allocate memory in variable '"data"
data[0] = malloc (13 * sizeof (char));
data[l] = malloc(5 * sizeof (char));

data[”’] = malloc(/ * sizeof(char));,

Version 2.4.0 Page 229 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// populate variable "data" with certain values
strcpy (data[0], "Hierarchical');

strcpy (data[l], "Data");

strcpy (data[”?], "Format");

// register variable "data" for subsequent use (by HDFgl)
hdfql variable register(data);

// prepare script to insert (i.e. write) values from variable '"data" into dataset
"my datasetl4"
sprintf(script, "INSERT INTO my datasetl4 VALUES FROM MEMORY 3d",

hdfql variable get number (data));

// execute script

hdfql execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)
hdfql variable unregister (data);

// select (i.e. read) data from dataset "my datasetl4" and populate cursor in use with it

hdfql execute("SELECT FROM my dataset14");

// display content of cursor in use (should be "Hierarchical", "Data'", "Format")
while (hdfql cursor next (NULL) == HDFQL SUCCESS)
{

printf("%s\n", hdfgl cursor get char (NULL));

// release memory allocated in variable "data"
free(data[(0]);
free(dataf[l]),;
free(dataf[”’]),;

// declare structure
struct coordinate
{
double latitude;,
double longitude;
};

// declare variables

char script[1024];

Version 2.4.0 Page 230 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

struct coordinate location;

// create an HDF5 attribute named "my attribute3" of data type compound composed of two members
named "latitude" (of data type double) and "longitude" (of data type double)

hdfql execute ("CREATE ATTRIBUTE my attribute3 AS COMPOUND (latitude AS DOUBLE, longitude AS
DOUBLE) ") ;

// populate variable "location" with certain values
location.latitude = 15.9803486587,;
location.longitude = 48.6352028395;

// prepare script to insert (i.e. write) values from variable "location" into attribute
"my attribute3"
sprintf(script, "INSERT INTO my attribute3 VALUES FROM MEMORY 3%d",

hdfql variable transient register(&location));

// execute script

hdfql execute(script);

// declare structure
struct data
{
char description[7];
int index;

};

// declare variables
char script[1024];
struct data cities[7];

int number;

// create an HDF5 dataset named "my datasetl5" of data type compound of one dimension (size 3)
composed of two members named "description" (of data type char) and "index" (of data type int)
hdfql execute ("CREATE DATASET my datasetl5 AS COMPOUND (description AS CHAR(7), index AS

INT) (3)");

// populate variable '"cities" with certain values
memcpy (cities[0] .description, "Toronto'", 7);
cities[0U].index = 10;

memcpy (cities[1].description, "Nairobi'", 7);
cities[]].index = 12;

memcpy (cities[”] .description, "Caracas", 7);

Version 2.4.0 Page 231 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

cities[”].index = 11;

// register variable "cities" for subsequent use (by HDFgl)

number = hdfql variable register (cities);

// prepare script to insert (i.e. write) values from variable "cities" into dataset
"my datasetlb5"
sprintf(script, "INSERT INTO my datasetl5 VALUES FROM MEMORY @d SIZE %d OFFSET(%d, 3&d)",

number, sizeof (struct data), offsetof(struct data, description), offsetof(struct data, index));

// execute script

hdfql execute(script);

// unregister variable "cities'" as it is no longer used/needed (by HDFql)

hdfgl variable unregister(cities);

// assume that the following program is launched in parallel using four MPI processes (e.g.

"mpiexec -n 4 my program")

// declare variables
char script[1024];

int rank;

// create an HDF5 file named "my file.h5" in parallel
hdfql execute("CREATE FILE my file.h5 IN PARALLEL");

// use (i.e. open) HDF5 file "my file.h5" in parallel
hdfql_execute("USE FILE my_file.h5 IN PARALLEL");

// create an HDF5 dataset named "my datasetlé6" of data type int of one dimension (size 4)

hdfql execute("CREATE DATASET my datasetl6 AS INT(4)");

// get number (i.e. rank) of the MPI process (should be between 0 and 3)
rank = hdfql mpi get rank();

// prepare script to insert (i.e. write) values 0, 10, 20 and 30 in parallel into positions #0
(by MPI process rank 0), #1 (by MPI process rank 1), #2 (by MPI process rank 2) and #3 (by MPI
process rank 3) of dataset "my datasetl6" using a point selection

sprintf(script, "INSERT INTO my datasetl6 (%d) IN PARALLEL VALUES (%d)", rank, rank * 10);

// execute script

Version 2.4.0 Page 232 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

hdfql execute(script);

6.6 DATA QUERY LANGUAGE (DQL)

Data Query Language (DQL) is, generally speaking, syntax for retrieving data stored in structures. In HDFql, the DQL is
composed of only one operation (SELECT). It enables retrieval (i.e. reading) of data stored in HDF5 datasets or attributes
optionally according to certain criteria such as hyperslab selections. Moreover, it supports both POST-PROCESSING and

REDIRECTING options to further transform and redirect the result of the operation according to the programmer’s needs.

6.6.1 SELECT

Syntax

SELECT [DIRECTLY] FROM [DATASET | ATTRIBUTE] [file_name] object_name [(selection)] [IN PARALLEL [NO
VALUES]]

[CACHE [SLOTS ({slots value | FILE | DEFAULT}] [SIZE {size_value | FILE | DEFAULT}] [PREEMPTION
{preemption_value | FILE | DEFAULT}]]

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

selection := {[start]:[stride]:[count]:[block] [, [start]:[stride]:[count]:[block]]* [, {OR | AND | XOR | NOTA | NOTB}
[start]:[stride]:[count]:[block] [, [start]:[stride]:[count]:[block]]*]*} | {coord [, coord]* [; coord [, coord]*]*} |

{chunk_number [, chunk_number]*}

Description

Select (i.e. read) data from an HDF5 dataset or attribute named object_name. In case the keyword CACHE is specified, the
dataset is read using cache parametrized with the values slots_value, size_value and preemption_value (instead of the
dataset cache parameters that may have been set through the operation SET CACHE). In case a dataset and an attribute

with identical names (object_name) are stored in the same location (i.e. group) and neither the keyword DATASET nor

Version 2.4.0 Page 233 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

ATTRIBUTE is specified, the object for which data will be read is the dataset. To explicitly read data from an object
according to its type, the keyword DATASET or ATTRIBUTE must be specified.

In case the keyword DIRECTLY*? is specified, HDFql reads data chunks directly from a dataset bypassing several internal

processing steps of the HDF5 library itself (e.g. data conversion, filter pipeline), which can lead to a much faster reading.

By default, the entire object_name is read when performing a select operation. To read only a subset (i.e. portion) of
object_name, hyperslab and point selections can be used*®. To enable a (regular) hyperslab selection, the start, stride,
count and block parameters may be specified and separated with a colon (:). For each dimension of object_name, a set of
such parameters may be specified and each set should be separated with a comma (,). Multiple hyperslab selections can
be enabled at once (in this case, the hyperslab will be considered irregular). This is enabled by using the following boolean

operators:
e OR-adds the new selection to the existing selection.
e AND - retains only the overlapping portions of the new selection and the existing selection.

e XOR - retains only the elements that are members of the new selection or the existing selection, excluding elements

that are members of both selections.
e NOTA - retains only elements of the new selection that are not in the existing selection.
e NOTB - retains only elements of the existing selection that are not in the new selection.

To enable a point selection, a set of coordinates may be specified. Each coordinate is separated with a comma (,). More
than one set of coordinates (i.e. points) may be specified and each set should be separated with a semicolon (;). Of note,
hyperslab and point selections cannot be used both at the same time (i.e. be mixed) in a select operation. Since hyperslab
and point selections can be complicated to set wup, it is highly recommended to first read
https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-

Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_I_0.htm%23T
OC_7_4_1_Data_Selectionbc-7 and eventually enable the debug mechanism (through the operation SET DEBUG) when

working with these to obtain debug information in case of errors.

43 Only available for HDF5 datasets as, by design, direct selection (i.e. read) for HDF5 attributes is not supported by the HDF5 library. Moreover, the
library does not support reading data directly from a dataset of data type variable-length or compound with a member of data type variable-length.

45 Only available for HDF5 datasets as, by design, both hyperslab and point selections for HDF5 attributes are not supported by the HDF5 library.

Version 2.4.0 Page 234 of 346

https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_I_O.htm%23TOC_7_4_1_Data_Selectionbc-7
https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_I_O.htm%23TOC_7_4_1_Data_Selectionbc-7
https://support.hdfgroup.org/HDF5/doc1.8/UG/HDF5_Users_Guide-Responsive%20HTML5/index.html#t=HDF5_Users_Guide%2FDataspaces%2FHDF5_Dataspaces_and_Partial_I_O.htm%23TOC_7_4_1_Data_Selectionbc-7

Hierarchical Data Format query language (HDFql) Reference Manual

In case the keyword IN PARALLEL* %7 is specified, HDFql reads data from a dataset in parallel using all the MPI processes
specified upon launching the program (that employs HDFqgl). Of note, a dataset may only be read in parallel if the HDF5 file
was opened in parallel in the first place (please refer to the operation USE FILE for additional information). In case the
keyword NO VALUES is specified, no data is actually read by the MPI process in question (which may be useful in certain
situations) only forcing it to participate in the operation (as when working in parallel it is mandatory that all MPI processes

work collectively).

HDFql provides several ways of writing result sets that was read from a dataset or attribute, namely either to a cursor (e.g.

“SELECT FROM my_dataset”) or an output redirecting option (e.g. “SELECT FROM my_dataset INTO FILE my_file.txt”).

Parameterls[

file_name — optional string that specifies the name of the HDFS5 file in which the HDF5 dataset or attribute to select (i.e.
read) data from is stored. If file_name is specified, the file is opened on the fly, the dataset or attribute is selected and,
afterwards, the file is closed. Otherwise, if it is not specified, the dataset or attribute (whose data is to be selected is

stored) in the file currently in use.
object_name — mandatory string that specifies the name of the HDF5 dataset or attribute to select (i.e. read) data from.

start — optional integer that specifies the starting location of the hyperslab selection. If not specified, its default value is 0
(i.e. the first position of the dimension in question). If negative, its value will be the last position of the dimension in

question minus the value of start.

stride — optional integer that specifies the number of elements to separate each block to be selected. If not specified, its

default value is equal to the value of block.

count — optional integer that specifies the number of blocks to select along each dimension. If not specified, its default

value is 1.

block — optional integer that specifies the size of the block (i.e. number of elements) selected from the HDF5 dataset. If
not specified, its default value is the size of the dimension in question minus the value of start divided by the value of

count.

coord — optional integer that specifies the point of interest (i.e. to select) for the point selection. If negative, its value will

be the last position of the dimension in question minus the value of coord.

46 This option is not allowed in Windows as HDFql does not support the parallel HDF5 (PHDF5) library in this platform currently.

47 Only available for HDF5 datasets as, by design, selecting (i.e. reading) data from HDF5 attributes is not supported in parallel. Moreover, the library does
not support reading data from a dataset of data type variable-length or compound with a member of data type variable-length in parallel.

Version 2.4.0 Page 235 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

chunk_number — optional integer that specifies the number of the chunk to select (i.e. read) data from. Multiple chunk
numbers are separated with a comma (,). If chunk_number is specified it must either be between 0 and the storage
dimension in question - 1 (otherwise an error will be raised) or negative (in this case its value will be the last position of
the storage dimension in question minus the value of chunk_number). Otherwise, if it is not specified and in case the

keyword DIRECTLY is specified, its default value is 0 (i.e. first chunk of the storage dimension in question).

slots_value — optional integer that specifies the number of chunk slots in the raw data chunk cache for accessing the HDF5
dataset. Due to the hashing strategy, its value should ideally be a prime number. In case the keyword DEFAULT is
specified, its value is 521 (i.e. default value defined by the HDF5 library). In case the keyword FILE is specified, its value will
be as defined in the cache slots parameter upon using (i.e. opening) the file. In case the keyword SLOTS is not specified, its

current value remains intact. Of note, if object_name is an HDF5 attribute then the cache is ignored (i.e. has no effect).

size_value — optional integer that specifies the total size of the raw data chunk cache in bytes for accessing the HDF5
dataset. In case the keyword DEFAULT is specified, its value is 1048576 (i.e. 1 MB — default value defined by the HDF5
library). In case the keyword FILE is specified, its value will be as defined in the cache size parameter upon using (i.e.
opening) the file. In case the keyword SIZE is not specified, its current value remains intact. Of note, if object_name is an

HDF5 attribute then the cache is ignored (i.e. has no effect).

preemption_value — optional float that specifies the chunk preemption policy for accessing the HDF5 dataset. Its value
must be between 0 and 1. It indicates the weighting according to which chunks which have been fully read or written are
penalized when determining which chunks to flush from cache. In case the keyword DEFAULT is specified, its value is 0.75
(i.e. default value defined by the HDFS5 library). In case the keyword FILE is specified, its value will be as defined in the
cache preemption parameter upon using (i.e. opening) the file. In case the keyword PREEMPTION is not specified, its

current value remains intact. Of note, if object_name is an HDF5 attribute then the cache is ignored (i.e. has no effect).

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The data selected (i.e. read) from an HDF5 dataset or attribute as an HDFQL_TINYINT (in case the data type of the dataset
or attribute is HDFQL_TINYINT), HDFQL_UNSIGNED_TINYINT (in case the data type of the dataset or attribute is
HDFQL_UNSIGNED_TINYINT), HDFQL_SMALLINT (in case the data type of the dataset or attribute is HDFQL_SMALLINT),

Version 2.4.0 Page 236 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

HDFQL_UNSIGNED_SMALLINT (in case the data type of the dataset or attribute is HDFQL UNSIGNED_SMALLINT),
HDFQL_INT (in case the data type of the dataset or attribute is HDFQL_INT), HDFQL_UNSIGNED_INT (in case the data type
of the dataset or attribute is HDFQL_UNSIGNED_INT), HDFQL_BIGINT (in case the data type of the dataset or attribute is
HDFQL_BIGINT), HDFQL_UNSIGNED_BIGINT (in case the data type of the dataset or attribute s
HDFQL_UNSIGNED_BIGINT), HDFQL_FLOAT (in case the data type of the dataset or attribute is HDFQL_FLOAT),
HDFQL_DOUBLE (in case the data type of the dataset or attribute is HDFQL_DOUBLE), HDFQL_CHAR (in case the data type
of the dataset or attribute is HDFQL_CHAR), HDFQL_VARTINYINT (in case the data type of the dataset or attribute is
HDFQL_VARTINYINT), HDFQL_UNSIGNED_VARTINYINT (in case the data type of the dataset or attribute is
HDFQL_UNSIGNED_VARTINYINT), HDFQL_VARSMALLINT (in case the data type of the dataset or attribute is
HDFQL_VARSMALLINT), HDFQL_UNSIGNED_VARSMALLINT (in case the data type of the dataset or attribute is
HDFQL_UNSIGNED_VARSMALLINT), HDFQL_VARINT (in case the data type of the dataset or attribute is HDFQL_ VARINT),
HDFQL_UNSIGNED_VARINT (in case the data type of the dataset or attribute is HDFQL_UNSIGNED_VARINT),
HDFQL_VARBIGINT (in case the data type of the dataset or attribute is HDFQL_VARBIGINT),
HDFQL_UNSIGNED_VARBIGINT (in case the data type of the dataset or attribute is HDFQL_UNSIGNED_ VARBIGINT),
HDFQL_VARFLOAT (in case the data type of the dataset or attribute is HDFQL_VARFLOAT), HDFQL_VARDOUBLE (in case
the data type of the dataset or attribute is HDFQL_VARDOUBLE), HDFQL_VARCHAR (in case the data type of the dataset or
attribute is HDFQL_VARCHAR), HDFQL_OPAQUE (in case the data type of the dataset or attribute is HDFQL_OPAQUE),
HDFQL_ENUMERATION (in case the data type of the dataset or attribute is HDFQL_ENUMERATION) or
HDFQL_COMPOUND (in case the data type of the dataset or attribute is HDFQL_COMPOUND).

Example(s)

create an HDF5 dataset named "my datasetO" of data type short of one dimension (size 3) with
initial values of 65, 66 and 77
CREATE DATASET my dataset(O AS SMALLINT (3) VALUES (65, 66, 67)

select (i.e. read) data from dataset "my dataset(0" and populate cursor in use with it (should
be 65, 66, 67)
SELECT FROM my dataset(

create an HDF5 attribute named "my attributeO" of data type short
CREATE ATTRIBUTE my attribute(AS SMALLINT

select (i.e. read) data from attribute "my attribute(0" and populate cursor in use with it
(should be 0)
SELECT FROM my attributel

create an HDF5 attribute named "my attributel" of data type unsigned short of one dimension

(size 2) with initial values of 95 and 97

Version 2.4.0 Page 237 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE ATTRIBUTE my attributel AS UNSIGNED SMALLINT(Z) VALUES (95, 97)

select (i.e. read) data from attribute "my attributel"”" and populate cursor in use with it
(should be 95, 97)
SELECT FROM my attributel

create an HDF5 dataset named "my datasetl" of data type float of one dimension (size 512)

CREATE DATASET my datasetl AS FLOAT(512)

select (i.e. read) data from dataset "my datasetl" and write it into a text file named
"my file0.txt" using default separator ","

SELECT FROM my datasetl INTO FILE my file(.txt

select (i.e. read) data from dataset "my datasetl" and write it into a text file named
"my filel.txt" using a DOS-based end of line (EOL) terminator and separator "**"

SELECT FROM my datasetl INTO DOS TEXT FILE my filel.txt SEPARATOR **

select (i.e. read) data from dataset "my datasetl" and write it into a binary file named
"my file.bin"
SELECT FROM my datasetl INTO BINARY FILE my_file.bin

create an HDF5 dataset named "my dataset2" of data type short of one dimension (size 5)

CREATE DATASET my dataset2 AS SMALLINT (5)

insert (i.e. write) values 0, 5, 3, 9 and 7 into dataset "my dataset2"

INSERT INTO my dataset2? VALUES (0, 5, 3, 9, 7)

select (i.e. read) data from dataset "my dataset2" using a hyperslab selection (starting from
position #3) and populate cursor in use with it (should be 9, 7)

SELECT FROM my dataset2(3:::)

select (i.e. read) data from dataset "my dataset2" using a hyperslab selection (starting from
position #4) and populate cursor in use with it (should be 7)

SELECT FROM my dataset2(-1:::)
select (i.e. read) data from dataset "my dataset2" using a hyperslab selection (starting from
position #1 with a block of 2) and populate cursor in use with it (should be 5, 3)

SELECT FROM my dataset2(l:::7)

create an HDF5 dataset named "my dataset3" of data type int of two dimensions (size 3x3)

Version 2.4.0 Page 238 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE DATASET my dataset3 AS INT(3, 3)

insert (i.e. write) values 0, 0, 0, 0, 0, 0, 4, 8 and 6 into dataset "my dataset3"

INSERT INTO my dataset3 VALUES (0, 0, 0, 0, 0, 0, 4, 8, ¢)

select (i.e. read) data from dataset "my dataset3" using a hyperslab selection (starting from
position #2 of the first dimension and position #1 of the second dimension) and populate cursor
in use with it (should be 8, 6)

SELECT FROM my dataset3(Z2:::, l:::)

select (i.e. read) data from dataset "my dataset3" using a hyperslab selection (starting from
position #2 of the first dimension and position #0 of the second dimension with a stride of 2,
count of 2 and block of 1) and populate cursor in use with it (should be 4, 6)

SELECT FROM my dataset3(Z:::, 0:2:2:1)

create an HDF5 dataset named "my dataset4" of data type short of one dimension (size 10)

CREATE DATASET my dataset4 AS SMALLINT (10)

insert (i.e. write) values 0, 0, 90, 91, 92, 93, 0, 94, 95 and 0 into dataset "my dataset4"
INSERT INTO my dataset4 VALUES (0O, 0, 90, 91, 92, 93, 0, 94, 95, 0)

select (i.e. read) data from dataset "my dataset4" using an irregular hyperslab selection
(starting from position #2 with a count of 3 and block of 1; starting from position #4 with a
count of 2 and block of 1; starting from position #7 with a count of 2 and block of 1) and
populate cursor in use with it (should be 90, 91, 92, 93, 94, 95)

SELECT FROM my dataset4(”::3:1 OR 4::2:]1 OR 7/::2:1)

create an HDF5 dataset named "my dataset5" of data type long long of one dimension (size 15)

CREATE DATASET my datasetb5 AS BIGINT(15)

insert (i.e. write) values 0, 0, 0, 0, 0, 75, 77, 0, 0, 0, 0, 0, 0, 0 and 0 into dataset
"my datasetb"
INSERT INTO my dataset5 VALUES (O, O, 0, O, O, 75, 77, 0, 0, 0, 0, 0, 0, 0, 0)

select (i.e. read) data from dataset "my datasetb" using an irregular hyperslab selection
(starting from position #3 with a count of 4 and block of 1; starting from position #5 with a
count of 3 and block of 1) and populate cursor in use with it (should be 75, 77)

SELECT FROM my dataset5(3::4:1 AND 5::3:1)

create an HDF5 dataset named "my dataset6" of data type float of one dimension (size 8)

CREATE DATASET my dataset6 AS FLOAT (&)

insert (i.e. write) values 0, 0, 7.5, 0, 7.7, 0, 0 and 7.9 into dataset "my dataseté6"

INSERT INTO my dataset6 VALUES (0, 0, 7.5, 0,

~
~
~
b)
>
N|
o
Nt

Version 2.4.0 Page 239 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

select (i.e. read) data from dataset "my dataset6" using a point selection (positions #2, #4
and #7) and populate cursor in use with it (should be 7.5, 7.7, 7.9)
SELECT FROM my dataseté6(Z2; 4; 7)

create an HDF5 dataset named "my dataset7" of data type double of two dimensions (size 4x3)

CREATE DATASET my dataset?7 AS DOUBLE (4, 3)

insert (i.e. write) values 0, 0, 0, 0, 0, 15.2, 0, 0, 0, 18.5, 0 and 0 into dataset
"my dataset7"
INSERT INTO my dataset?7 VALUES (0, 0O, 0, 0, 0, 15.2, 0, 0, 0, 18.5, 0, 0)

select (i.e. read) data from dataset "my dataset?7" using a point selection (position #1 of
the first dimension and position #2 of the second dimension, position #3 of the first dimension
and position #0 of the second dimension) and populate cursor in use with it (should be 15.2,
18.5)

SELECT FROM my dataset7(1, 2; 3, 0)

use (i.e. open) an HDF5 file named "my file.h5"
USE FILE my file.h5

create an HDF5 dataset named "my dataset8" of data type double in the HDF5 file currently in
use (i.e. file "my file.h5")
CREATE DATASET my dataset8 AS DOUBLE

insert (i.e. write) value 6.5 into dataset "my dataset8"

INSERT INTO my dataset8 VALUES (6.5)

select (i.e. read) data from dataset "my dataset8" and populate cursor in use with it (should
be 6.5)
SELECT FROM my dataseté8

close HDF5 file currently in use (i.e. file "my file.h5")
CLOSE FILE

insert (i.e. write) value 3.2 into dataset "my dataset8" in file "my file.h5"

INSERT INTO my file.h5 my dataset8 VALUES(5.Z”)

select (i.e. read) data from dataset "my dataset8" in file "my file.h5" and populate cursor
in use with it (should be 3.2)
SELECT FROM my file.h5 my dataset$8

Version 2.4.0 Page 240 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

create an HDF5 dataset named "my dataset9" of data type enumeration composed of three members
named "helium" (with value 0), "oxygen" (with value 1) and "argon" (with value 2)

CREATE DATASET my dataset9 AS ENUMERATION (helium, oxygen, argon)

insert (i.e. write) value 1 (i.e. "oxygen") into dataset "my dataset9"”

INSERT INTO my dataset9 VALUES (oxygen)

select (i.e. read) data from dataset "my dataset9" and populate cursor in use with it (should
be 1 - i.e. "oxygen")

SELECT FROM my dataset9

create an HDF5 attribute named "my attribute2" of data type enumeration of one dimension
(size 4) composed of three members named "red" (with value 0), "green" (with value 50) and
"blue" (with value 51)

CREATE ATTRIBUTE my_attribute2 AS ENUMERATION (red, green AS 50, blue) (4)

insert (i.e. write) values 51 (i.e. "blue"), "red" (i.e. 0), "green" (i.e. 50) and "blue"
(i.e. 51) into attribute "my attributel"
INSERT INTO my attribute? VALUES (51, red, green, blue)

select (i.e. read) data from attribute "my attribute2" and populate cursor in use with it
(should be 51 - i.e. "blue", 0 - i.e. "red", 50 - i.e. '"green", 51 - i.e. "blue")

SELECT FROM my attributeZ

create a chunked (size 2) HDF5 dataset named "my datasetl0" of data type int of one dimension
(size 6)

CREATE CHUNKED (”) DATASET my datasetl0O AS INT(6)

insert (i.e. write) values 60, 61, 62, 63, 64 and 65 into dataset "my datasetl0"
INSERT INTO my datasetlO VALUES (00, ©¢1, 62, 63, 64, 6!

()]
~

select (i.e. read) data directly from chunk #0 of dataset "my datasetl0" (should be 60, 61)
SELECT DIRECTLY FROM my datasetlO

select (i.e. read) data directly from chunk #1 of dataset "my datasetl0" (should be 62, 63)
SELECT DIRECTLY FROM my datasetlO(1)

select (i.e. read) data directly from chunk #2 of dataset "my datasetl0" (should be 64, 65)
SELECT DIRECTLY FROM my datasetl0(Z)

Version 2.4.0 Page 241 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// declare variables
char script[1024];
double data[3];

int 1i;

// create an HDF5 dataset named "my datasetll" of data type double of one dimension (size 3)
with initial values of 21.1, 18.8 and 75.6
hdfql execute ("CREATE DATASET my datasetll AS DOUBLE (3) VALUES (21.1, 18.8, 75.6)");

// register variable "data" for subsequent use (by HDFgl)
hdfql variable register(data);

// prepare script to select (i.e. read) data from dataset "my datasetll" and populate variable
"data" with it
sprintf(script, "SELECT FROM my datasetll INTO MEMORY 3%d", hdfql variable get number (data));

// execute script

hdfql execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFqgl)
hdfqgl variable unregister(data);

// display content of variable '"data" (should be 21.1, 18.8, 75.6)
for(i = 0; 1 < 3; i++)
{

printf("$f\n", dataf[i]);

// declare variables

char script[1024];

HDFQL VARIABLE LENGTH datal[3];
int x;

int y;

int count;

// create an HDF5 dataset named "my datasetl2" of data type variable-length double of one
dimension (size 3)

hdfqgl execute ("CREATE DATASET my datasetl2 AS VARDOUBLE (3)");

// insert (i.e. write) values into dataset "my datasetl2"

hdfql execute("INSERT INTO my datasetl2 VALUES((3.2, 1.3), (0, 0.2), (9.1, 7.4, 6.5))");

Version 2.4.0 Page 242 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// register variable "data" for subsequent use (by HDFgl)
hdfql variable register(data);

// prepare script to select (i.e. read) data from dataset "my datasetl2" and populate variable
"data" with it
sprintf(script, "SELECT FROM my datasetl2 INTO MEMORY %d", hdfql variable get number (data));

// execute script

hdfql execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)
hdfql variable unregister(data);

// display content of variable "data" (should be 3.2, 1.3, 0, 0.2, 9.1, 7.4, 6.5)

for(x = 0; x < 3; x++)

{
count = data[x].count;,
for(y = 0; y < count; y++)
{
printf("s$f\n", *((double *) data[x].address + y));
}
}

// release memory allocated (by HDFgl) in variable "data"
for(x = 0; x < 3; x++)
{

free (data[x].address);

// declare variables
char script[1024];
char *data[3];

int x;
// create an HDF5 dataset named "my datasetl3" of data type variable-length char of one
dimension (size 3)

hdfql execute("CREATE DATASET my datasetl3 AS VARCHAR (3) ") ;

// insert (i.e. write) values into dataset "my datasetI3"

hdfgl execute ("INSERT INTO my datasetl3 VALUES (\"Hierarchical\", \"Data\", \"Format\")");

// register variable "data" for subsequent use (by HDFgl)

Version 2.4.0 Page 243 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

hdfql variable register(data);

// prepare script to select (i.e. read) data from dataset "my datasetl3" and populate variable
"data" with it

sprintf(script, "SELECT FROM my datasetl3 INTO MEMORY %d", hdfql variable get number (data));

// execute script

hdfql execute(script);

// unregister variable "data" as it is no longer used/needed (by HDFql)
hdfql variable unregister(data);

// display content of variable "data'" (should be "Hierarchical'", "Data", "Format")
for(x = 0; x < 3; x++)
{

printf("$s\n", data[x]);

// release memory allocated (by HDFql) in variable "data"
for(x = 0; x < 3; x++)
{

free(data[x]);

// declare structure
struct coordinate
{
double latitude;
double longitude;
};

// declare variables
char script[1024];

struct coordinate location;

// create an HDF5 attribute named "my attribute3" of data type compound composed of two members
named "latitude" (of data type double) and "longitude" (of data type double), and with an
initial value of 15.9803486587 for member "latitude" and 48.6352028395 for member '"longitude"
hdfqgl execute ("CREATE ATTRIBUTE my attribute3 AS COMPOUND (latitude AS DOUBLE, longitude AS
DOUBLE) VALUES (15.9803486587, 48.6352028395)");

// prepare script to select (i.e. read) data from dataset "my attribute3" and populate variable

Version 2.4.0 Page 244 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

"location" with it
sprintf(script, "SELECT FROM my attribute3 INTO MEMORY 4%d",

hdfql variable transient register(&location));

// execute script

hdfql execute(script);

// display content of variable "location" (should be "Latitude is 15.9803486587 and longitude
is 48.6352028395")

printf("Latitude is %f and longitude is $%f\n", location.latitude, location.longitude);

// declare structure
struct data
{
char description[7];
int index;

};

// declare variables
char script[1024];
struct data cities[3];
int number;

int 1i;

// create an HDF5 dataset named "my datasetl4" of data type compound of one dimension (size 3)
composed of two members named '"description" (of data type char) and "index" (of data type int),
and with initial values of "Toronto" and 10 for the first position, "Nairobi" and 12 for the
second position, and "Caracas" and 11 for the third position

hdfql execute ("CREATE DATASET my datasetl4 AS COMPOUND (description AS CHAR(7), index AS INT) (3)
VALUES ((Toronto, 10), (Nairobi, 12), (Caracas, 11))");

// register variable "cities'" for subsequent use (by HDFql)

number = hdfql variable register (cities);

// prepare script to select (i.e. read) data from dataset "my datasetl4" and populate variable
"cities" with it
sprintf(script, "SELECT FROM my datasetl4 INTO MEMORY %d SIZE %d OFFSET(%d, %d)", number,

sizeof (struct data), offsetof(struct data, description), offsetof(struct data, index));

// execute script

hdfqgl execute(script);

Version 2.4.0 Page 245 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

// unregister variable "cities" as it is no longer used/needed (by HDFgl)

hdfgl variable unregister(cities);

// display content of variable '"cities" (should be "The city of Toronto has index 10", "The
city of Nairobi has index 12", "The city of Caracas has index 11")

for(i = 0; i < 3; i++)

{

printf("The city of ¢s has index ¢d\n", cities[i].description, cities[i].index);

// assume that 1) the following program is launched in parallel using four MPI processes (e.g.
"mpiexec -n 4 my program"), 2) an HDF5 file named "my file.h5" containing a dataset named
"my datasetlb5" of data type int of one dimension (size 4) already exists, and 3) the dataset

stores the values 0, 10, 20 and 30 in positions #0, #1, #2 and #3 respectively

// declare variables
char script[1024];

int rank;

// use (i.e. open) an HDF5 file named "my file.h5" in parallel
hdfql execute("USE FILE my file.h5 IN PARALLEL");

// get number (i.e. rank) of the MPI process (should be between 0 and 3)
rank = hdfql mpi get rank();

// prepare script to select (i.e. read) in parallel positions #0 (by MPI process rank 0), #1
(by MPI process rank 1), #2 (by MPI process rank 2) and #3 (by MPI process rank 3) from dataset
"my datasetlb5" using a point selection

sprintf(script, "SELECT FROM my datasetl5(%d) IN PARALLEL", rank);

// execute script

hdfql execute(script);

// move the cursor in use to the first position within the result set

hdfql cursor first (NULL);

// display value selected (i.e. read) by each MPI process (should display message "Value read
by MPI process rank X is Y" four times, where X is 0 and Y is 0, X is 1 and Y is 10, X is 2 and
Y is 20, or X is 3 and Y is 30 (not necessarily in this order))

printf("Value read by MPI process rank %d is %d\n", rank, *hdfql cursor get int (NULL))

Version 2.4.0 Page 246 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

6.7 DATA INTROSPECTION LANGUAGE (DIL)

HDFqgl has certain operations that retrieve information about the internals of HDF5 files but also about HDFql itself and the
runtime environment. These operations are part of the Data Introspection Language (DIL) and they all begin with the
keyword SHOW. Moreover, these operations support both POST-PROCESSING and REDIRECTING options to further
transform and redirect the result of operations according to the programmer’s needs. Typically, a DIL operation has the

following syntactical form:

SHOW operation_name [post_processing_option [post_processing_option]*] [output_redirecting_option]

6.7.1 SHOW FILE VALIDITY

Syntax
SHOW FILE VALIDITY file_name [, file_name]* [BY NAME]
[post_processing_option [post_processing_option]*]

[output_redirecting_option)

Description

Show (i.e. get) validity of a file named file_name (i.e. whether it is a valid HDF5 file or not). Multiple files’ validities can be
checked at once by separating these with a comma (,). If file_name was not found or its validity could not be checked (due

to unknown/unexpected reasons), no subsequent files are checked, and an error is raised.

Parameterls[

file_name — mandatory string that specifies the name of the file whose validity is to be obtained. Multiple files are

separated with a comma (,).

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Version 2.4.0 Page 247 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Return

If the BY NAME option is not specified, it returns the validity of a file as an HDFQL_INT, which can either be HDFQL_YES or
HDFQL_NO depending on whether the file is a valid HDF5 file or not. Otherwise, if it is specified, it returns the validity of a
file as an HDFQL_VARCHAR, which can either be “YES” or “NO”.

Example(s)

create an HDF5 file named "my file.h5"
CREATE FILE my file.hb

show (i.e. get) validity of file "my file.h5" (should be 0 — i.e. HDFQL YES)
SHOW FILE VALIDITY my file.h5

show (i.e. get) validity of a file named "not an hdf file.xml" (should be -1 — i.e. HDFQL NO)
(assume that the file "not an hdf file.xml" exists and contains XML text)

SHOW FILE VALIDITY not an hdf file.xml

show (i.e. get) validity of both files "my file.h5" and "not an hdf file.xml" at once (should
be 0, -1)
SHOW FILE VALIDITY my file.h5, not an hdf file.xml

show (i.e. get) validity of both files "my file.h5" and "not an hdf file.xml" at once by name
(should be "YES", "NO'")
SHOW FILE VALIDITY my file.h5, not an hdf file.xml BY NAME

6.7.2 SHOW USE DIRECTORY

Syntax

SHOW USE DIRECTORY
[post_processing_option [post_processing_option]*]
[output_redirecting_option]

Description

Show (i.e. get) working directory currently in use.

Version 2.4.0 Page 248 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

The working directory currently in use as an HDFQL_VARCHAR.

Example(s)

set working directory currently in use to "/"

USE DIRECTORY /

show (i.e. get) current working directory (should be "/")

SHOW USE DIRECTORY

create a directory named "my directory"

CREATE DIRECTORY my directory

set working directory currently in use to "my directory" (more precisely "/my directory")

USE DIRECTORY my directory

show (i.e. get) current working directory (should be "/my directory")

SHOW USE DIRECTORY

create two directories named "my subdirectory0" and "my subdirectoryl" (both directories will
be created in directory "/my directory")

CREATE DIRECTORY my subdirectory(0, my subdirectoryl

set directory currently in use to "my subdirectory0" (more precisely
"/my directory/my subdirectoryQ")
USE DIRECTORY my subdirectory0

show (i.e. get) current working directory (should be "/my directory/my subdirectory0")

SHOW USE DIRECTORY

Version 2.4.0 Page 249 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

set directory currently in use to "my subdirectoryl" located one level up (more precisely
"/my directory/my subdirectoryl")
USE DIRECTORY ../my subdirectoryl

show (i.e. get) current working directory (should be "/my directory/my subdirectoryl")

SHOW USE DIRECTORY

set directory currently in use two levels up (should be "/")

USE DIRECTORY ../..

show (i.e. get) current working directory (should be "/")

SHOW USE DIRECTORY

6.7.3 SHOW USE FILE

Syntax
SHOW USE FILE [file_name]
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) HDF5 file currently in use or check if a certain HDF5 file is used (i.e. opened). If file_name is not used an

error is raised.

Parameter(s)

file_name — optional string that specifies the name of the HDF5 file to check if it is used (i.e. opened). If file_name is not
specified, the name of the (HDF5) file currently in use is returned. Otherwise, if it is specified, file_name is checked if it is

used amongst all files that are being used.

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

Version 2.4.0 Page 250 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

The HDFS5 file currently in use or the HDF5 file being checked if it is used as an HDFQL_VARCHAR, or nothing (in case no file

is in use).

Example(s)

show (i.e. get) HDF5 file currently in use (i.e. open) (should be empty)
SHOW USE FILE

use (i.e. open) four HDF5 files named "my file0O.h5", "my filel.h5", "my file2.h5" and
"my file3.h5"
USE FILE my file0.h5, my filel.h5, my file2.h5, my file3.h5

show (i.e. get) HDF5 file currently in use (i.e. open) (should be "my file3.h5")
SHOW USE FILE

check if a file named "my filel.h5" is used (i.e. opened) (should be "my filel.h5" - i.e. it
is used (i.e. opened))

SHOW USE FILE my filel.hb

close HDF5 file currently in use (i.e. file "my file3.h5")
CLOSE FILE

show (i.e. get) HDF5 file currently in use (i.e. open) (should be my "file2.h5")
SHOW USE FILE

close HDF5 file "my filel.h5"
CLOSE FILE my filel.hb

show (i.e. get) HDF5 file currently in use (i.e. open) (should be "my file2.h5")
SHOW USE FILE

close HDF5 file currently in use (i.e. file "my file2.h5")
CLOSE FILE

show (i.e. get) HDF5 file currently in use (i.e. open) (should be "my file(0.h5")
SHOW USE FILE

Version 2.4.0 Page 251 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

close HDF5 file currently in use (i.e. file "my file(O.h5")
CLOSE FILE

show (i.e. get) HDF5 file currently in use (i.e. open) (should be empty)
SHOW USE FILE

6.7.4 SHOW ALL USE FILE

Syntax
SHOW ALL USE FILE
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) all HDFS5 files in use (i.e. open).

Parameter(s)

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

All HDF5 files in use (i.e. open) as an HDFQL_VARCHAR or nothing (in case no files are in use).

Example(s)

show (i.e. get) all HDF5 files in use (i.e. open) (should be empty)
SHOW ALL USE FILE

Version 2.4.0 Page 252 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

use (i.e. open) three HDF5 files named "my file(0.h5", "my filel.h5" and "my file2.h5"
USE FILE my file(0.h5, my filel.h5, my file2.hb

show (i.e. get) all HDF5 files in use (i.e. open) (should be "my file2.h5", "my filel.h5",
"my file0.h5")
SHOW ALL USE FILE

close all HDF5 files in use (i.e. open)
CLOSE ALL FILE

show (i.e. get) all HDF5 files in use (i.e. open) (should be empty)
SHOW ALL USE FILE

6.7.5 SHOW USE GROUP

Syntax
SHOW USE GROUP
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) HDF5 group currently in use.

Parameter(s)

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Version 2.4.0 Page 253 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Return

The HDF5 group currently in use as an HDFQL_VARCHAR or nothing (in case no file is in use).

Example(s)

use (i.e. open) an HDF5 file named "my file.h5"
USE FILE my file.h5

show (i.e. get) current working group (should be "/")
SHOW USE GROUP

create an HDF5 group named "my group"

CREATE GROUP my group

set group currently in use to "my group" (more precisely "/my group")

USE GROUP my group

show (i.e. get) current working group (should be "/my group")
SHOW USE GROUP

create two HDF5 groups named "my subgroup0" and "my subgroupl" (both groups will be created
in group "/my group")
CREATE GROUP my subgroupO, my subgroupl

set group currently in use to "my subgroup0" (more precisely "/my group/my subgroup0")

USE GROUP my subgroup0

show (i.e. get) current working group (should be "/my group/my subgroup0")
SHOW USE GROUP

set group currently in use to "." (the group currently in use will not change as "." refers
to the current working group itself)

USE GROUP .

show (i.e. get) current working group (should be "/my group/my subgroup0")
SHOW USE GROUP

set group currently in use to "my subgroupl" located one level up (more precisely
"/my group/my subgroupl")

USE GROUP ../my subgroupl

set group currently in use two levels up (should be "/")

Version 2.4.0 Page 254 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

USE GROUP ../..

6.7.6 SHOW [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK]

Syntax
SHOW [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK] [[file_name] object_name]
[LIKE regular_expression [DEEP deep_value [, deep_valuel*]]
[WHERE condition]
[ORDER CREATION]
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) HDF5 objects (i.e. groups, datasets, attributes, (soft) links or external links) within an HDF5 group or dataset
named object_name or check the existence of an object named object_name. If object_name is not specified, all objects
are returned — to return only objects of type group, dataset, attribute, (soft) link or external link, specify the keyword
GROUP, DATASET, ATTRIBUTE, [SOFT] LINK or EXTERNAL LINK respectively. Otherwise, if it is specified and the keyword

LIKE is not specified, one of the following behaviors applies:

e If it ends with “/”, object_name will be treated as a group or dataset, and all groups, datasets or attributes stored in

object_name are returned.

e If it does not end with “/”, object_name will be checked for its existence. If it does exist, object_name is returned;

otherwise, if it does not exist, an error is raised.

If the keyword LIKE is specified, only objects with names complying with a regular expression named regular_expression
will be returned (in HDFql, regular expressions are the ones specified by PCRE which closely follow PERL5 syntax — please
refer to http://www.pcre.org and http://perldoc.perl.org/perlre.html for additional information). As a general rule, in case
regular_expression is composed of spaces, special characters or reserved keywords (e.g. SELECT), it should be surrounded
by double-quotes (“). Otherwise, if it is not surrounded by double-quotes, objects will not be returned and an error is

raised. If regular_expression includes “**”, recursive search is performed (i.e. HDFql will search in all existing groups and

Version 2.4.0 Page 255 of 346

http://www.pcre.org/
http://perldoc.perl.org/perlre.html

Hierarchical Data Format query language (HDFql) Reference Manual

subgroups for objects). To limit the recursiveness, the keyword DEEP may be specified along with a value deep_value

representing the maximum recursiveness limit.

A special type of ordering can be performed using the keyword ORDER CREATION allowing HDF5 objects (i.e. groups,
datasets, attributes, (soft) links or external links) to be returned according to their time of creation*® — in contrast to the

default behavior which returns objects in an ascending order.

Parameter(s)

file_name — optional string that specifies the name of the HDF5 file which stores the objects (i.e. groups, datasets,
attributes, (soft) links or external links) to show (i.e. get) or check for their existence. If file_name is specified, the file is
opened on the fly, the objects are obtained or checked for their existence and, afterwards, the file is closed. Otherwise, if

it is not specified, the objects to obtain or check for their existence are stored in the file currently in use.

object_name — optional string that specifies the name of the HDF5 group or dataset to show (i.e. get) existing objects (i.e.
groups, datasets, attributes, (soft) links or external links) within object_name or check the existence of an object named

object_name.

regular_expression — optional string that specifies the regular expression which only names of objects that comply with it

are returned. If regular_expression includes “**”, recursive search is performed.

deep_value — optional integer that specifies the maximum recursiveness limit (i.e. how deep recursive search is

performed).
condition — to be defined.

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

48 This assumes that the HDF5 group or dataset storing the objects was created with the option of tracking objects by their time of creation. Otherwise, if
the group or dataset was not created with the option of tracking objects by their time of creation, the keyword ORDER CREATION is ignored (i.e. has no
effect). Please refer to the CREATE GROUP and CREATE DATASET operations for additional information.

Version 2.4.0 Page 256 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Return

The HDF5 objects (i.e. groups, datasets, attributes, (soft) links or external links) within an HDF5 group or dataset or the

existence of an object as an HDFQL_VARCHAR.

Example(s)

set group currently in use to "/" (i.e. the root of the HDF5 file)
USE GROUP /

create two HDF5 groups named "my group0" and "my groupl" (both groups will be created in
group n/n)
CREATE GROUP my group(O, my groupl

create one HDF5 dataset named "my dataset(0" of data type unsigned short (it will be created
in group "/")
CREATE DATASET my dataset(O AS UNSIGNED SMALLINT

create one HDF5 dataset named "my datasetl" of data type short (it will be created in group
"/my group0")
CREATE DATASET my group(O/my datasetl AS SMALLINT

create two HDF5 attributes named "my attributeO" and "my attributel" of data type long long
(both attributes will be created in group "/")
CREATE ATTRIBUTE my attributeO, my attributel AS BIGINT

create one HDF5 attribute named "my attribute2" of data type char (it will be created in
group "/my group0")
CREATE ATTRIBUTE my group0O/my attribute2 AS TINYINT

create one HDF5 attribute named "my attribute3" of data type unsigned char (it will be
created in dataset "/my datasetO")

CREATE ATTRIBUTE my dataset0/my attribute3 AS UNSIGNED TINYINT

show (i.e. get) all HDF5 objects existing in group "/" (should be "my group0", "my groupl",
"my dataset0", "my attribute(", "my attributel")
SHOW

show (i.e. get) all HDF5 groups existing in group "/" (should be "my groupO", "my groupl")
SHOW GROUP

show (i.e. get) all HDF5 datasets existing in group "/" (should be "my dataset0")
SHOW DATASET

Version 2.4.0 Page 257 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

check if HDF5 object "my groupX" exists (should raise an error)

SHOW my groupX

check if HDF5 object "my group0" exists (should be "my group0")
SHOW my group0

show (i.e. get) all HDF5 objects existing within group "my group0" (should be "my datasetl”,
"my attribute2")
SHOW my group0/

show (i.e. get) all HDF5 attributes existing within group "my groupO" (should be
"my attribute2")
SHOW ATTRIBUTE my group0/

show (i.e. get) all HDF5 objects existing within dataset "my dataset0" (should be
"my attribute3")
SHOW my dataset0/

create an HDF5 group named "my groupl" that tracks the objects’ (i.e. groups and datasets)
creation order within the group

CREATE GROUP my groupl ORDER TRACKED

create two HDF5 groups named "my subgroupl" and "my subgroup0O" (both groups will be created
in group "/my groupl")
CREATE GROUP my groupl/my subgroupl, my groupl/my subgroup0

create two HDF5 datasets named "my datasetl" and "my datasetQ" of data type float (both
datasets will be created in group "/my groupl")

CREATE DATASET my groupl/my datasetl, my groupl/my dataset(0 AS FLOAT

show (i.e. get) all HDF5 objects existing within group "my groupl" (should be "my dataset0O",
"my datasetl", "my subgroup0", "my subgroupl")
SHOW my groupl/

show (i.e. get) all HDF5 objects existing within group "my groupl" ordered by their time of
creation (should be "my subgroupl", "my subgroup0", "my datasetl", "my dataset0")
SHOW my groupl/ ORDER CREATION

create an HDF5 dataset named "my datasetl" of data type double that tracks the attributes’
creation order within the dataset

CREATE DATASET my datasetl AS DOUBLE ATTRIBUTE ORDER TRACKED

Version 2.4.0 Page 258 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

create two HDF5 attributes named "my attribute2" and "my attribute(0" of data type int (both
attributes will be created in dataset "/my_datasetl")

CREATE ATTRIBUTE my datasetl/my attribute2, my datasetl/my attribute(AS INT

create an HDF5 attribute named "my attributel" of data type short (it will be created in
dataset "/my datasetl")
CREATE ATTRIBUTE my datasetl/my attributel AS SMALLINT

show (i.e. get) all HDF5 objects existing within dataset "my datasetl" (should be
"my attribute0", "my attributel", "my attribute2")
SHOW my datasetl/

show (i.e. get) all HDF5 objects existing within dataset "my datasetl" ordered by their time
of creation (should be" my attribute2", "my attribute(0", "my attributel")
SHOW my datasetl/ ORDER CREATION

create an HDF5 group named "my group2"
CREATE GROUP my group2

create two HDF5 groups named "my subgroup0" and "my subgroupl" (both groups will be created
in group "/my group2")
CREATE GROUP my group2/my subgroup(O, my group2/my subgroupl

create three HDF5 groups in one go named "my group3" (in root group "/"), "my subgroupO" (in
group "my group3") and "my subsubgroup0" (in group "my group3/my subgroup0")
CREATE GROUP my group3/my subgroup0O/my subsubgroup0

create an HDF5 dataset named "my dataset2" (in root group "/") of data type double
CREATE DATASET my datasetZ AS DOUBLE

create an HDF5 dataset named "my datasetO" (in group "my group2") of data type int
CREATE DATASET my group2/my datasetO AS INT

create an HDF5 dataset named "my datasetl" (in group "my group2") of data type short
CREATE DATASET my group2/my datasetl AS SMALLINT

create an HDF5 dataset named "my datasetO" (in group "my group3") of data type float
CREATE DATASET my group3/my dataset(O AS FLOAT

create an HDF5 dataset named "my dataset(0" (in group "my group3/my subgroupO") of data type

char

Version 2.4.0 Page 259 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE DATASET my group3/my subgroup0/my dataset(O AS TINYINT

create an HDF5 attribute named "my attribute3" (in group "/") of data type long long
CREATE ATTRIBUTE my attribute3 AS BIGINT

create an HDF5 attribute named "my attribute4" (in group "/") of data type unsigned int
CREATE ATTRIBUTE my attribute4 AS UNSIGNED INT

create two HDF5 attributes in one go that are both named "my attribute(0" (one in group
"my group2" and the other in "my group3") of data type variable float
CREATE ATTRIBUTE my group2/my attribute(l, my group3/my attribute(O AS VARFLOAT

create an HDF5 attribute named "my attributeO" (in dataset "my dataset2") of data type
variable char

CREATE ATTRIBUTE my dataset2/my attribute(0 AS VARCHAR

show (i.e. get) all HDF5 objects from group "/" that has "3" in their names (should be
"my attribute3", "my group3")
SHOW LIKE 3

show (i.e. get) all HDF5 attributes from group "/" that has "3" in their names (should be
"my attribute3")
SHOW ATTRIBUTE LIKE 3

show (i.e. get) all HDF5 objects recursively starting from group "/" (should be

"my attribute3", "my attribute4", "my dataset2", "my dataset2/my attribute0", "my group2",
"my group2/my attribute0", "my group2/my dataset0", "my group2/my datasetl",

"my group2/my subgroup0", "my group2/my subgroupl", "my group3", "my group3/my attributel",
"my group3/my dataset0", "my group3/my subgroup0", "my group3/my subgroup0/my datasetO",
"my group3/my subgroup0/my subsubgroup0")

SHOW LIKE **

show (i.e. get) all HDF5 datasets recursively starting from group "/" (should be

"my dataset2", "my group2/my dataset0", "my group2/my datasetl", "my group3/my datasetO",
"my group3/my_ subgroupO/my dataset0")

SHOW DATASET LIKE **

show (i.e. get) all HDF5 datasets recursively starting from group "/" and one level deep at
most (should be "my dataset2", "my group2/my dataset0", "my group2/my datasetl",

"my group3/my dataset0")

SHOW DATASET LIKE ** DEEP |

show (i.e. get) all HDF5 objects recursively starting from group "my group3" (should be

"my attribute(0", "my dataset0", "my subgroupO", "my subgroupO/my datasetO",

Version 2.4.0 Page 260 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

"my subgroup0/my subsubgroup0")
SHOW my group3 LIKE **

show (i.e. get) all HDF5 groups recursively starting from group "my group3" (should be
"my subgroup0", "my subgroup0O/my subsubgroup0")
SHOW GROUP my group3 LIKE **

show (i.e. get) all HDF5 objects recursively starting from group "/" that has "2" in their
names (should be "my dataset2", "my group2")
SHOW LIKE **/2

show (i.e. get) all HDF5 groups recursively starting from group "/" that has "1" or "2" in
their names (should be "my group2", "my group2/my subgroupl')
SHOW GROUP LIKE **/1|2

show (i.e. get) all HDF5 objects recursively starting from group "/" that starts with "sub"
in their names (should be "my group2/my subgroup0", "my group2/my subgroupl",

"my group3/my subgroup0", "my group3/my subgroup0/my subsubgroup0")

SHOW LIKE **/"my sub

use (i.e. open) an HDF5 file named "my file.h5"
USE FILE my file.h5

create an HDF5 group named "my group3" in the HDF5 file currently in use (i.e. file
"my file.h5")
CREATE GROUP my group3

create two HDF5 datasets named "my dataset3" and "my dataset4" of data type double both in
the HDF5 file currently in use (i.e. file "my file.h5")
CREATE DATASET my dataset3, my dataset4 AS DOUBLE

show (i.e. get) all HDF5 objects existing in group "/" of the HDF5 file currently in use
(i.e. file "my file.h5") (should be "my group3", "my dataset3", "my dataset4")
SHOW /

close HDF5 file currently in use (i.e. file "my file.h5")
CLOSE FILE

show (i.e. get) all HDF5 objects existing in group "/" of file "my file.h5" (should be
"my group3", "my dataset3", "my dataset4")
SHOW my file.h5 /

Version 2.4.0 Page 261 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

6.7.7 SHOW TYPE

Syntax
SHOW TYPE ([file_name] object_name [, [file_name] object name]* [BY NAME]
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) type of an object named object_name. Multiple objects’ types can be obtained at once by separating these
with a comma (,). If object_name was not found or its type could not be checked (due to unknown/unexpected reasons),

no subsequent objects are checked, and an error is raised.

Parameterls[

file_name — optional string that specifies the name of the HDFS5 file which stores the object to show (i.e. get) the type. If
file_name is specified, the file is opened on the fly, the type of the object is obtained and, afterwards, the file is closed.

Otherwise, if it is not specified, the object (whose type is to be obtained) is stored in the file currently in use.
object_name — name of the object whose type is to be obtained. Multiple objects are separated with a comma (,).

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

If the BY NAME option is not specified, it returns the type of an object as an HDFQL_INT, which can either be
HDFQL_GROUP, HDFQL_DATASET, HDFQL_ATTRIBUTE, HDFQL_GROUP | HDFQL_SOFT_LINK, HDFQL_DATASET |
HDFQL_SOFT_LINK, HDFQL_GROUP | HDFQL_EXTERNAL_LINK, or HDFQL_DATASET | HDFQL_EXTERNAL_LINK depending
on whether the object is a group, dataset, attribute, group and (soft) link at the same time, dataset and (soft) link at the
same time, group and external link at the same time, or dataset and external link at the same time, respectively.

Otherwise, if it is specified, it returns the type of an object as an HDFQL_VARCHAR, which can either be “GROUP”,

Version 2.4.0 Page 262 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

“DATASET”, “ATTRIBUTE”, “GROUP | SOFT_LINK”, “DATASET | SOFT_LINK”, “GROUP | EXTERNAL LINK” or “DATASET |
EXTERNAL LINK”.

Example(s)

create an HDF5 group named "my objectO"
CREATE GROUP my objectO

create an HDF5 dataset named "my objectl" of data type double
CREATE DATASET my objectl AS DOUBLE

create an HDF5 attribute named "my object2" of data type float
CREATE ATTRIBUTE my object2 AS FLOAT

create an HDF5 soft link named "my object3" to object "my objectO"
CREATE SOFT LINK my object3 TO my objectl

create an HDF5 external link named "my object4" to object "my object" (assumed to be a
dataset) in file "my file.h5"
CREATE EXTERNAL LINK my object4 TO my file.h5 my object

show (i.e. get) type of object "my object0" (should be 4 - i.e. HDFQL GROUP)
SHOW TYPE my object(

show (i.e. get) type of object "my objectl" (should be 8 - i.e. HDFQL DATASET)
SHOW TYPE my objectl

show (i.e. get) type of object "my object2" (should be 16 — i.e. HDFQL ATTRIBUTE)
SHOW TYPE my object2

show (i.e. get) type of both objects "my object0" and "my object2" at once (should be 4, 16)
SHOW TYPE my object(O, my object2

show (i.e. get) type of both objects "my object0" and "my object2" at once by name (should be
"GROUP", "ATTRIBUTE'")
SHOW TYPE my object(, my objectZ BY NAME

show (i.e. get) type of object "my object3" (should be 36 — i.e. HDFQL GROUP |
HDFQL SOFT LINK)
SHOW TYPE my object3

show (i.e. get) type of object "my object4" (should be 136 — i.e. HDFQL DATASET |
HDFQL EXTERNAL LINK)

Version 2.4.0 Page 263 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

SHOW TYPE my object4

6.7.8 SHOW DATA TYPE

Syntax
SHOW [DATASET | ATTRIBUTE] DATA TYPE [file_name] object_name [BY NAME]
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) data type of an HDF5 dataset or attribute or of its members named object_name. In case a dataset and an
attribute with identical names (object_name) are stored in the same location (i.e. group) and neither the keyword
DATASET nor ATTRIBUTE is specified, the data type returned belongs to the dataset. To explicitly get the data type of
object_name according to its type, the keyword DATASET or ATTRIBUTE must be specified. If object_name ends with “/”
and is of data type HDFQL_ENUMERATION or HDFQL_COMPOUND, the data types of members of object_name are

returned instead.

Parameter(s)

file_name — optional string that specifies the name of the HDFS5 file which stores the dataset or attribute to show (i.e. get)
the data type. If file_name is specified, the file is opened on the fly, the data type of the dataset or attribute is obtained
and, afterwards, the file is closed. Otherwise, if it is not specified, the dataset or attribute (whose data type is to be

obtained) is stored in the file currently in use.

object_name — mandatory string that specifies the name of the HDF5 dataset or attribute whose data type is to be
obtained, or of its members in case it ends with “/” and the dataset or attribute is of data type HDFQL_ENUMERATION or
HDFQL_COMPOUND.

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

Version 2.4.0 Page 264 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

If the BY NAME option is not specified, it returns the data type of an HDF5 dataset or attribute or of its members as an
HDFQL_INT, which can either be HDFQL_TINYINT, HDFQL_UNSIGNED_TINYINT, HDFQL_SMALLINT,
HDFQL_UNSIGNED_SMALLINT, HDFQL_INT, HDFQL_UNSIGNED_INT, HDFQL_BIGINT, HDFQL_UNSIGNED_BIGINT,
HDFQL_FLOAT, HDFQL_DOUBLE, HDFQL_CHAR, HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT,
HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT, HDFQL_UNSIGNED_VARINT,
HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE, HDFQL_VARCHAR,
HDFQL_OPAQUE, HDFQL_BITFIELD, HDFQL_ENUMERATION, HDFQL_COMPOUND, HDFQL_REFERENCE or
HDFQL_UNDEFINED (please refer to Table 6.3 for additional information about data types). Otherwise, if it is specified, it
returns the data type of a dataset or attribute or of its members as an HDFQL_VARCHAR, which can either be “TINYINT”,
“UNSIGNED_TINYINT”, “SMALLINT”, “UNSIGNED_SMALLINT”, “INT”, “UNSIGNED_INT”, “BIGINT”, “UNSIGNED_BIGINT”,
“FLOAT”, “DOUBLE”, “CHAR”, “VARTINYINT”, “UNSIGNED_VARTINYINT”, “VARSMALLINT”, “UNSIGNED_VARSMALLINT”,
“VARINT”, “UNSIGNED_VARINT”, “VARBIGINT”, “UNSIGNED_VARBIGINT”, “VARFLOAT”, “VARDOUBLE”, “VARCHAR”,
“OPAQUE”, “BITFIELD”, “ENUMERATION”, “COMPOUND", “REFERENCE” or “UNDEFINED”.

Example(s)

create an HDF5 dataset named "my datasetO" of data type double
CREATE DATASET my dataset(O AS DOUBLE

show (i.e. get) data type of dataset "my dataset(0" (should be 512 - i.e. HDFQL DOUBLE)
SHOW DATA TYPE my datasetO

create an HDF5 dataset named "my datasetl" of data type float
CREATE DATASET my datasetl AS FLOAT

show (i.e. get) data type of dataset "my datasetl" (should be 256 - i.e. HDFQL FLOAT)
SHOW DATA TYPE my datasetl

create an HDF5 dataset named "my common" of data type short

CREATE DATASET my common AS SMALLINT

create an HDF5 attribute named "my common" of data type int

CREATE ATTRIBUTE my common AS INT

Version 2.4.0 Page 265 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

show (i.e. get) data type of dataset "my common" (should be 4 - i.e. HDFQL SMALLINT)
SHOW DATA TYPE my common

show (i.e. get) data type of dataset "my common" (should be 4 - i.e. HDFQL SMALLINT)
SHOW DATASET DATA TYPE my common

show (i.e. get) data type of attribute "my common" (should be 16 - i.e. HDFQL INT)
SHOW ATTRIBUTE DATA TYPE my common

create an HDF5 dataset named "my dataset2" of data type enumeration composed of four members
named "dog" (with value 0), "cat" (with value 1), "cow" (with value 2) and "owl" (with value 3)

CREATE DATASET my dataset2 AS ENUMERATION (dog, cat, cow, owl)

show (i.e. get) data type of dataset "my dataset2" (should be 16777216 — i.e.
HDFQL ENUMERATION)
SHOW DATA TYPE my dataset2

show (i.e. get) data types of members of dataset "my dataset2" (should be 1 - i.e.
HDFQL TINYINT, 1 — i.e. HDFQL TINYINT, 1 - i.e. HDFQL TINYINT, 1 - i.e. HDFQL TINYINT)
SHOW DATA TYPE my dataset2/

create an HDF5 attribute named "my attributeO" of data type enumeration composed of two
members named "car" (with value 1000) and "plane" (with value 2000)

CREATE ATTRIBUTE my attribute0O AS ENUMERATION (car AS 1000, plane AS 2000)

show (i.e. get) data types of members of attribute "my attribute0O" (should be 4 - i.e.
HDFQL SMALLINT, 4 - i.e. HDFQL SMALLINT)
SHOW DATA TYPE my attributel/

create an HDF5 dataset named "my dataset3" of data type compound composed of three members
named "person" (of data type variable-length char), "age" (of data type unsigned int) and
"weight" (of data type float)

CREATE DATASET my dataset3 AS COMPOUND (person AS VARCHAR, age AS UNSIGNED INT, weight AS FLOAT)

show (i.e. get) data type of dataset "my dataset3" (should be 33554432 - i.e. HDFQL COMPOUND)
SHOW DATA TYPE my dataset3

show (i.e. get) data types of members of dataset "my dataset3" (should be 2097152 - i.e.
HDFQI, VARCHAR, 32 - i.e. HDFQI, UNSIGNED INT, 256 — i.e. HDFQLfFLOAT)
SHOW DATA TYPE my dataset3/

Version 2.4.0 Page 266 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

show (i.e. get) data types of members of dataset "my dataset3" by name (should be "VARCHAR",
"UNSIGNED INT", "FLOAT")
SHOW DATA TYPE my dataset3/ BY NAME

create an HDF5 attribute named "my attributel"” of data type compound composed of three
members named "id" (of data type long long), "description" (of data type variable-length char)
and "position" (of data type compound composed of two members named "x'" (of data type short)
and "y" (of data type short))

CREATE ATTRIBUTE my attributel AS COMPOUND (id AS BIGINT, description AS VARCHAR, position AS
COMPOUND (x AS SMALLINT, y AS SMALLINT))

show (i.e. get) data types of members of attribute "my attributel"” (should be 64 — i.e.
HDFQL BIGINT, 2097152 - i.e. HDFQL VARCHAR, 33554432 - i.e. HDFQL COMPOUND, 4 - i.e.
HDFQL SMALLINT, 4 - i.e. HDFQL SMALLINT)

SHOW DATA TYPE my_attributel/

6.7.9 SHOW MEMBER

Syntax
SHOW [DATASET | ATTRIBUTE] MEMBER [file_name] object_name
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) members of an HDF5 dataset or attribute named object_name. If object_name was not found or its
members could not be checked (due to its data type not being HDFQL_ENUMERATION or HDFQL_COMPOUND, or for
unknown/unexpected reasons), an error is raised. In case a dataset and an attribute with identical names (object_name)
are stored in the same location (i.e. group) and neither the keyword DATASET nor ATTRIBUTE is specified, the members
returned belongs to the dataset. To explicitly get the members of object name according to its type, the keyword

DATASET or ATTRIBUTE must be specified.

Parameter(s)

file_name — optional string that specifies the name of the HDF5 file which stores the dataset or attribute to show (i.e. get)

the members. If file_name is specified, the file is opened on the fly, the members of the dataset or attribute are obtained

Version 2.4.0 Page 267 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

and, afterwards, the file is closed. Otherwise, if it is not specified, the dataset or attribute (whose members are to be

obtained) is stored in the file currently in use.

object_name — mandatory string that specifies the name of the HDF5 dataset or attribute whose members are to be

obtained.

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

The members of an HDF5 dataset or attribute as an HDFQL _INT, which can either be HDFQL_TINYINT,
HDFQL_UNSIGNED_TINYINT, HDFQL_SMALLINT, HDFQL_UNSIGNED_SMALLINT, HDFQL_INT, HDFQL_UNSIGNED_INT,
HDFQL_BIGINT, HDFQL_UNSIGNED_BIGINT, HDFQL_FLOAT, HDFQL_DOUBLE, HDFQL_CHAR, HDFQL_VARTINYINT,
HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT,
HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE,
HDFQL_VARCHAR, HDFQL_OPAQUE, HDFQL_BITFIELD, HDFQL_ENUMERATION, HDFQL_COMPOUND, HDFQL_REFERENCE
or HDFQL_UNDEFINED (please refer to Table 6.3 for additional information about data types).

Example(s)

create an HDF5 dataset named "my datasetO" of data type enumeration composed of three members
named "Paris" (with value 0), "Rome" (with value 1) and "Oslo" (with value 2)

CREATE DATASET my dataset(O AS ENUMERATION (Paris, Rome, 0Oslo)

show (i.e. get) members of dataset "my datasetO" (should be "Paris", 0, "Rome", 1, "Oslo", 2)
SHOW MEMBER my dataset(

create an HDF5 dataset named "my datasetl" of data type enumeration composed of three members
named "red" (with value 0), "green" (with value 5) and "blue" (with value 6)

CREATE DATASET my datasetl AS ENUMERATION (red, green AS 5, blue)

show (i.e. get) members of dataset "my datasetl" (should be "red", 0, "green", 5, "blue", 6)

SHOW MEMBER my datasetl

Version 2.4.0 Page 268 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

create an HDF5 attribute named "my attributeO" of data type enumeration composed of two
members named "car" (with value 1000) and "plane" (with value 2000)

CREATE ATTRIBUTE my attribute0O AS ENUMERATION (car AS 1000, plane AS 2000)

show (i.e. get) members of attribute "my attribute0" (should be '"car", 1000, "plane", 2000)
SHOW MEMBER my_attributeO

create an HDF5 dataset named "my dataset2" of data type compound composed of three members
named "person" (of data type variable-length char), "age" (of data type unsigned int) and
"weight" (of data type float)

CREATE DATASET my dataset2 AS COMPOUND (person AS VARCHAR, age AS UNSIGNED INT, weight AS FLOAT)

show (i.e. get) members of dataset "my dataset2" (should be "name", "age", "weight")

SHOW MEMBER my datasetZ2

create an HDF5 attribute named "my attributel" of data type compound composed of four members
named "id" (of data type long long), "description" (of data type variable-length char),
"position" (of data type compound composed of two members named '"x" (of data type short) and
"y" (of data type short)) and '"temperature" (of data type enumeration composed of three members
named "cold" (with value 0), "warm" (with value 1) and "hot" (with value 10))

CREATE ATTRIBUTE my attributel AS COMPOUND (id AS BIGINT, description AS VARCHAR, position AS
COMPOUND (x AS SMALLINT, y AS SMALLINT), temperature AS ENUMERATION (cold, warm, hot AS 10))

show (i.e. ge members of attribute "my attribute shou e "id", escription”,
sh (1 t) mb f attribute "my attributel" (should be "id", "d iption"
"position", "position.x", "position.y", "temperature")

SHOW MEMBER my attributel

6.7.10 SHOW MASK

Syntax

SHOW MASK [file_name] dataset_name[(chunk_number [, chunk_number]*)] [, [file_name]

dataset_name[(chunk_number [, chunk_number]*)]1*
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Version 2.4.0 Page 269 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Show (i.e. get) (filter) mask of an HDF5 dataset named dataset_name. Multiple datasets’ masks can be obtained at once by
separating these with a comma (,). If dataset_name was not found or its mask could not be checked (due to

unknown/unexpected reasons), no subsequent datasets are checked, and an error is raised.

Parameterls[

file_name — optional string that specifies the name of the HDF5 file which stores the dataset to show (i.e. get) the (filter)
mask. If file_name is specified, the file is opened on the fly, the mask of the dataset is obtained and, afterwards, the file is

closed. Otherwise, if it is not specified, the dataset (whose mask is to be obtained) is stored in the file currently in use.

dataset_name — mandatory string that specifies the name of the HDF5 dataset whose (filter) mask is to be obtained.

Multiple datasets are separated with a comma (,).

chunk_number — optional integer that specifies the number of the chunk to show (i.e. get) its (filter) mask. Multiple chunk
numbers are separated with a comma (,). If chunk_number is specified it must either be between 0 and the storage
dimension in question - 1 (otherwise an error will be raised) or negative (in this case its value will be the last position of
the storage dimension in question minus the value of chunk_number). Otherwise, if it is not specified, its default value is 0

(i.e. first chunk of the storage dimension in question).

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

The (filter) mask of an HDF5 dataset as an HDFQL_UNSIGNED _INT.

Example(s)

create a chunked (size 2) HDF5 dataset named "my dataset" of data type int of one dimension
(size 6)

CREATE CHUNKED (”) DATASET my dataset AS INT(0)

insert (i.e. write) values 60 and 61 directly into chunk #0 of dataset "my dataset" using a

Version 2.4.0 Page 270 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

(filter) mask equal to 8
INSERT DIRECTLY MASK INTO my dataset VALUES (60,)

insert (i.e. write) values 62 and 63 directly into chunk #1 of dataset "my dataset"” using a
(filter) mask equal to 255 (i.e. OxFF)
INSERT DIRECTLY MASK INTO my dataset (!) VALUES (6”2,)

insert (i.e. write) values 64 and 65 directly into chunk #2 of dataset "my dataset"” using a
(filter) mask equal to 0 (i.e. default value)
INSERT DIRECTLY INTO my dataset(”) VALUES (64,)

select (i.e. read) data from dataset "my dataset" and populate cursor in use with it (should
be 60, 61, 62, 63, 64, 65)
SELECT FROM my dataset

show (i.e. get) (filter) mask of chunks #0, #1 and #2 of dataset "my dataset" and populate
cursor in use with it (should be 8, 255, 0)

SHOW MASK my dataset (0), my dataset(!), my dataset (”)

6.7.11 SHOW ENDIANNESS

Syntax
SHOW [DATASET | ATTRIBUTE] ENDIANNESS [file_name] object name [BY NAME]
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) endianness of an HDF5 dataset or attribute or of its members named object_name. In case a dataset and an
attribute with identical names (object_name) are stored in the same location (i.e. group) and neither the keyword
DATASET nor ATTRIBUTE is specified, the endianness returned belongs to the dataset. To explicitly get the endianness of
object_name according to its type, the keyword DATASET or ATTRIBUTE must be specified. If object_name ends with “/”

and is of data type HDFQL_COMPOUND, the endiannesses of members of object_name are returned instead.

Version 2.4.0 Page 271 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

file_name — optional string that specifies the name of the HDF5 file which stores the dataset or attribute to show (i.e. get)
the endianness. If file_name is specified, the file is opened on the fly, the endianness of the dataset or attribute is
obtained and, afterwards, the file is closed. Otherwise, if it is not specified, the dataset or attribute (whose endianness is

to be obtained) is stored in the file currently in use.

object_name — mandatory string that specifies the name of the HDF5 dataset or attribute whose endianness is to be

obtained, or of its members in case it ends with “/” and the dataset or attribute is of data type HDFQL_COMPOUND.

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

If the BY NAME option is not specified, it returns the endianness of an HDF5 dataset or attribute as an HDFQL_INT, which
can either be HDFQL_LITTLE_ENDIAN, HDFQL_BIG_ENDIAN, HDFQL_MIXED_ENDIAN or HDFQL_UNDEFINED depending on
whether the endianness is little, big, mixed (in case the data type of the dataset or attribute is HDFQL_COMPOUND and
the endiannesses of its members are mixed) or undefined (i.e. endianness is not applicable to the dataset or attribute)
respectively. Otherwise, if it is specified, it returns the endianness of a dataset or attribute as an HDFQL_VARCHAR, which

can either be “LITTLE_ENDIAN”, “BIG_ENDIAN”, “MIXED_ENDIAN” or “UNDEFINED”.

Example(s)

create an HDF5 dataset named "my datasetO" of data type int using the native endian
representation (of the machine)

CREATE DATASET my dataset(O AS INT

show (i.e. get) endianness of dataset "my dataset(0" (should be 1 or 2 - i.e.
HDFQL LITTLE ENDIAN or HDFQL BIG ENDIAN - depending on whether the dataset was created in a
little or big endian machine respectively)

SHOW ENDIANNESS my dataset(

create an HDF5 dataset named "my datasetl" of data type long long using the little endian

representation

Version 2.4.0 Page 272 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

CREATE DATASET my datasetl AS LITTLE ENDIAN BIGINT

show (i.e. get) endianness of dataset "my datasetl" (should be 1 - i.e. HDFQL LITTLE ENDIAN)
SHOW ENDIANNESS my datasetl

create an HDF5 attribute named "my attributeO" of data type compound composed of three
members named "m0" (of data type char), "ml" (of data type int using the little endian
representation) and "m2" (of data type float using the big endian representation)

CREATE ATTRIBUTE my attribute0O AS COMPOUND (m0 AS CHAR, ml AS LITTLE ENDIAN INT, m2 AS BIG
ENDIAN FLOAT)

show (i.e. get) endianness of attribute "my attribute(0" (should be 4 - i.e.
HDFQL MIXED ENDIAN)
SHOW ENDIANNESS my_attributeO

show (i.e. get) endianness of members of attribute "my attributelO" (should be -1 - i.e.
HDFQL UNDEFINED, 1 - 1i.e. HDFQL LITTLE ENDIAN, 2 - 1.e. HDFQLiBIGiENDIAN)
SHOW ENDIANNESS my attribute0/

create an HDF5 dataset named "my common" of data type short using the big endian
representation

CREATE DATASET my common AS BIG ENDIAN SMALLINT

create an HDF5 attribute named "my common" of data type int using the little endian
representation

CREATE ATTRIBUTE my common AS LITTLE ENDIAN INT

show (i.e. get) endianness of dataset "my common" (should be 2 - i.e. HDFQL BIG ENDIAN)
SHOW ENDIANNESS my common

show (i.e. get) endianness of dataset "my common" (should be 2 - i.e. HDFQL BIG ENDIAN)
SHOW DATASET ENDIANNESS my common

show (i.e. get) endianness of attribute "my common" (should be 1 - i.e. HDFQL LITTLE ENDIAN)
SHOW ATTRIBUTE ENDIANNESS my common

6.7.12 SHOW CHARSET

Syntax

SHOW [DATASET | ATTRIBUTE] CHARSET [file_name] object_name [BY NAME]

Version 2.4.0 Page 273 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) charset of an HDF5 dataset or attribute or of its members named object_name. In case a dataset and an
attribute with identical names (object_name) are stored in the same location (i.e. group) and neither the keyword
DATASET nor ATTRIBUTE is specified, the charset returned belongs to the dataset. To explicitly get the charset of
object_name according to its type, the keyword DATASET or ATTRIBUTE must be specified. If object_name ends with “/”
and is of data type HDFQL_COMPOUND, the data types of members of object_name are returned instead.

Parameter(s)

file_name — optional string that specifies the name of the HDF5 file which stores the dataset or attribute to show (i.e. get)
the charset. If file_name is specified, the file is opened on the fly, the charset of the dataset or attribute is obtained and,
afterwards, the file is closed. Otherwise, if it is not specified, the dataset or attribute (whose charset is to be obtained) is

stored in the file currently in use.

object_name — mandatory string that specifies the name of the HDF5 dataset or attribute whose charset is to be obtained,

or of its members in case it ends with “/” and the dataset or attribute is of data type HDFQL_COMPOUND.

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

If the BY NAME option is not specified, it returns the charset of an HDF5 dataset or attribute as an HDFQL_INT, which can
either be HDFQL_ASCII, HDFQL_UTF8 or HDFQL_UNDEFINED depending on whether the charset is ASCIl, UTF8 or
undefined (i.e. the dataset or attribute is neither of data type HDFQL_CHAR nor HDFQL_VARCHAR) respectively.
Otherwise, if it is specified, it returns the charset of a dataset or attribute as an HDFQL_VARCHAR, which can either be
“ASCII”, “UTF8” or “UNDEFINED”.

Version 2.4.0 Page 274 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

create an HDF5 dataset named "my datasetO" of data type char
CREATE DATASET my dataset(O AS CHAR

show (i.e. get) charset of dataset "my datasetO" (should be 1 - i.e. HDFQL ASCII)
SHOW CHARSET my dataset(

create an HDF5 dataset named "my datasetl" of data type char of one dimension (size 20) using
the UTF8 representation

CREATE DATASET my datasetl AS UTF8 CHAR(20)

show (i.e. get) charset of dataset "my datasetl" (should be 2 - i.e. HDFQL UTF8)
SHOW CHARSET my datasetl

create an HDF5 attribute named "my attributeO" of data type compound composed of three
members named "m0" (of data type char), "ml" (of data type int) and "m2" (of data type
variable-length char using the UTF8 representation)

CREATE ATTRIBUTE my attribute(O AS COMPOUND (m0 AS CHAR, ml AS INT, m2 AS UTF8 VARCHAR)

show (i.e. get) charset of attribute "my attributeO" (should be -1 - i.e. HDFQL UNDEFINED)
SHOW CHARSET my attributel

show (i.e. get) charset of members of attribute "my attribute0" (should be 1 - i.e.
HDFQL ASCII, -1 - i.e. HDFQL UNDEFINED, 2 - i.e. HDFQL_UTFB)
SHOW CHARSET my attribute0/

create an HDF5 dataset named "my common" of data type short using the UTF8 representation

CREATE DATASET my common AS UTF8 CHAR

create an HDF5 attribute named "my common" of data type variable-length char using the ASCII
representation

CREATE ATTRIBUTE my common AS ASCII VARCHAR

show (i.e. get) charset of dataset "my common" (should be 2 - i.e. HDFQL UTF8)
SHOW CHARSET my common

show (i.e. get) data type of dataset "my common" (should be 2 - i.e. HDFQL UTF8)
SHOW DATASET CHARSET my common

show (i.e. get) charset of attribute "my common" (should be 1 - i.e. HDFQL ASCII)
SHOW ATTRIBUTE CHARSET my common

Version 2.4.0 Page 275 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

6.7.13 SHOW STORAGE TYPE

Syntax
SHOW STORAGE TYPE [file_name] dataset_name [, [file_name] dataset_name]* [BY NAME]
[post_processing_option [post_processing_option]*]

[output_redirecting_option)

Description

Show (i.e. get) storage type (layout) of an HDF5 dataset named dataset_name. Multiple datasets’ storage types can be
obtained at once by separating these with a comma (,). If dataset_name was not found or its storage type could not be

checked (due to unknown/unexpected reasons), no subsequent datasets are checked, and an error is raised.

Parameterls[

file_name — optional string that specifies the name of the HDF5 file which stores the dataset to show (i.e. get) the storage
type (layout). If file_name is specified, the file is opened on the fly, the storage type of the dataset is obtained and,
afterwards, the file is closed. Otherwise, if it is not specified, the dataset (whose storage type is to be obtained) is stored in

the file currently in use.

dataset_name — mandatory string that specifies the name of the HDF5 dataset whose storage type (layout) is to be

obtained. Multiple datasets are separated with a comma (,).

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

If the BY NAME option is not specified, it returns the storage type (layout) of an HDF5 dataset as an HDFQL_INT, which can
either be HDFQL_CONTIGUOUS, HDFQL_COMPACT or HDFQL_CHUNKED depending on whether the storage is contiguous,
compact or chunked respectively. Otherwise, if it is specified, it returns the storage type (layout) of a dataset as an

HDFQL_VARCHAR, which can either be “CONTIGUOUS”, “COMPACT” or “CHUNKED”.

Version 2.4.0 Page 276 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

create an HDF5 dataset named "my datasetO" of data type unsigned int
CREATE DATASET my dataset(O AS UNSIGNED INT

show (i.e. get) storage type (layout) of dataset "my dataset0" (should be 1 - i.e.
HDFQI, CONTIGUOUS)
SHOW STORAGE TYPE my dataset(

create an HDF5 dataset named "my datasetl" of data type int of two dimensions (size 5x7)

CREATE CONTIGUOUS DATASET my datasetl AS INT (5, /)

show (i.e. get) storage type (layout) of dataset "my datasetl" (should be 1 - i.e.
HDFQI _CONTIGUOUS)
SHOW STORAGE TYPE my datasetl

create an HDF5 dataset named "my dataset2" of data type double of one dimension (size 8)

CREATE COMPACT DATASET my datasetZ AS DOUBLE (&)

show (i.e. get) storage type (layout) of dataset "my dataset2" (should be 2 - i.e.
HDFQL COMPACT)
SHOW STORAGE TYPE my datasetZ2

create an HDF5 dataset named "my dataset3" of data type float of three dimensions (size
3x5x20)
CREATE CHUNKED DATASET my dataset3 AS FLOAT(3, 5, 20)

show (i.e. get) storage type (layout) of dataset "my dataset3" (should be 4 — i.e.
HDFQL CHUNKED)
SHOW STORAGE TYPE my dataset3

6.7.14 SHOW STORAGE ALLOCATION

Syntax
SHOW STORAGE ALLOCATION ([file_name] dataset_name [, [file_name] dataset_name]* [BY NAME]
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Version 2.4.0 Page 277 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Show (i.e. get) storage allocation of an HDF5 dataset named dataset_name. Multiple datasets’ storage allocation can be
obtained at once by separating these with a comma (,). If dataset_name was not found or its storage allocation could not

be checked (due to unknown/unexpected reasons), no subsequent datasets are checked, and an error is raised.

Parameterls[

file_name — optional string that specifies the name of the HDF5 file which stores the dataset to show (i.e. get) the storage
allocation. If file_name is specified, the file is opened on the fly, the storage allocation of the dataset is obtained and,
afterwards, the file is closed. Otherwise, if it is not specified, the dataset (whose storage allocation is to be obtained) is

stored in the file currently in use.

dataset_name — mandatory string that specifies the name of the HDF5 dataset whose storage allocation is to be obtained.

Multiple datasets are separated with a comma (,).

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

If the BY NAME option is not specified, it returns the storage allocation of an HDF5 dataset as an HDFQL_INT, which can
either be HDFQL_EARLY, HDFQL INCREMENTAL or HDFQL_LATE depending on whether the storage allocation is early,
incremental or late respectively. Otherwise, if it is specified, it returns the storage allocation of a dataset as an

HDFQL_VARCHAR, which can either be “EARLY”, “INCREMENTAL” or “LATE".

Example(s)

create an HDF5 dataset named "my datasetO" of data type unsigned int
CREATE DATASET my dataset(O AS UNSIGNED INT

show (i.e. get) storage allocation of dataset "my datasetO" (should be 4 - i.e. HDFQL LATE)
SHOW STORAGE ALLOCATION my dataset(

Version 2.4.0 Page 278 of 346

Hierarchical Data Format query language (HDFql)

Reference Manual

create an HDF5 dataset named "my datasetl" of
CREATE CONTIGUOUS DATASET my datasetl AS INT (5,
show (i.e. get) storage allocation of dataset

SHOW STORAGE ALLOCATION my datasetl

create an HDF5 dataset named "my dataset2" of
CREATE COMPACT DATASET my_datasetZ AS DOUBLE (8)
show (i.e. get) storage allocation of dataset

SHOW STORAGE ALLOCATION my dataset?Z

create an HDF5 dataset named "my dataset3" of
3x5x20)

CREATE CHUNKED DATASET my dataset3 AS FLOAT(3,
show (i.e. get) storage allocation of dataset
HDFQIL, INCREMENTAL)

SHOW STORAGE ALLOCATION my dataset3

data type int of two dimensions (size 5x7)

)

"my datasetl" (should be 4 - i.e. HDFQL LATE)
data type double of one dimension (size 8)
(should be 1 - 1i.e.

"my dataset2" HDFQL EARLY)

data type float of three dimensions (size

"my dataset3" (should be 2 - i.e.

6.7.15 SHOW STORAGE DIMENSION

Syntax
SHOW STORAGE DIMENSION [file_name] dataset_name
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) storage dimensions of an HDF5 dataset named dataset_name.

Parameter(s)

file_name — optional string that specifies the name of the HDF5 file which stores the dataset to show (i.e. get) the storage

dimensions. If file_name is specified, the file is opened on the fly, the storage dimensions of the dataset are obtained and,

afterwards, the file is closed. Otherwise, if it is not specified, the dataset (whose storage dimensions are to be obtained) is

stored in the file currently in use.

Version 2.4.0

Page 279 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

dataset_name — mandatory string that specifies the name of the HDF5 dataset whose storage dimensions are to be

obtained.

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

The storage dimensions of an HDF5 dataset as an HDFQL_BIGINT or nothing (in case the dataset is not chunked — i.e. its

storage type is not HDFQL_CHUNKED).

Example(s)

create an HDF5 dataset named "my datasetO" of data type unsigned int
CREATE DATASET my dataset(O AS UNSIGNED INT

show (i.e. get) storage dimensions of dataset "my dataset(0" (should be empty)

SHOW STORAGE DIMENSION my datasetO

create an HDF5 dataset named "my datasetl”" of data type int of two dimensions (size 5x7)

CREATE DATASET my datasetl AS INT(5, 7/)

show (i.e. get) storage dimensions of dataset "my datasetl" (should be empty)

SHOW STORAGE DIMENSION my datasetl

create an HDF5 dataset named "my dataset2" of data type double of one dimension (size 8)

CREATE CHUNKED DATASET my dataset2 AS DOUBLE (&)

show (i.e. get) storage dimensions of dataset "my dataset2" (should be 8)

SHOW STORAGE DIMENSION my dataset2
create an HDF5 dataset named "my dataset3" of data type float of three dimensions (size
3x5x20)

CREATE CHUNKED (1, -,) DATASET my dataset3 AS FLOAT (3, 5,)

show (i.e. get) storage dimensions of dataset "my dataset3" (should be 1, 2, 10)

Version 2.4.0 Page 280 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

SHOW STORAGE DIMENSION my dataset3

6.7.16 SHOW DIMENSION

Syntax
SHOW [DATASET | ATTRIBUTE] [MAX] DIMENSION [file_name] object_name
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) dimensions of an HDF5 dataset or attribute named object_name. In case a dataset and an attribute with
identical names (object_name) are stored in the same location (i.e. group) and neither the keyword DATASET nor
ATTRIBUTE is specified, the dimensions returned belong to the dataset. To explicitly get the dimensions of object_name
according to its type, the keyword DATASET or ATTRIBUTE must be specified. By default, the returned dimensions refer to
the ones that a dataset or an attribute currently has; to return the maximum dimensions that a dataset or an attribute
may grow to, the keyword MAX must be specified. If the maximum dimension is unlimited, the returned value is

HDFQL_UNLIMITED.

Parameter(s)

file_name — optional string that specifies the name of the HDF5 file which stores the dataset or attribute to show (i.e. get)
the dimensions. If file_name is specified, the file is opened on the fly, the dimensions of the dataset or attribute are
obtained and, afterwards, the file is closed. Otherwise, if it is not specified, the dataset or attribute (whose dimensions are

to be obtained) is stored in the file currently in use.

object_name — mandatory string that specifies the name of the HDF5 dataset or attribute whose dimensions are to be

obtained.

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

Version 2.4.0 Page 281 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined

variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Return

The dimensions of an HDF5 dataset or attribute as an HDFQL_BIGINT or nothing (in case the dataset or attribute is a scalar

—i.e.is not an array).

Example(s)

create an HDF5 dataset named "my dataset(0" of data type unsigned int
CREATE DATASET my dataset(0 AS UNSIGNED INT

show (i.e. get) dimensions of dataset "my datasetO" (should be empty)
SHOW DIMENSION my dataset(

show (i.e. get) maximum dimensions of dataset "my dataset0" (should be empty)

SHOW MAX DIMENSION my dataset(

create an HDF5 dataset named "my datasetl" of data type unsigned int
CREATE DATASET my datasetl AS UNSIGNED INT (5)

show (i.e. get) dimensions of dataset "my datasetl" (should be 5)

SHOW DIMENSION my datasetl

show (i.e. get) maximum dimensions of dataset "my datasetl" (should be 5)

SHOW MAX DIMENSION my datasetl

create an HDF5 dataset named "my dataset2" of data type double of one dimension (size 15)

CREATE DATASET my dataset2 AS DOUBLE (15)

show (i.e. get) dimensions of dataset "my dataset2" (should be 15)
SHOW DIMENSION my datasetZ

show (i.e. get) maximum dimensions of dataset "my dataset2" (should be 15)

SHOW MAX DIMENSION my dataset2

create an HDF5 attribute named "my attributeO" of data type int of one dimension (size 1)

CREATE ATTRIBUTE my attribute(AS INT (1)

show (i.e. get) dimensions of attribute "my attribute0" (should be 1)

Version 2.4.0 Page 282 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

SHOW DIMENSION my attributel

show (i.e. get) maximum dimensions of attribute "my attribute(0" (should be 1)

SHOW MAX DIMENSION my attributel

create an HDF5 attribute named "my attributel" of data type short of two dimensions (size
2x3)
CREATE ATTRIBUTE my attributel AS SMALLINT(Z, 3)

show (i.e. get) dimensions of attribute "my attributel” (should be 2, 3)
SHOW DIMENSION my_attributel

show (i.e. get) maximum dimensions of attribute "my attributel"” (should be 2, 3)

SHOW MAX DIMENSION my attributel

create an HDF5 dataset named "my dataset3" of data type float of three dimensions (first
dimension with size 2 and extendible up to 10; second dimension with size 5; third dimension
with size 20 and extendible to an unlimited size)

CREATE CHUNKED DATASET my dataset3 AS FLOAT (5 TO v g TO UNLIMITED, UNLIMITED)

show (i.e. get) dimensions of dataset "my dataset3" (should be 3, 5, 20, 1)
SHOW DIMENSION my dataset3

show (i.e. get) maximum dimensions of dataset "my dataset3" (should be 10, 5, -1, -1)

SHOW MAX DIMENSION my dataset3

6.7.17 SHOW ORDER

Syntax

SHOW [ATTRIBUTE] ORDER [file_name] object_name |, [file_name] object_namel* [BY NAME]
[post_processing_option [post_processing_option]*]
[output_redirecting_option]

Description

Show (i.e. get) (creation) order strategy of an HDF5 group or dataset named object_name. Multiple objects’ order
strategies can be obtained at once by separating these with a comma (,). If object_name was not found or its order

strategy could not be checked (due to unknown/unexpected reasons), no subsequent objects are checked, and an error is

Version 2.4.0 Page 283 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

raised. By default, the returned order strategy refers to objects (i.e. groups, datasets, (soft) links or external links) within a

group; to return the order strategy of attributes within a group or dataset, the keyword ATTRIBUTE must be specified.

Parameter(s)

file_name — optional string that specifies the name of the HDFS5 file which stores the group or dataset to show (i.e. get) the
(creation) order strategy. If file_name is specified, the file is opened on the fly, the order strategy of the group or dataset
is obtained and, afterwards, the file is closed. Otherwise, if it is not specified, the group or dataset (whose order strategy is

to be obtained) is stored in the file currently in use.

object_name — mandatory string that specifies the name of the HDF5 group or dataset whose (creation) order strategy is

to be obtained. Multiple groups or datasets are separated with a comma (,).

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

If the BY NAME option is not specified, it returns the (creation) order strategy of an HDF5 group or dataset as an
HDFQL_INT, which can either be HDFQL_TRACKED, HDFQL_INDEXED or HDFQL_UNDEFINED depending on whether the
order is tracked, indexed or undefined (i.e. the group or dataset was created without any order strategy) respectively.
Otherwise, if it is specified, it returns the (creation) order strategy of a group or dataset as an HDFQL_VARCHAR, which can
either be “TRACKED”, “INDEXED” or “UNDEFINED”.

Example(s)

create an HDF5 group named "my groupO"
CREATE GROUP my group(

show (i.e. get) (creation) order strategy of objects within group "my groupO" (should be -1 -
i.e. HDFQL UNDEFINED)
SHOW ORDER my group0

show (i.e. get) (creation) order strategy of attributes within group "my group0" (should be -

1 - i.e. HDFQL UNDEFINED)

Version 2.4.0 Page 284 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

SHOW ATTRIBUTE ORDER my group0

create an HDF5 group named "my groupl" that tracks both the objects’ (i.e. groups and
datasets) and the attributes’ creation order within the group

CREATE GROUP my groupl ORDER TRACKED ATTRIBUTE ORDER INDEXED

show (i.e. get) (creation) order strategy of objects within group "my groupl" (should be 1 -
i.e. HDFQL TRACKED)
SHOW ORDER my groupl

show (i.e. get) (creation) order strategy of attributes within group "my groupl" (should be 2
- i.e. HDFQL INDEXED)
SHOW ATTRIBUTE ORDER my groupl

create an HDF5 dataset named "my datasetO" of data type int that tracks the attributes’
creation order within the dataset

CREATE DATASET my dataset(O AS INT ATTRIBUTE ORDER TRACKED

show (i.e. get) (creation) order strategy of attributes within dataset "my dataset0" (should
be 1 - i.e. HDFQL TRACKED)
SHOW ATTRIBUTE ORDER my dataset0

show (i.e. get) (creation) order strategy of attributes within both group "my groupl" and
dataset "my dataset(0" at once (should be 2, 1)
SHOW ATTRIBUTE ORDER my groupl, my dataset(

6.7.18 SHOW TAG

Syntax

SHOW [DATASET | ATTRIBUTE] TAG [file_name] object_name
[post_processing_option [post_processing_option]*]
[output_redirecting_option]

Description

Show (i.e. get) tag of an HDF5 dataset or attribute or of its members named object_name. In case a dataset and an
attribute with identical names (object_name) are stored in the same location (i.e. group) and neither the keyword

DATASET nor ATTRIBUTE is specified, the tag returned belongs to the dataset. To explicitly get the tag of object_name

Version 2.4.0 Page 285 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

according to its type, the keyword DATASET or ATTRIBUTE must be specified. If object_name ends with “/” and is of data

type HDFQL_COMPOUND, the tags of members of object_name are returned instead.

Parameter(s)

file_name — optional string that specifies the name of the HDFS5 file which stores the dataset or attribute to show (i.e. get)
the tag. If file_name is specified, the file is opened on the fly, the tag of the dataset or attribute is obtained and,
afterwards, the file is closed. Otherwise, if it is not specified, the dataset or attribute (whose tag is to be obtained) is

stored in the file currently in use.

object_name — mandatory string that specifies the name of the HDF5 dataset or attribute whose tag is to be obtained, or

of its members in case it ends with “/” and is of data type HDFQL_COMPOUND.

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

The tag of an HDF5 dataset or attribute or of its members as an HDFQL_VARCHAR, which can either be a string or NULL

depending on whether the dataset or attribute or of its members is of data type HDFQL_OPAQUE or not.

Example(s)

create an HDF5 dataset named "my datasetO" of data type int
CREATE DATASET my dataset(O AS INT

show (i.e. get) tag of dataset "my dataset0" (should be NULL)
SHOW TAG my datasetO

create an HDF5 dataset named "my datasetl" of data type opaque
CREATE DATASET my datasetl AS OPAQUE

show (i.e. get) tag of dataset "my datasetl" (should be "")
SHOW TAG my datasetl

Version 2.4.0 Page 286 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

create an HDF5 dataset named "my dataset2" of data type opaque of one dimension (size 15)
with a tag value "my tagl"
CREATE DATASET my dataset2 AS OPAQUE (15) TAG my tagl

show (i.e. get) tag of dataset "my dataset2" (should be "my tagl")
SHOW TAG my dataset2

create an HDF5 attribute named "my attributeO" of data type opaque of two dimensions (size
3x5) with a tag value "Hierarchical Data Format"

CREATE ATTRIBUTE my attribute0O AS OPAQUE (3, 5) TAG "Hierarchical Data Format'

show (i.e. get) tag of attribute "my attribute0" (should be "Hierarchical Data Format")
SHOW TAG my attributel

create an HDF5 attribute named "my attributel" of data type compound composed of three
members named "m0" (of data type int), "ml" (of data type opaque) and "m2" (of data type opaque
with a tag value "Test")

CREATE ATTRIBUTE my attributel AS COMPOUND (m0 AS INT, ml AS OPAQUE, m2 AS OPAQUE TAG Test)

show (i.e. get) tag of attribute "my attributel" (should be NULL)
SHOW TAG my attributel

show (i.e. get) tag of members of attribute "my attributel" (should be NULL, "", "Test")
SHOW TAG my attributel/

create an HDF5 dataset named "my common'" of data type opaque with a tag value "Dataset tag"

CREATE DATASET my common AS OPAQUE TAG '"Dataset tag"

create an HDF5 attribute named "my common" of data type opaque of one dimension (size 10)
with a tag value "Attribute tag”
CREATE ATTRIBUTE my common AS OPAQUE (10) TAG "Attribute tag"

show (i.e. get) tag of dataset "my common" (should be "Dataset tag")
SHOW TAG my common

show (i.e. get) tag of dataset "my common" (should be "Dataset tag")
SHOW DATASET TAG my common

show (i.e. get) tag of attribute "my common" (should be "Attribute tag")
SHOW ATTRIBUTE TAG my common

Version 2.4.0 Page 287 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

6.7.19 SHOW OFFSET

Syntax
SHOW [DATASET | ATTRIBUTE] OFFSET ([file_name] object_name
[post_processing_option [post_processing_option]*]

[output_redirecting_option)

Description

Show (i.e. get) member offsets of an HDF5 dataset or attribute named object_name. If object_name was not found or its
member offsets could not be checked (due to its data type not being HDFQL_COMPOUND or for unknown/unexpected
reasons), an error is raised. In case a dataset and an attribute with identical names (object_name) are stored in the same
location (i.e. group) and neither the keyword DATASET nor ATTRIBUTE is specified, the member offsets returned belong to
the dataset. To explicitly get the member offsets of object_ name according to its type, the keyword DATASET or
ATTRIBUTE must be specified.

Parameter(s)

file_name — optional string that specifies the name of the HDF5 file which stores the dataset or attribute to show (i.e. get)
the member offsets. If file_name is specified, the file is opened on the fly, the member offsets of the dataset or attribute is
obtained and, afterwards, the file is closed. Otherwise, if it is not specified, the dataset or attribute (whose member

offsets are to be obtained) is stored in the file currently in use.

object_name — mandatory string that specifies the name of the HDF5 dataset or attribute whose member offsets are to be

obtained.

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return
The member offsets of an HDF5 dataset or attribute as an HDFQL_INT.

Version 2.4.0 Page 288 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

create an HDF5 dataset named "my datasetO" of data type compound composed of three members
named "person" (of data type variable-length char with offset 0), "age" (of data type unsigned
int with offset 8) and "weight" (of data type float with offset 12)

CREATE DATASET my dataset(O AS COMPOUND (person AS VARCHAR, age AS UNSIGNED INT, weight AS FLOAT)

show (i.e. get) member offsets of dataset "my dataset(0" (should be 0, 8, 12)
SHOW OFFSET my dataset(

create an HDF5 dataset named "my datasetl" of data type compound composed of two members
named "readings" (of data type int of one dimension (size 5) with offset 0) and "state" (of
data type char with offset 20)

CREATE DATASET my datasetl AS COMPOUND (readings AS INT(5), state AS TINYINT)

show (i.e. get) member offsets of dataset "my datasetl" (should be 0, 20)
SHOW OFFSET my datasetl

create an HDF5 attribute named "my attributeO" of data type compound composed of three
members named "id" (of data type long long with offset 0), "position" (of data type compound
with offset 8 and composed of two members named "x" (of data type short with offset 0) and "y"
(of data type short with offset 2)) and "temperature" (of data type enumeration with offset 12
and composed of three members named 'cold", "warm" and "hot")

CREATE ATTRIBUTE my attribute(O AS COMPOUND (id AS BIGINT, position AS COMPOUND (x AS SMALLINT, y
AS SMALLINT), temperature AS ENUMERATION (cold, warm, hot))

show (i.e. get) member offsets of attribute "my attribute(O" (should be 0, 8, 0, 2, 12)
SHOW OFFSET my attributel

create an HDF5 attribute named "my attributel" of data type compound composed of five members
named "m0" (of data type int with offset 5), "ml" (of data type compound with offset 20 and
composed of two members named "m0" (of data type float with offset 0) and "ml" (of data type
short with offset 4)), "m2" (of data type long long with offset 26), "m3" (of data type
enumeration with offset 35 and composed of two members named "on" and "off") and "m4" (of data
type double with offset 36)

CREATE ATTRIBUTE my attributel AS COMPOUND (m0 AS INT OFFSET 5, ml AS COMPOUND (mQ AS FLOAT, ml
AS SMALLINT) OFFSET 20, m2 AS BIGINT, m3 AS ENUMERATION (on, off) OFFSET 35, m4 AS DOUBLE)

show (i.e. get) member offsets of attribute "my attributel" (should be 5, 20, 0, 4, 26, 35,
36)
SHOW OFFSET my attributel

Version 2.4.0 Page 289 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

6.7.20 SHOW FILL TYPE

Syntax
SHOW FILL TYPE [file_name] dataset_name [, [file_name] dataset name]* [BY NAME]
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) fill type of an HDF5 dataset named dataset_name. Multiple datasets’ fill types can be obtained at once by
separating these with a comma (,). If dataset_name was not found or its fill type could not be checked (due to

unknown/unexpected reasons), no subsequent datasets are checked, and an error is raised.

Parameterls[

file_name — optional string that specifies the name of the HDF5 file which stores the dataset to show (i.e. get) the fill type.
If file_name is specified, the file is opened on the fly, the fill type of the dataset is obtained and, afterwards, the file is

closed. Otherwise, if it is not specified, the dataset (whose fill type is to be obtained) is stored in the file currently in use.

dataset_name — mandatory string that specifies the name of the HDF5 dataset whose fill type is to be obtained. Multiple

datasets are separated with a comma (,).

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

If the BY NAME option is not specified, it returns the fill type of an HDF5 dataset as an HDFQL_INT, which can either be
HDFQL_FILL_DEFAULT, HDFQL_FILL_DEFINED, HDFQL_FILL_NEVER or HDFQL_FILL_UNDEFINED depending on whether the
fill is default, (user) defined, never (i.e. no) or undefined respectively. Otherwise, if it is specified, it returns the fill type of
a dataset as an HDFQL_VARCHAR, which can either be “FILL_DEFAULT”, “FILL_DEFINED”, “FILL_NEVER” or
“FILL_UNDEFINED”.

Version 2.4.0 Page 290 of 346

Hierarchical Data Format query language (HDFql)

Reference Manual

Example(s)

create an HDF5 dataset named "my datasetO" of data
CREATE DATASET my dataset(O AS INT

show (i.e. get) fill type of dataset "my dataset(0"
SHOW FILL TYPE my datasetO

create an HDF5 dataset named "my datasetl" of data
CREATE DATASET my datasetl AS INT FILL(20)

show (i.e. get) fill type of dataset "my datasetl"
SHOW FILL TYPE my datasetl

create an HDF5 dataset named "my dataset2" of data

(size 5) with an undefined fill value

type int

(should be 1 - i.e. HDFQL FILL DEFAULT)

type int with a fill value of 20

(should be 2 - i.e. HDFQL FILL DEFINED)

type variable-length char of one dimension

CREATE DATASET my datasetZ AS VARCHAR(5) FILL UNDEFINED

show (i.e. get) fill type of dataset "my dataset2"
SHOW FILL TYPE my datasetZ

(should be 8 — i.e. HDFQL FILL UNDEFINED)

6.7.21 SHOW FILL VALUE

Syntax

SHOW FILL VALUE ([file_name] dataset_name
[post_processing_option [post_processing_option]*]
[output_redirecting_option]

Description

Show (i.e. get) fill values of an HDF5 dataset named dataset_name.

Parameter(s)

file_name — optional string that specifies the name of the HDF5 file which stores the dataset to show (i.e. get) the fill

values. If file_name is specified, the file is opened on the fly, the fill values of the dataset are obtained and, afterwards, the

file is closed. Otherwise, if it is not specified, the dataset (whose fill values are to be obtained) is stored in the file currently

in use.

Version 2.4.0

Page 291 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

dataset_name — mandatory string that specifies the name of the HDF5 dataset whose fill values are to be obtained.

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

The fill values of an HDF5 dataset as an HDFQL_TINYINT (in case the data type of the dataset is HDFQL_TINYINT),
HDFQL_UNSIGNED_TINYINT (in case the data type of the dataset is HDFQL_UNSIGNED_TINYINT), HDFQL_SMALLINT (in
case the data type of the dataset is HDFQL_SMALLINT), HDFQL_UNSIGNED_SMALLINT (in case the data type of the dataset
is HDFQL_UNSIGNED_SMALLINT), HDFQL_INT (in case the data type of the dataset is HDFQL_INT), HDFQL_UNSIGNED_INT
(in case the data type of the dataset is HDFQL_UNSIGNED_INT), HDFQL_BIGINT (in case the data type of the dataset is
HDFQL_BIGINT), HDFQL UNSIGNED_BIGINT (in case the data type of the dataset is HDFQL_UNSIGNED_BIGINT),
HDFQL_FLOAT (in case the data type of the dataset is HDFQL_FLOAT), HDFQL_DOUBLE (in case the data type of the
dataset is HDFQL_DOUBLE), HDFQL_CHAR (in case the data type of the dataset is HDFQL_CHAR), HDFQL_VARTINYINT (in
case the data type of the dataset is HDFQL_VARTINYINT), HDFQL_UNSIGNED_VARTINYINT (in case the data type of the
dataset is HDFQL_UNSIGNED_VARTINYINT), HDFQL_VARSMALLINT (in case the data type of the dataset is
HDFQL_VARSMALLINT), HDFQL_UNSIGNED_VARSMALLINT (in case the data type of the dataset s
HDFQL_UNSIGNED VARSMALLINT), HDFQL VARINT (in case the data type of the dataset is HDFQL VARINT),
HDFQL_UNSIGNED_VARINT (in case the data type of the dataset is HDFQL_UNSIGNED_VARINT), HDFQL_VARBIGINT (in
case the data type of the dataset is HDFQL_VARBIGINT), HDFQL_UNSIGNED_VARBIGINT (in case the data type of the
dataset is HDFQL_UNSIGNED_VARBIGINT), HDFQL_VARFLOAT (in case the data type of the dataset is HDFQL_VARFLOAT),
HDFQL_VARDOUBLE (in case the data type of the dataset is HDFQL_VARDOUBLE), HDFQL_VARCHAR (in case the data type
of the dataset is HDFQL_VARCHAR) or HDFQL_OPAQUE (in case the data type of the dataset is HDFQL_OPAQUE),
HDFQL_ENUMERATION (in case the data type of the dataset is HDFQL_ENUMERATION) or HDFQL_COMPOUND (in case
the data type of the dataset is HDFQL_COMPQOUND).

Example(s)

create an HDF5 dataset named "my datasetO" of data type int
CREATE DATASET my dataset(O AS INT

Version 2.4.0 Page 292 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

show (i.e. get) fill values of dataset "my dataset0" (should be 0)
SHOW FILL VALUE my dataset(

create an HDF5 dataset named "my datasetl" of data type int with a fill value of 20
CREATE DATASET my datasetl AS INT FILL(20)

show (i.e. get) fill values of dataset "my datasetl" (should be 20)
SHOW FILL VALUE my datasetl

create an HDF5 dataset named "my dataset2" of data type variable-length char of one dimension
(size 5) with a fill value of "Hierarchical Data Format"

CREATE DATASET my datasetZ AS VARCHAR(5) FILL("Hierarchical Data Format")

show (i.e. get) fill values of dataset "my dataset2" (should be "Hierarchical Data Format")

SHOW FILL VALUE my dataset?2

create an HDF5 dataset named "my dataset3" of data type variable-length int with fill values
of 100 and 200
CREATE DATASET my dataset3 AS VARINT FILL (100, 200)

show (i.e. get) fill values of dataset "my dataset3" (should be 100, 200)
SHOW FILL VALUE my dataset3

create an HDF5 dataset named "my dataset4" of data type enumeration composed of three members
named "Earth" (with value 0), "Moon" (with value 1) and "Mars" (with value 2), and with a fill
value of "Mars" (i.e. 2)

CREATE DATASET my dataset4 AS ENUMERATION (Earth, Moon, Mars) FILL(Mars)

show (i.e. get) fill value of dataset "my dataset4" (should be 2 - i.e. "Mars")
SHOW FILL VALUE my dataset4

6.7.22 SHOW FILE SIZE

Syntax
SHOW FILE SIZE [file_name [, file_name]*]
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Version 2.4.0 Page 293 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Show (i.e. get) size (in bytes) of a file named file_name or of the HDF5 file currently in use. Multiple files’ sizes can be
obtained at once by separating several file names with a comma (,). If file_name was not found or its size could not be

checked (due to unknown/unexpected reasons), no subsequent files are checked, and an error is raised.

Parameterls[

file_name — optional string that specifies the name of the file whose size (in bytes) is to be obtained. Multiple files are

separated with a comma (,). If file_name is not specified, the size of the (HDF5) file currently in use is returned instead.

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

The size (in bytes) of a file as an HDFQL_UNSIGNED_BIGINT.

Example(s)

create an HDF5 file named "my file.h5"
CREATE FILE my file.hb

show (i.e. get) size (in bytes) of file "my file.h5" (should be 800)
SHOW FILE SIZE my file.h5

use (i.e. open) HDF5 file "my file.h5"
USE FILE my file.h5

create an HDF5 group named "my group"

CREATE GROUP my group

flush the entire virtual HDF5 file (global) currently in use
FLUSH

show (i.e. get) size (in bytes) of the file currently in use (should be greater than 800)

Version 2.4.0 Page 294 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

SHOW FILE SIZE

6.7.23 SHOW USERBLOCK SIZE

Syntax
SHOW USERBLOCK SIZE [file_name [, file_name]*]
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) size (in bytes) of a user-defined block of data stored within an HDF5 file named file_name or within the
HDF5 file currently in use. Multiple files user-defined block of data’ sizes can be checked at once by separating these with
a comma (,). If file_name was not found or its user-defined block of data size could not be checked (due to

unknown/unexpected reasons), no subsequent files are checked, and an error is raised.

Parameter(s)

file_name — optional string that specifies the name of the HDF5 file whose user-defined block of data size (in bytes) is to

be obtained. If file_name is not specified, the size of the user-defined block of data of the file currently in use is returned.

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

The size (in bytes) of a user-defined block of data stored within an HDF5 file as an HDFQL_UNSIGNED_BIGINT.

Version 2.4.0 Page 295 of 346

Hierarchical Data Format query language (HDFql)

Reference Manual

Example(s)

create an HDF5 file named "my file0.h5" with no user-defined block of data

CREATE FILE my file(O.h5

show (i.e. get) size (in bytes) of the user-defined block of data
"my fileO.h5" (should be 0)
SHOW USERBLOCK SIZE my file(O.h5

create an HDF5 file named "my filel.h5" with a user-defined block
values 50, 60 and 70
CREATE FILE my filel.h5 USERBLOCK SIZE 512 VALUES (50, 60, 70)

show (i.e. get) size (in bytes) of the user-defined block of data
"my filel.h5" (should be 512)
SHOW USERBLOCK SIZE my filel.h5

create an HDF5 file named "my file2.h5" with a user-defined block
values from a binary file named "my file.pdf"

CREATE FILE my file2.h5 USERBLOCK SIZE

o
>

use (i.e. open) HDF5 file "my file2.h5"
USE FILE my fileZ2.h5

show (i.e. get) size (in bytes) of the user-defined block of data
currently in use (should be 8192)
SHOW USERBLOCK SIZE

stored within file

of data (size 512) storing

stored within file

of data (size 8192) storing

)2 VALUES FROM BINARY FILE my file.pdf

stored within the file

6.7.24 SHOW USERBLOCK

Syntax
SHOW USERBLOCK [file_name]
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Version 2.4.0

Page 296 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Show (i.e. get) user-defined block of data stored within an HDF5 file named file_name or within the HDF5 file currently in

use.

Parameter(s)

file_name — optional string that specifies the name of the HDF5 file whose user-defined block of data is to be obtained. If

file_name is not specified, the user-defined block of data of the file currently in use is returned instead.

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

The user-defined block of data stored within an HDF5 file as an HDFQL_OPAQUE.

Example(s)

create an HDF5 file named "my file(0.h5" with no user-defined block of data
CREATE FILE my file(O.h5

show (i.e. get) user-defined block of data stored within file "my file(O.h5" (should be empty)
SHOW USERBLOCK my file(.h5

create an HDF5 file named "my filel.h5" with a user-defined block of data (size 512) storing
values 50, 60 and 70
CREATE FILE my filel.h5 USERBLOCK SIZE VALUES (50, ’)

show (i.e. get) user-defined block of data stored within file "my filel.h5" (should be 50,
60, 70, 0, 0, 0, 0, ...)
SHOW USERBLOCK my filel.h5

create an HDF5 file named "my file2.h5" with a user-defined block of data (size 8192) storing
values from a binary file named "my file.pdf"

CREATE FILE my file2.h5 USERBLOCK SIZE VALUES FROM BINARY FILE my file.pdf

Version 2.4.0 Page 297 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

use (i.e. open) HDF5 file "my file2.h5"
USE FILE my file2.h5

show (i.e. get) user-defined block of data stored within the file currently in use (should be
the values (i.e. content) of file "my file.pdf")
SHOW USERBLOCK

6.7.25 SHOW [DATASET | ATTRIBUTE] SIZE

Syntax
SHOW [DATASET | ATTRIBUTE] SIZE [file_name] object_name |[, [file_name] object_name]*
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) size (in bytes) of an HDF5 dataset or attribute named object_name. Multiple objects’ sizes can be obtained
at once by separating these with a comma (,). If object_name was not found or its size could not be checked (due to
unknown/unexpected reasons), no subsequent objects are checked, and an error is raised. In case a dataset and an
attribute with identical names (object_name) are stored in the same location (i.e. group) and neither the keyword
DATASET nor ATTRIBUTE is specified, the size returned belongs to the dataset. To explicitly get the size of object_name
according to its type, the keyword DATASET or ATTRIBUTE must be specified.

Parameter(s)

file_name — optional string that specifies the name of the HDF5 file which stores the dataset or attribute to show (i.e. get)
the size (in bytes). If file_name is specified, the file is opened on the fly, the size of the dataset or attribute is obtained and,
afterwards, the file is closed. Otherwise, if it is not specified, the dataset or attribute (whose size is to be obtained) is

stored in the file currently in use.

object_name — mandatory string that specifies the name of the HDF5 dataset or attribute whose size (in bytes) is to be

obtained. Multiple datasets or attributes are separated with a comma (,).

Version 2.4.0 Page 298 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

The size (in bytes) of an HDF5 dataset or attribute as an HDFQL_UNSIGNED_BIGINT.

Example(s)

create an HDF5 dataset named "my datasetO" of data type float
CREATE DATASET my dataset(O AS FLOAT

show (i.e. get) size (in bytes) of dataset "my datasetO" (should be 4)
SHOW SIZE my dataset(

create an HDF5 dataset named "my datasetl" of data type long long of one dimension (size 3)

CREATE DATASET my datasetl AS BIGINT (3)

show (i.e. get) size (in bytes) of dataset "my datasetl" (should be 24 - i.e. 8x3)
SHOW SIZE my datasetl

create an HDF5 dataset named "my common" of data type variable-length short with initial
values of 10, 20, 30, 40, 50 and 60
CREATE DATASET my common AS VARSMALLINT VALUES (10, 20, 30, 40, 50, 60)

create an HDF5 attribute named "my common" of data type double of two dimensions (size 2x3)

CREATE ATTRIBUTE my common AS DOUBLE (7, 3)

show (i.e. get) size (in bytes) of dataset "my common" (should be 12 - i.e. 2x6)

SHOW SIZE my common

show (i.e. get) size (in bytes) of dataset "my common" (should be 12 - i.e. 2x6)

SHOW DATASET SIZE my common

show (i.e. get) size (in bytes) of attribute "my common" (should be 48 - i.e. 8x2x3)
SHOW ATTRIBUTE SIZE my common

Version 2.4.0 Page 299 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

6.7.26 SHOW HDFQL VERSION

Syntax
SHOW HDFQL VERSION
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) version of HDFql library. The format of the version returned is MAJOR.MINOR.REVISION.

Parameter(s)

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

The version of HDFql library as an HDFQL_VARCHAR.

Example(s)

show (i.e. get) version of HDFql library (should be something similar to "2.4.0")
SHOW HDFQL VERSION

6.7.27 SHOW HDF5 VERSION

Syntax
SHOW HDF5 VERSION

[post_processing_option [post_processing_option]*]

Version 2.4.0 Page 300 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

[output_redirecting_option]

Description

Show (i.e. get) version of the HDF5 library used by HDFql. The format of the version returned is MAJOR.MINOR.REVISION.
The HDFS5 library refers to the library used to compile HDFql, and which is shipped with HDFgl (and not the HDF5 library

that may be installed in the machine).

Parameter(s)

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

The version of the HDF5 library used by HDFgl as an HDFQL_VARCHAR.

Example(s)

show (i.e. get) version of the HDF5 library used by HDFql (should be something similar to
"1.8.22")
SHOW HDF5 VERSION

6.7.28 SHOW MPI VERSION

Syntax
SHOW MPI VERSION
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Version 2.4.0 Page 301 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Show (i.e. get) version of the MPI library used by HDFql. The information returned depends on the MPI library loaded by
HDFgl at runtime (which must be previously installed in the machine). Please refer to
https://www.mpich.org/static/docs/v3.2/www3/MPI_Get_library_version.html or https://www.open-
mpi.org/doc/v2.1/man3/MPI_Get_library_version.3.php for additional information in case the MPI library used is MPICH

(or, alternatively, one of its ABI compatible derivative libraries) or Open MPI.

Parameter(s)

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

The version of the MPI library used by HDFql as an HDFQL_VARCHAR or nothing (in case of using an HDFgl non MPI-based

distribution).

Example(s)

show (i.e. get) version of the MPI library used by HDFql (e.g. 1if the MPI library used is
Open MPI, it should be something similar to "Open MPI v2.1.3, package: Open MPI dummy@machine
Distribution, ident: 2.1.3, repo rev: v2.1.2-129-gcfd8f3f, Mar 13, 2018")

SHOW MPI VERSION

6.7.29 SHOW DIRECTORY

Syntax

SHOW DIRECTORY |[directory_name] [LIKE regular_expression [DEEP deep_value [, deep_valuel*]]
[post_processing_option [post_processing_option]*]
[output_redirecting_option]

Version 2.4.0 Page 302 of 346

https://www.mpich.org/static/docs/v3.2/www3/MPI_Get_library_version.html
https://www.open-mpi.org/doc/v2.1/man3/MPI_Get_library_version.3.php
https://www.open-mpi.org/doc/v2.1/man3/MPI_Get_library_version.3.php

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Show (i.e. get) directory names within a directory named directory_name or check the existence of a directory named
directory_name. If the keyword LIKE is specified, only directories with names complying with a regular expression named
regular_expression will be returned (in HDFql, regular expressions are the ones specified by PCRE which closely follow
PERLS5 syntax — please refer to http://www.pcre.org and http://perldoc.perl.org/perlre.html for additional information). As
a general rule, in case regular_expression is composed of spaces, special characters or reserved keywords (e.g. SELECT), it
should be surrounded by double-quotes (“). Otherwise, if it is not surrounded by double-quotes, directory names will not
be returned and an error is raised. If regular_expression includes “**”, recursive search is performed (i.e. HDFql will search
in all existing directories and subdirectories for directory names). To limit the recursiveness, the keyword DEEP may be

specified along with a value deep_value representing the maximum recursiveness limit.

Parameter(s)

directory_name — optional string that specifies the name of the directory whose directory names are to be obtained or the
name of the directory to check for its existence. If directory_name is not specified, all directory names within the current

working directory are returned. Otherwise, if it is specified, one of the following behaviors applies:
e Ifit ends with “/”, all directory names within directory_name are returned.

e Ifit does not end with “/”, directory_name will be checked for its existence as a directory. If it exists, directory_name

is returned; otherwise, if it does not exist, an error is raised.

regular_expression — optional string that specifies the regular expression which only names of directories that comply with

it are returned. If regular_expression includes “**”, recursive search is performed.

deep_value — optional integer that specifies the maximum recursiveness limit (i.e. how deep recursive search is

performed).

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).

Version 2.4.0 Page 303 of 346

http://www.pcre.org/
http://perldoc.perl.org/perlre.html

Hierarchical Data Format query language (HDFql) Reference Manual

Return

The directory names within a directory or the existence of a directory as an HDFQL_VARCHAR.

Example(s)

create three directories named "my directory0", "my directoryl" and "my directory2" within
the current working directory

CREATE DIRECTORY my directoryO, my directoryl, my directory2

create two directories named "my subdirectoryO" and "my subdirectoryl" within the directory
"my directory0"

CREATE DIRECTORY my directory0/my subdirectoryO, my directory0/my subdirectoryl

show (i.e. get) directory names within the current working directory (should be
"my directory0", "my directoryl" and "my directory2")

SHOW DIRECTORY

show (i.e. get) directory names within directory "my directory0" (should be
"my subdirectory0" and "my subdirectoryl")

SHOW DIRECTORY my directory0/

check the existence of a directory named "my directory0" within the current working directory
(should be "my directory0" - i.e. it exists)

SHOW DIRECTORY my directory0

6.7.30 SHOW FILE

Syntax

SHOW FILE [object_name] [LIKE regular_expression [DEEP deep_value [, deep_value]*]]
[post_processing_option [post_processing_option]*]
[output_redirecting_option]

Description

Show (i.e. get) file names within a directory named object_name or check the existence of a file named object_name. If
the keyword LIKE is specified, only files with names complying with a regular expression named regular_expression will be

returned (in HDFq|l, regular expressions are the ones specified by PCRE which closely follow PERL5 syntax — please refer to

Version 2.4.0 Page 304 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

http://www.pcre.org and http://perldoc.perl.org/perire.html for additional information). As a general rule, in case
regular_expression is composed of spaces, special characters or reserved keywords (e.g. SELECT), it should be surrounded
by double-quotes (“). Otherwise, if it is not surrounded by double-quotes, file names will not be returned and an error is
raised. If regular_expression includes “**”, recursive search is performed (i.e. HDFqgl will search in all existing directories
and subdirectories for file names). To limit the recursiveness, the keyword DEEP may be specified along with a value

deep_value representing the maximum recursiveness limit.

Parameter(s)

object_name — optional string that specifies the name of the directory whose file names are to be obtained or the name of
the file to check for its existence. If object_name is not specified, all file names within the current working directory are

returned. Otherwise, if it is specified, one of the following behaviors applies:
e Ifit ends with “/”, object_name will be treated as a directory and all file names within this directory are returned.

e If it does not end with “/”, object_name will be checked for its existence as a file. If it exists, object_name is returned;

otherwise, if it does not exist, an error is raised.

regular_expression — optional string that specifies the regular expression which only names of files that comply with it are

returned. If regular_expression includes “**”, recursive search is performed.

deep_value — optional integer that specifies the maximum recursiveness limit (i.e. how deep recursive search is

performed).

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

The file names within a directory or the existence of a file as an HDFQL_VARCHAR.

Example(s)

create three HDF5 files named "my file0.h5", "my filel.h5" and "my file2.h5" within the

Version 2.4.0 Page 305 of 346

http://www.pcre.org/
http://perldoc.perl.org/perlre.html

Hierarchical Data Format query language (HDFql) Reference Manual

current working directory

CREATE FILE my file0O.h5, my filel.h5, my file2.h5

create two HDF5 files named "my file3.h5" and "my filed4.h5" within a directory named
"my directory"

CREATE FILE my directory/my file3.h5, my directory/my file4.hb

show (i.e. get) file names within the current working directory (should be "my file0O.h5",
"my filel.h5" and "my file2.h5")
SHOW FILE

show (i.e. get) file names within directory "my directory" (should be "my file3.h5" and
"my file4.h5")
SHOW FILE my directory/

check the existence of a file named "my file0.h5" within the current working directory
(should be "my file0O.h5" - i.e. it exists)
SHOW FILE my file(O.hb

6.7.31 SHOW EXECUTE STATUS

Syntax

SHOW EXECUTE STATUS [BY NAME]
[post_processing_option [post_processing_option]*]
[output_redirecting_option]

Description

Show (i.e. get) status of the last executed operation.

Parameter(s)

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

Version 2.4.0 Page 306 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

If the BY NAME option is not specified, it returns the status of the last executed operation as an HDFQL_INT. Otherwise, if

it is specified, it returns the status of the last executed operation as an HDFQL_VARCHAR.

Example(s)

show (i.e. get) current working directory (this operation will succeed since it 1is
syntactically correct)

SHOW USE DIRECTORY

show (i.e. get) status of the last executed operation (should be 0 — i.e. HDFQL SUCCESS)
SHOW EXECUTE STATUS

show (i.e. get) current working directory (this operation will fail since it is syntactically
incorrect due to a typo in "SHOWX")
SHOWX USE DIRECTORY

show (i.e. get) status of the last executed operation (should be -1 — i.e. HDFQL ERROR PARSE)
SHOW EXECUTE STATUS

6.7.32 SHOW LIBRARY BOUNDS

Syntax

SHOW [USE FILE] LIBRARY BOUNDS [FROM | TO] [BY NAME]
[post_processing_option [post_processing_option]*]
[output_redirecting_option]

Description

Show (i.e. get) library bound values for creating or opening HDF5 files. If neither the keyword FROM nor TO is specified, all

library bound values (i.e. from and to) are returned. To return a specific library bound value, the keyword FROM or TO

Version 2.4.0 Page 307 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

must be specified. In case the keyword USE FILE is not specified, the library bound values returned refers to creating or

opening files by default. Otherwise, if it is specified, the library bound values of the file currently in use are returned.

Parameter(s)

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

If the BY NAME option is not specified, it returns the library bound values for creating or opening HDF5 files as an
HDFQL_INT, which can be HDFQL_EARLIEST, HDFQL_LATEST and/or HDFQL_VERSION_18 depending on whether the
library bound values is earliest, latest and/or version 1.8 respectively. Otherwise, if it is specified, it returns the library
bound values for creating or opening files as an HDFQL_VARCHAR, which can either be “EARLIEST”, “LATEST” and/or
“v18”.

Example(s)

show (i.e. get) library bound values from (i.e. lower bound) and to (i.e. upper bound)
(should be EARLIEST and LATEST - i.e. default values defined by the HDF5 library)
SHOW LIBRARY BOUNDS

show (i.e. get) library bound value from (i.e. lower bound) (should be EARLIEST)
SHOW LIBRARY BOUNDS FROM

show (i.e. get) library bound value to (i.e. upper bound) (should be LATEST)
SHOW LIBRARY BOUNDS TO

set library bound from (i.e. lower bound) to LATEST (the library bound to — i.e. upper bound
- remains intact) for subsequent usage (i.e. creating or opening HDF5 files)

SET LIBRARY BOUNDS FROM LATEST

show (i.e. get) library bound values from (i.e. lower bound) and to (i.e. upper bound)
(should be LATEST and LATEST)
SHOW LIBRARY BOUNDS

Version 2.4.0 Page 308 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

set both library bounds from (i.e. lower bound) and to (i.e. upper bound) to DEFAULT for
subsequent usage (i.e. creating or opening HDF5 files)

SET LIBRARY BOUNDS FROM DEFAULT TO DEFAULT

show (i.e. get) library bound values from (i.e. lower bound) and to (i.e. upper bound)
(should be EARLIEST and LATEST - i.e. default values defined by the HDF5 library)
SHOW LIBRARY BOUNDS

use (i.e. open) an HDF5 file named "my file(0.h5" with library bounds from (i.e. lower bound)
and to (i.e. upper bound) set to EARLIEST and LATEST respectively
USE FILE my file0.h5

show (i.e. get) library bound value from (i.e. lower bound) (should be EARLIEST)
SHOW USE FILE LIBRARY BOUNDS FROM

show (i.e. get) library bound value to (i.e. upper bound) (should be LATEST)
SHOW USE FILE LIBRARY BOUNDS TO

set library bound from (i.e. lower bound) to LATEST (the library bound to - i.e. upper bound
- remains intact) for subsequent usage (i.e. creating or opening HDF5 files)

SET LIBRARY BOUNDS FROM LATEST

use (i.e. open) an HDF5 file named "my filel.h5" with both library bounds from (i.e. lower
bound) and to (i.e. upper bound) set to LATEST respectively
USE FILE my filel.hb

show (i.e. get) library bound values from (i.e. lower bound) and to (i.e. upper bound) of the
file currently in use (should be LATEST and LATEST)
SHOW USE FILE LIBRARY BOUNDS

use (i.e. open) an HDF5 file named "my file2.h5" with library bounds from (i.e. lower bound)
and to (i.e. upper bound) set to EARLIEST (i.e. default value defined by the HDF5 library) and
LATEST respectively

USE FILE my file2.h5 LIBRARY BOUNDS FROM DEFAULT

show (i.e. get) library bound values from (i.e. lower bound) and to (i.e. upper bound) of the
file currently in use (should be EARLIEST and LATEST)
SHOW USE FILE LIBRARY BOUNDS

Version 2.4.0 Page 309 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

6.7.33 SHOW CACHE

Syntax
SHOW [[USE] FILE | DATASET] CACHE [SLOTS | SIZE | PREEMPTION]
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) cache parameter values for accessing HDF5 files or datasets. If neither the keyword SLOTS, SIZE nor
PREEMPTION is specified, all cache parameter values (i.e. for slots, size and preemption) are returned. To return a specific
cache parameter value, the keyword SLOTS, SIZE or PREEMPTION must be specified. If neither the keyword FILE, USE FILE
nor DATASET is specified, the cache parameters returned refers to files by default (optionally, the keyword FILE may be
specified to make the purpose of this operation clearer). To explicitly return cache parameters of datasets or the file

currently in use, the keyword DATASET or USE FILE must be specified.

Parameter(s)

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

The cache parameter values for accessing HDF5 files or datasets as an HDFQL_COMPOUND (when returning all cache
parameter values), HDFQL_BIGINT (when returning the slots or size cache parameter value only) or HDFQL_DOUBLE

(when returning the preemption cache parameter value only).

Example(s)

show (i.e. get) cache parameter values for accessing HDF5 files (should be 521, 1048576,
0.75)

Version 2.4.0 Page 310 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

SHOW CACHE

show (i.e. get) cache preemption value for accessing HDF5 files (should be 0.75)
SHOW CACHE PREEMPTION

show (i.e. get) cache parameter values for accessing HDF5 files (should be 521, 1048576,
0.75)
SHOW FILE CACHE

show (i.e. get) cache slots value for accessing HDF5 datasets (should be 521)
SHOW DATASET CACHE SLOTS

use (i.e. open) an HDF5 file named "my file0.h5" with cache parameters values previously set
(i.e. with slots, size and preemption values of 521, 1048576 and 0,75 respectively)

USE FILE my file0.h5

show (i.e. get) cache parameter values for accessing the HDF5 file currently in use (should
be 521, 1048576, 0,75)
SHOW USE FILE CACHE

use (i.e. open) an HDF5 file named "my filel.hb5" with cache slots, size and preemption values
of 1523, 262144 and 0.6 respectively
USE FILE my filel.h5 CACHE SLOTS

!4 PREEMPTION 0.0

3 SIZE “06-

show (i.e. get) cache parameter values for accessing the HDF5 file currently in use (should
be 1523, 262144, 0.6)
SHOW USE FILE CACHE

use (i.e. open) an HDF5 file named "my file2.h5" with a cache preemption value of 0.9

USE FILE my file2.h5 CACHE PREEMPTION (.9

show (i.e. get) cache parameter values for accessing the HDF5 file currently in use (should
be 521, 1048576, 0.9)
SHOW USE FILE CACHE

6.7.34 SHOW ATOMIC

Syntax
SHOW [USE FILE] ATOMIC [BY NAME]
[post_processing_option [post_processing_option]*]

Version 2.4.0 Page 311 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

[output_redirecting_option]

Description

Show (i.e. get) atomicity for accessing HDF5 files in an MPI environment. In case the keyword USE FILE is not specified, the
atomicity returned refers to files that are subsequently opened. Otherwise, if it is specified, the atomicity of the file

currently in use is returned.

Parameter(s)

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

If the BY NAME option is not specified, it returns the status of the atomicity for accessing HDF5 files as an HDFQL_INT,
which can either be HDFQL_ENABLED or HDFQL_DISABLED depending on whether the atomicity for accessing files is
enabled or disabled respectively. Otherwise, if it is specified, it returns the atomicity for accessing files as an

HDFQL_VARCHAR, which can either be “ENABLED” or “DISABLED".

Example(s)

enable atomicity for accessing HDF5 files in an MPI environment

SET ATOMIC ENABLE

show (i.e. get) atomicity for accessing HDF5 files in an MPI environment (should be 0 - i.e.
HDFQL ENABLED)
SHOW ATOMIC

use (i.e. open) an HDF5 file named "my file0O.h5" with atomicity for accessing it in an MPI
environment

USE FILE my file(O.h5 IN PARALLEL

show (i.e. get) atomicity of the HDF5 file currently in use in an MPI environment (should be

0 - i.e. HDFQL ENABLED)

Version 2.4.0 Page 312 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

SHOW USE FILE ATOMIC

disable atomicity for accessing HDF5 files in an MPI environment

SET ATOMIC DISABLE

show (i.e. get) atomicity for accessing HDF5 files in an MPI environment (should be -1 - i.e.
HDFQL DISABLED)
SHOW ATOMIC

use (i.e. open) an HDF5 file named "my filel.h5" without atomicity for accessing it in an MPI
environment

USE FILE my filel.h5 IN PARALLEL

show (i.e. get) atomicity of the HDF5 file currently in use in an MPI environment (should be
-1 - i.e. HDFQL DISABLED)
SHOW USE FILE ATOMIC

use (i.e. open) an HDF5 file named "my file2.h5" with atomicity for accessing it in an MPI
environment

USE FILE my file2.h5 IN ATOMIC PARALLEL

show (i.e. get) atomicity of the HDF5 file currently in use in an MPI environment (should be
0 - i.e. HDFQL ENABLED)
SHOW USE FILE ATOMIC

6.7.35 SHOW EXTERNAL LINK PREFIX

Syntax

SHOW EXTERNAL LINK PREFIX
[post_processing_option [post_processing_option]*]
[output_redirecting_option]

Description

Show (i.e. get) prefix to prepend to file names stored in HDF5 external links.

Version 2.4.0 Page 313 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

The prefix to prepend to file names stored in HDF5 external links as an HDFQL_VARCHAR or nothing (in case no prefix is

specified).

Example(s)

set external link prefix to "/target"

SET EXTERNAL LINK PREFIX /target

show (i.e. get) external link prefix (should be "/target")
SHOW EXTERNAL LINK PREFIX

set external link prefix to default (i.e. empty)
SET EXTERNAL LINK PREFIX DEFAULT

show (i.e. get) external link prefix (should be empty)
SHOW EXTERNAL LINK PREFIX

6.7.36 SHOW FLUSH

Syntax
SHOW FLUSH [BY NAME]
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Version 2.4.0 Page 314 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Show (i.e. get) status of the automatic flushing.

Parameter(s)

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

If the BY NAME option is not specified, it returns the status of the automatic flushing as an HDFQL_INT, which can either
be HDFQL_GLOBAL, HDFQL_LOCAL or HDFQL_DISABLED depending on whether the automatic flushing of the entire virtual
HDF5 file (global) or only the HDF5 file (local) currently in use is enabled or disabled respectively. Otherwise, if it is
specified, it returns the status of the automatic flushing as an HDFQL_VARCHAR, which can either be “GLOBAL”, “LOCAL”
or “DISABLED”.

Example(s)

enable automatic flushing of the entire virtual HDF5 file (global) currently in use
SET FLUSH ENABLE

show (i.e. get) status of the automatic flushing (should be 1 - i.e. HDFQL GLOBAL)
SHOW FLUSH

enable automatic flushing of only the HDF5 file (local) currently in use
SET FLUSH LOCAL ENABLE

show (i.e. get) status of the automatic flushing (should be 2 - i.e. HDFQL LOCAL)
SHOW FLUSH

disable automatic flushing of the entire virtual HDF5 file (global) or only the HDF5 file
(local) currently in use

SET FLUSH DISABLE

show (i.e. get) status of the automatic flushing (should be -1 — i.e. HDFQL DISABLED)

Version 2.4.0 Page 315 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

SHOW FLUSH

6.7.37 SHOW THREAD

Syntax
SHOW [MAX] THREAD
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) number of (CPU) threads to use when executing operations that support parallelism. In case the keyword
MAX is not specified, the number of (CPU) threads returned refers to the number that may have been set through the SET
THREAD operation. Otherwise, if it is specified, the maximum number of (CPU) cores that the machine possesses is

returned.

Parameter(s)

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

The number of (CPU) threads to use when executing operations that support parallelism as an HDFQL_INT.

Example(s)

set number of (CPU) threads (to use when executing operations that support parallelism) to 2

SET THREAD

Version 2.4.0 Page 316 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

show (i.e. get) number of (CPU) threads (to use when executing operations that support
parallelism) (should be 2)
SHOW THREAD

set number of (CPU) threads (to use when executing operations that support parallelism) to 8

SET THREAD

show (i.e. get) number of (CPU) threads (to use when executing operations that support
parallelism) (should be 8)
SHOW THREAD

set number of (CPU) threads (to use when executing operations that support parallelism) to
the maximum number of (CPU) cores that the machine possesses

SET THREAD MAX

show (i.e. get) number of (CPU) threads (to use when executing operations that support
parallelism) (should be the maximum number of (CPU) cores that the machine possesses)

SHOW THREAD

6.7.38 SHOW PLUGIN PATH

Syntax
SHOW PLUGIN PATH
[post_processing_option [post_processing_option]*]

[output_redirecting_option]

Description

Show (i.e. get) path where plugins (in the form of shared libraries) are searched for and dynamically loaded by

HDFql/HDF5 library.

Parameter]s[

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

Version 2.4.0 Page 317 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

The path where plugins (in the form of shared libraries) are searched for and dynamically loaded by HDFql/HDF5 library as
an HDFQL_VARCHAR.

Example(s)

set path where plugins (in the form of shared libraries) are searched for and dynamically
loaded by HDFql/HDF5 library to "/home/dummy" and "/usr/l1ib"
SET PLUGIN PATH /home/dummy, /usr/1l1ib

show (i.e. get) path where plugins (in the form of shared libraries) are searched for and
dynamically loaded by HDFql/HDF5 library (should be '"/home/dummy" and "/usr/l1ib")
SHOW PLUGIN PATH

set path where plugins (in the form of shared libraries) are searched for and dynamically
loaded by HDFql/HDF5 library to default
SET PLUGIN PATH DEFAULT

show (i.e. get) path where plugins (in the form of shared libraries) are searched for and
dynamically by HDFql/HDF5 library (should be ".")
SHOW PLUGIN PATH

6.7.39 SHOW DEBUG

Syntax

SHOW DEBUG [BY NAME]
[post_processing_option [post_processing_option]*]
[output_redirecting_option]

Description

Show (i.e. get) status of the debug mechanism.

Version 2.4.0 Page 318 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

post_processing_option — optional option that transforms the result set according to the programmer’s needs such as
ordering or truncating (please refer to the section POST-PROCESSING for additional information). Multiple post processing

options are separated with a space.

output_redirecting_option — optional option that specifies a (text, binary or Excel) file or memory (i.e. user-defined
variable) to write the result set into (please refer to the subsection INTO for additional information). If not specified, the

cursor in use is populated with the result set instead (please refer to the chapter CURSOR for additional information).
Return

If the BY NAME option is not specified, it returns the status of the debug mechanism as an HDFQL_INT, which can either
be HDFQL _ENABLED or HDFQL_DISABLED depending on whether the debug mechanism is enabled or disabled
respectively. Otherwise, if it is specified, it returns the status of the debug mechanism as an HDFQL_VARCHAR, which can
either be “ENABLED” or “DISABLED”.

Example(s)

enable debug mechanism (i.e. debug messages will be displayed when executing operations)

SET DEBUG ENABLE

show (i.e. get) status of the debug mechanism (should be 0 — i.e. HDFQL ENABLED)
SHOW DEBUG

disable debug mechanism (i.e. debug messages will not be displayed when executing operations)

SET DEBUG DISABLE

show (i.e. get) status of the debug mechanism (should be -1 - i.e. HDFQL DISABLED)
SHOW DEBUG

6.8 MISCELLANEOUS

This section assembles all remaining HDFgl operations that — due to their heterogeneous nature and functionality — do not

fit in the previous sections about the language for data definition, manipulation, querying and introspection.

Version 2.4.0 Page 319 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

6.8.1 USE DIRECTORY

Syntax

USE DIRECTORY directory_name

Description

Use (i.e. open) a directory named directory_name for subsequent operations. This will change the current working

directory to directory_name thus avoiding the need to explicitly provide the full path of this directory when working within

it (i.e. subsequent operations are done relatively to this directory, unless otherwise specified). If directory_name was not

found or could not be opened (due to unknown/unexpected reasons), an error is raised.

Parameterls[

directory_name — mandatory string that specifies the name of the directory to use for subsequent operations.
Return

Nothing

Example(s)

set working directory currently in use to "/"

USE DIRECTORY /

show (i.e. get) current working directory (should be "/")

SHOW USE DIRECTORY

create a directory named "my directory"

CREATE DIRECTORY my directory

set working directory currently in use to "my directory" (more precisely "/my directory")

USE DIRECTORY my directory

show (i.e. get) current working directory (should be "/my directory")

SHOW USE DIRECTORY

create two directories named "my subdirectory0" and "my subdirectoryl" (both directories will

be created in directory "/my directory")

CREATE DIRECTORY my subdirectory(0, my subdirectoryl

Version 2.4.0 Page 320 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

set directory currently in use to "my subdirectory0" (more precisely
"/my directory/my subdirectory0")
USE DIRECTORY my subdirectory(

show (i.e. get) current working directory (should be "/my directory/my subdirectory0")

SHOW USE DIRECTORY

set directory currently in use to "my subdirectoryl" located one level up (more precisely
"/my directory/my subdirectoryl")
USE DIRECTORY ../my subdirectoryl

show (i.e. get) current working directory (should be "/my directory/my subdirectoryl")

SHOW USE DIRECTORY

set directory currently in use two levels up (should be "/")

USE DIRECTORY ../..

show (i.e. get) current working directory (should be "/")

SHOW USE DIRECTORY

6.8.2 USE FILE

Syntax
USE [READONLY] FILE file_name [, file_name]* [IN [ATOMIC] PARALLEL]
[LIBRARY BOUNDS [FROM {EARLIEST | LATEST | V18 | DEFAULT}] [TO {LATEST | V18 | DEFAULT}]]

[CACHE [SLOTS {slots_value | DEFAULT}] [SIZE {size_value | DEFAULT}] [PREEMPTION {preemption_value |
DEFAULT}]]

Description

Use (i.e. open) an HDF5 file named file_name for subsequent operations. Multiple files can be opened at once by
separating these with a comma (,). If file_name was not found or could not be opened (due to unknown/unexpected
reasons), no subsequent files are opened, and an error is raised. By default, the file is opened with read/write permissions.
To open a file with read only permission, the keyword READONLY should be specified (any subsequent attempt to write

into this file will raise an error). HDFql tracks opened files in a stack fashion (i.e. LIFO) meaning that the most recently

Version 2.4.0 Page 321 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

opened file is the one currently in use. In case the keyword IN PARALLEL* is specified, HDFql opens the file in parallel
using all the MPI processes specified upon launching the program (that employs HDFql). In case the keyword ATOMIC is
specified, all file access operations will appear atomic, guaranteeing sequential consistency in an MPI environment (i.e. the
operations will behave as though they were performed in a serial order consistent with the program order). In case the
keyword LIBRARY BOUNDS is specified, HDFgl opens the file using these bounds (instead of the library bounds that may
have been set through the operation SET LIBRARY BOUNDS). In case the keyword CACHE is specified, HDFgl opens the file
using cache parametrized with the slots value, size_value and preemption_value values (instead of the file cache

parameters that may have been set through the operation SET CACHE).

Parameter(s)

file_name — mandatory string that specifies the name of the HDF5 file to use (i.e. open) for subsequent operations.

Multiple files are separated with a comma (,).

slots_value — optional integer that specifies the number of chunk slots in the raw data chunk cache for accessing the HDF5
file. Due to the hashing strategy, its value should ideally be a prime number. In case the keyword DEFAULT is specified, its
value is 521 (i.e. default value defined by the HDF5 library). In case the keyword SLOTS is not specified, its current value

remains intact.

size_value — optional integer that specifies the total size of the raw data chunk cache in bytes for accessing the HDFS5 file.
In case the keyword DEFAULT is specified, its value is 1048576 (i.e. 1 MB — default value defined by the HDF5 library). In

case the keyword SIZE is not specified, its current value remains intact.

preemption_value — optional float that specifies the chunk preemption policy for accessing the HDF5 file. Its value must be
between 0 and 1. It indicates the weighting according to which chunks which have been fully read or written are penalized
when determining which chunks to flush from cache. In case the keyword DEFAULT is specified, its value is 0.75 (i.e.
default value defined by the HDF5 library). In case the keyword PREEMPTION is not specified, its current value remains

intact.
Return

Nothing

4% This option is not allowed in Windows as HDFql does not support the parallel HDF5 (PHDF5) library in this platform currently.

Version 2.4.0 Page 322 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

use (1.

USE FILE

use (1.

USE FILE

use (1.

e. open) an HDF5 file named "my file0.h5" located in the current working directory

my file0O.hb

e. open) an HDF5 file named "my filel.h5" located in a root directory named "data"

/data/my filel.h5

e. open) two HDF5 files named "my file2.h5" and "my file3.h5" with read only

permissions (both files are located in the current working directory)

USE READONLY FILE my file2.h5, my file3.h5

use (1.

e. open) an HDF5 file named "my file4.h5" located in the parent directory with the

latest version of the HDF5 library

USE FILE

use (1.

../my file4.h5 LIBRARY BOUNDS FROM LATEST TO LATEST

e. open) an HDF5 file named "my file5.h5" located in the current working directory

with cache slots, size and preemption values of 1523, 262144 and 0.6 respectively

USE FILE my file5.h5 CACHE SLOTS 1523 SIZE 262144 PREEMPTION (.6

use (i.e. open) an HDF5 file named "my file6.h5" located in the current working directory
with the earliest version of the HDF5 library and a cache preemption value of 0.9

USE FILE my file6.h5 LIBRARY BOUNDS FROM EARLIEST CACHE PREEMPTION (.9

use (i.e. open) an HDF5 file named "my file7.h5" located in the current working directory in
parallel (i.e. all the MPI processes specified upon launching the program (that employs HDFql)
will collectively open the file — e.g. if the program is launched as "mpiexec -n 4 my program",

all the four MPI processes will participate in the opening of the file)

USE FILE

use (1.

parallel
USE FILE

my file7.h5 IN PARALLEL

e. open) an HDF5 file named "my file8.h5" located in the current working directory in
with atomicity for accessing it

my file8.h5 IN ATOMIC PARALLEL

6.8.3 USE GROUP

Syntax

USE GROUP group_name

Version 2.4.0

Page 323 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Description

Use (i.e. open) an HDF5 group named group_name for subsequent operations. This will change the current working group
to group_name thus avoiding the need to explicitly provide the full path of this group when working within it (i.e.
subsequent operations are done relatively to this group, unless otherwise specified). If group_name was not found or
could not be opened (due to unknown/unexpected reasons), an error is raised. Upon using (i.e. opening) an HDF5 file, the

group currently in use is “/” (i.e. the root of the HDF5 file).

Parameter(s)

group_name — mandatory string that specifies the name of the HDF5 group to use (i.e. open) for subsequent operations.
Besides the name of the group to be used for subsequent operations, group_name may be composed of special tokens

(that are not part of the name of the group itself). These are:

e “/”to separate multiple groups. Example: “USE GROUP my_group/my_subgroup/my_subsubgroup”.

o “"torefer to the group currently in use. Example: “USE GROUP .”.

e “.”togoupone level from the group currently in use. Example: “USE GROUP ..”.
Return

Nothing

Example(s)

set group currently in use to "/" (i.e. the root of the HDF5 file)
USE GROUP /

create two HDF5 groups named "my group0" and "my groupl" (both groups will be created in
group u/")
CREATE GROUP my group(O, my groupl

create an HDF5 dataset named "my datasetO" of data type double (it will be created in group
"/")

CREATE DATASET my dataset(O AS DOUBLE

set group currently in use to "my group0" (more precisely "/my group0")

USE GROUP my groupO

create an HDF5 dataset named "my datasetl" of data type double (it will be created in group

Version 2.4.0 Page 324 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

"/my group0")
CREATE DATASET my datasetl AS DOUBLE

create an HDF5 group named "my subgroup0" (it will be created in group "/my group0")
CREATE GROUP my subgroup(

create an HDF5 dataset named "my dataset2" of data type variable-length double (it will be
created in group "/my group0O/my subgroup0")
CREATE DATASET my subgroup0/my dataset2 AS VARDOUBLE

create an HDF5 attribute named "my attributeO" of data type float (it will be created in
group "/")
CREATE ATTRIBUTE ../my attribute(O AS FLOAT

set group currently in use to "my subgroup0" (more precisely "/my group0/my subgroup0")

USE GROUP my subgroup0

create an HDF5 attribute named "my attributel" of data type char (it will be created in group
"/my groupl")
CREATE ATTRIBUTE ../../my groupl/my attributel AS CHAR

create an HDF5 attribute named "my attribute2" of data type variable-length char (it will be
created in group "/")

CREATE ATTRIBUTE /my attribute2 AS VARCHAR

set group currently in use to "." (the group currently in use will not change - i.e. it
remains "/my group0/my subgroup0" - as "." refers to the current working group itself)
USE GROUP .

create an HDF5 attribute named "my attribute3" of data type int (it will be created in group
"/my group0/my_subgroup0")
CREATE ATTRIBUTE my attribute3 AS INT

set group currently in use one level up (should be "/my groupO")

USE GROUP ..

create an HDF5 attribute named "my attribute4" of data type short (it will be created in
group "/my group0")
CREATE ATTRIBUTE my attribute4 AS SMALLINT

Version 2.4.0 Page 325 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

6.8.4 FLUSH

Syntax

FLUSH [ALL] [GLOBAL | LOCAL]

Description

Flush the entire virtual HDF5 file (global) or the specific HDF5 file (local) currently in use. All buffered data will be written
into the disk. In case the keyword ALL is specified, all files in use (i.e. open) are flushed. If neither the keyword GLOBAL nor
LOCAL is specified, a global flush is performed by default (optionally, the keyword GLOBAL may be specified to make the
purpose of this operation clearer). To perform a local flush, the keyword LOCAL must be specified. If no file is currently

used, no flush is performed, and an error is raised.
Parameter(s)

None

Return

Nothing

Example(s)

flush the entire virtual HDF5 file (global) currently in use
FLUSH

flush the entire virtual HDF5 file (global) currently in use
FLUSH GLOBAL

flush only the HDF5 file (local) currently in use
FLUSH LOCAL

flush all the entire virtual HDF5 files (global) in use (i.e. open)
FLUSH ALL GLOBAL

Version 2.4.0 Page 326 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

6.8.5 CLOSE FILE

Syntax

CLOSE FILE [file_name [, file_name]*]

Description

Close a certain HDF5 file used (i.e. opened) or the HDF5 file currently in use. Multiple files can be closed at once by
separating these with a comma (,). If no file is currently used or if file_name is not in use (i.e. open) or it is not possible to
close it (due to unknown/unexpected reasons), no subsequent files are closed, and an error is raised. Before closing a file,
all buffered data will be written into it. After closing a file, the file in use will be the one most recently used before the

closed file.

Parameter(s)

file_name — optional string that specifies the name of the HDF5 file to close. Multiple files are separated with a comma (,).
If file_name is specified, it will be closed regardless of whether it is the file currently in use or not. Otherwise, if it is not
specified, the file currently in use will be closed. Of note, if file_name is specified it must match exactly the name of the

file when it was opened (otherwise no file will be closed and an error is raised).
Return

Nothing

Example(s)

use (i.e. open) four HDF5 files named "my file(0.h5", "my filel.h5", "my file2.h5" and
"my file3.h5"
USE FILE my file(O.h5, my filel.h5, my fileZ2.h5, my file3.hb

show (i.e. get) HDF5 file currently in use (i.e. open) (should be "my file3.h5")
SHOW USE FILE

close HDF5 file currently in use (i.e. file "my file3.h5")
CLOSE FILE

show (i.e. get) HDF5 file currently in use (i.e. open) (should be "my file2.h5")
SHOW USE FILE

Version 2.4.0 Page 327 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

close HDF5 file "my filel.h5"
CLOSE FILE my filel.hb

show (i.e. get) HDF5 file currently in use (i.e. open) (should be "my file2.h5")
SHOW USE FILE

close HDF5 file currently in use (i.e. file "my file2.h5")
CLOSE FILE

show (i.e. get) HDF5 file currently in use (i.e. open) (should be "my file0.h5")
SHOW USE FILE

close HDF5 file currently in use (i.e. file "my file0.h5")
CLOSE FILE

show (i.e. get) HDF5 file currently in use (i.e. open) (should be empty)
SHOW USE FILE

6.8.6 CLOSE ALL FILE

Syntax

CLOSE ALL FILE

Description

Close all HDFS5 files in use. All buffered data will be written into the respective files before closing them. If no file is
currently used or if it is not possible to close a file (due to unknown/unexpected reasons), no subsequent files are closed,

and an error is raised.

Parameter]s[

None
Return

Nothing

Version 2.4.0 Page 328 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

use (i.e. open) three HDF5 files named "my file(0.h5", "my filel.h5" and "my file2.h5"
USE FILE my file(O.h5, my filel.h5, my fileZ.hb

show (i.e. get) all HDF5 files in use (i.e. open) (should be "my file2.h5", "my filel.h5",
"my file0O.h5")
SHOW ALL USE FILE

close all HDF5 files in use (i.e. open)

CLOSE ALL FILE

show (i.e. get) all HDF5 files in use (i.e. open) (should be empty)
SHOW ALL USE FILE

6.8.7 CLOSE GROUP

Syntax

CLOSE GROUP

Description

Close the HDF5 group currently in use. After closing it, the group currently in use will be “/” (i.e. the root of the HDFS5 file).

If no file is currently used, no group is closed, and an error is raised.
Parameter(s)

None

Return

Nothing

Example(s)

use (i.e. open) an HDF5 file named "my file.h5"
USE FILE my file.h5

show (i.e. get) current working group (should be "/")

Version 2.4.0 Page 329 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

SHOW USE GROUP

create an HDF5 group named "my group"

CREATE GROUP my group

set group currently in use to "my group" (more precisely "/my group")

USE GROUP my group

show (i.e. get) current working group (should be "/my group")
SHOW USE GROUP

create an HDF5 dataset named "my dataset" of data type double (more precisely
"/my group/my dataset")
CREATE DATASET my dataset AS DOUBLE

set group currently in use to "/" (i.e. the root of the HDF5 file)
CLOSE GROUP

show (i.e. get) current working group (should be "/")

SHOW USE GROUP

create an HDF5 dataset named "my dataset" of data type int (more precisely "/ my dataset")
CREATE DATASET my dataset AS INT

6.8.8 SET LIBRARY BOUNDS

Syntax

SET LIBRARY BOUNDS [FROM {EARLIEST | LATEST | V18 | DEFAULT}] [TO {LATEST | V18 | DEFAULT}]

Description

Set library bounds®° for creating and opening HDFS5 files. In other words, it sets bounds on library versions to be used when
creating objects (the object format versions are determined indirectly from the HDF5 library versions specified in the call).
All files that are subsequently created or opened (through the operations CREATE FILE or USE FILE) will use the default

bound values defined by the HDF5 library or user-defined bound values. These bounds are:

50 By default (i.e. upon initialization of the HDFql library), the library bounds from (i.e. lower bound) and to (i.e. upper bound) are set to EARLIEST and
LATEST respectively.

Version 2.4.0 Page 330 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

e From - lower bound on the range of possible library versions used to create the object. The library version indirectly
specifies the earliest object format version that can be used when creating objects in an HDF5 file. In case the
keyword DEFAULT is specified, its value is EARLIEST (i.e. default value defined by the HDF5 library). In case the

keyword FROM is not specified (i.e. the lower bound), its current value remains intact.

e To — upper bound on the range of possible library versions used to create the object. The library version indirectly
specifies the latest object format version that can be used when creating objects in an HDF5 file. In case the keyword
DEFAULT is specified, its value is LATEST (i.e. default value defined by the HDF5 library). In case the keyword TO is not

specified (i.e. the upper bound), its current value remains intact.
Parameter(s)
None
Return

Nothing

Example(s)

use (i.e. open) an HDF5 file named "my file(0.h5" with library bounds from (i.e. lower bound)
and to (i.e. upper bound) set to EARLIEST and LATEST respectively (default values defined by
the HDF5 library)

USE FILE my file(O.h5

set library bound from (i.e. lower bound) to LATEST (the library bound to - i.e. upper bound
- remains intact) for subsequent usage (i.e. creating or opening HDF5 files)

SET LIBRARY BOUNDS FROM LATEST

use (i.e. open) an HDF5 file named "my filel.h5" with both library bounds from (i.e. lower
bound) and to (i.e. upper bound) set to LATEST
USE FILE my filel.hb

set library bound to (i.e. upper bound) to V18 (the library bound from - i.e. lower bound -
remains intact) for subsequent usage (i.e. creating or opening HDF5 files)

SET LIBRARY BOUNDS TO V18

use (i.e. open) an HDF5 file named "my file2.h5" with library bounds from (i.e. lower bound)
and to (i.e. upper bound) set to LATEST and V18 respectively
USE FILE my file2.h5

Version 2.4.0 Page 331 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

set both library bounds from (i.e. lower bound) and to (i.e. upper bound) to DEFAULT for
subsequent usage (i.e. creating or opening HDF5 files)

SET LIBRARY BOUNDS FROM DEFAULT TO DEFAULT

use (i.e. open) an HDF5 file named "my file3.h5" with library bounds from (i.e. lower bound)
and to (i.e. upper bound) set to EARLIEST and LATEST respectively (default values defined by
the HDF5 library)

USE FILE my file3.h5

6.8.9 SET CACHE

Syntax

SET [FILE | DATASET] CACHE [SLOTS {slots_value | FILE | DEFAULT}] [SIZE {size_value | FILE | DEFAULT}]
[PREEMPTION {preemption_value | FILE | DEFAULT}]

Description

Set cache parameters®! for accessing HDF5 files or datasets. All files or datasets that are subsequently opened or read
(through the operations USE FILE or SELECT respectively) will use the default cache parameter values defined by the HDF5

library or user-defined cache parameter values. These cache parameters are:
e Slots — number of chunk slots in the raw data chunk cache.

e Size —total size of the raw data chunk cache in bytes.

e Preemption — chunk preemption policy.

If neither the keyword FILE nor DATASET is specified, the setting of the cache parameters refers to files by default
(optionally, the keyword FILE may be specified to make the purpose of this operation clearer). To explicitly set the cache

parameters to datasets, the keyword DATASET must be specified.

Parameter(s)

slots_value — optional integer that specifies the number of chunk slots in the raw data chunk cache for accessing HDF5
files or datasets. Due to the hashing strategy, its value should ideally be a prime number. In case the keyword FILE is

specified, its value will be as defined in the cache slots parameter upon using (i.e. opening) the file. In case the keyword

51 By default (i.e. upon initialization of the HDFql library), the cache parameters slots, size and preemption are set to 521, 1048576 and 0.75 respectively.

Version 2.4.0 Page 332 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

DEFAULT is specified, its value is 521 (i.e. default value defined by the HDF5 library). In case the keyword SLOTS is not

specified, its current value remains intact.

size_value — optional integer that specifies the total size of the raw data chunk cache in bytes for accessing HDF5 files or
datasets. In case the keyword FILE is specified, its value will be as defined in the cache size parameter upon using (i.e.
opening) the file. In case the keyword DEFAULT is specified, its value is 1048576 (i.e. 1 MB — default value defined by the

HDF5 library). In case the keyword SIZE is not specified, its current value remains intact.

preemption_value — optional float that specifies the chunk preemption policy for accessing HDF5 files or datasets. Its value
must be between 0 and 1. It indicates the weighting according to which chunks which have been fully read or written are
penalized when determining which chunks to flush from cache. In case the keyword FILE is specified, its value will be as
defined in the cache preemption parameter upon using (i.e. opening) the file. In case the keyword DEFAULT is specified, its
value is 0.75 (i.e. default value defined by the HDF5 library). In case the keyword PREEMPTION is not specified, its current

value remains intact.
Return

Nothing

Example(s)

use (i.e. open) an HDF5 file named "my file(0.h5" with cache slots, size and preemption values
of 521, 1048576 and 0.75 respectively (default values defined by the HDF5 library)
USE FILE my file(O.h5

set cache slots and preemption values to 2297 and 0.9 respectively (the cache size value
remains intact) for subsequent usage (i.e. opening HDF5 files)

SET CACHE SLOTS PREEMPTION

use (i.e. open) an HDF5 file named "my filel.hb5" with cache slots, size and preemption values
of 2297, 1048576 and 0.9 respectively
USE FILE my filel.hb

set cache slots, size and preemption values to 1523, 262144 and 0.6 respectively for
subsequent usage (i.e. opening HDF5 files)
SET FILE CACHE SLOTS SIZE PREEMPTION

use (i.e. open) an HDF5 file named "my file2.h5" with cache slots, size and preemption values
of 1523, 262144 and 0.6 respectively
USE FILE my fileZ2.h5

Version 2.4.0 Page 333 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

set cache size value to 1048576 (default value defined by the HDF5 library) and preemption
value to 0.4 (the cache slots value remains intact) for subsequent usage (i.e. opening HDF5
files)

SET FILE CACHE SIZE DEFAULT PREEMPTION (.4

use (i.e. open) an HDF5 file named "my file3.h5" with cache slots, size and preemption values
of 1523, 1048576 and 0.4 respectively
USE FILE my file3.h5

select (i.e. read) an HDF5 dataset named "my dataset(0" with cache slots, size and preemption
values of 521, 1048576 and 0.75 respectively (default values defined by the HDF5 library)
SELECT FROM my dataset(

set cache slots and preemption values to 2297 and 0.9 respectively (the cache size value
remains intact) for subsequent selection (i.e. reading HDF5 datasets)

SET DATASET CACHE SLOTS ~”97/ PREEMPTION 0.9

select (i.e. read) an HDF5 dataset named "my datasetl" with cache slots, size and preemption
values of 2297, 1048576 and 0.9 respectively
SELECT FROM my datasetl

set cache slots, size and preemption values to 1523, 262144 and 0.6 respectively for
subsequent selection (i.e. reading HDF5 datasets)

SET DATASET CACHE SLOTS 1523 SIZE “©-]44 PREEMPTION (.06

select (i.e. read) an HDF5 dataset named "my dataset2" with cache slots, size and preemption
values of 1523, 262144 and 0.6 respectively
SELECT FROM my dataset2

set cache size value to 1048576 (default value defined by the HDF5 library) and preemption
value to 0.4 (the cache slots value remains intact) for subsequent selection (i.e. reading HDF5
datasets)

SET DATASET CACHE SIZE DEFAULT PREEMPTION 0.4

select (i.e. read) an HDF5 dataset named "my dataset3" with cache slots, size and preemption
values of 1523, 1048576 and 0.4 respectively
SELECT FROM my dataset3

set cache slots, size and preemption values to 3089, 2048 and 0.85 respectively for
subsequent usage (i.e. opening HDF5 files)

SET FILE CACHE SLOTS 3089 SIZE ~045 PREEMPTION (.85

Version 2.4.0 Page 334 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

set cache slots value to 521 (default value defined by the HDF5 library), size value to 1024,
and preemption value to 0.85 (defined by the cache preemption value for HDF5 files) for
subsequent selection (i.e. reading HDF5 datasets)

SET DATASET CACHE SLOTS DEFAULT SIZE PREEMPTION FILE

select (i.e. read) an HDF5 dataset named "my dataset4" with cache slots, size and preemption
values of 521, 1024 and 0.85 respectively
SELECT FROM my dataset4

6.8.10 SET ATOMIC

Syntax

SET [USE FILE] ATOMIC {ENABLE | DISABLE | DEFAULT}

Description

Set atomicity®? for accessing HDF5 files in an MPI environment to enabled or disabled. All files that are subsequently
opened (through the operation USE FILE) will have access operations performed in an atomic fashion or not accordingly. If
enabled, all file access operations will appear atomic, guaranteeing sequential consistency in an MPI environment (i.e. the
operations will behave as though they were performed in a serial order consistent with the program order). If disabled, no
enforcement of atomic file access will be done. In case the keyword DEFAULT is specified, the atomicity for accessing files
is set to disabled (i.e. equivalent to specifying the keyword DISABLE). In case the keyword USE FILE is specified, subsequent

access operations of the file currently in use will be performed in an atomic fashion or not accordingly.
Parameter(s)

None

Return

Nothing

52 By default (i.e. upon initialization of the HDFql library), the atomicity is set to disabled.

Version 2.4.0 Page 335 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

enable atomicity for accessing HDF5 files in an MPI environment

SET ATOMIC ENABLE

use (i.e. open) an HDF5 file named "my file0O.h5" with atomicity for accessing it in an MPI
environment

USE FILE my file(O.h5 IN PARALLEL

disable atomicity for accessing HDF5 files in an MPI environment

SET ATOMIC DISABLE

use (i.e. open) an HDF5 file named "my filel.h5" without atomicity for accessing it in an MPI
environment

USE FILE my filel.h5 IN PARALLEL

enable atomicity for accessing the HDF5 file currently in use (i.e. file "my filel.h5") in an
MPI environment

SET USE FILE ATOMIC

use (i.e. open) an HDF5 file named "my file2.h5" with atomicity for accessing it in an MPI
environment

USE FILE my file2.h5 IN ATOMIC PARALLEL

6.8.11 SET EXTERNAL LINK PREFIX

Syntax

SET EXTERNAL LINK PREFIX {prefix_value | DEFAULT}

Description

Set prefix® to prepend to file names stored in HDF5 external links. In other words, before resolving a file name stored in
an external link, the prefix prefix_value is prepended to the name. In case the keyword DEFAULT is specified, the prefix to

resolve file names is set to empty (i.e. nothing is prepended).

53 By default (i.e. upon initialization of the HDFql library), the prefix is set to empty (i.e. nothing is prepended).

Version 2.4.0 Page 336 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Parameter(s)

prefix_value — optional string that specifies the prefix to prepend to file names stored in HDF5 external links.
Return

Nothing

Example(s)

set directory currently in use to "/data"

USE DIRECTORY /data

create two HDF5 files named "my file0.h5" and "my filel.h5" in the directory currently in use
(i.e. directory "/data") and in a root directory named "target" respectively

CREATE FILE my file0O.h5, /target/my filel.h5

create an HDF5 dataset named "my dataset" (in file "my filel.h5" located in root directory
"target") of data type float with an initial value of 7.8
CREATE DATASET /target/my filel.h5 my dataset AS FLOAT VALUES(7.8)

use (i.e. open) HDF5 file "my file(0.h5" located in the directory currently in use (i.e.
directory '"/data")
USE FILE my file0.h5

create an HDF5 external link named "my 1link" in file "my file0.h5" to object "my dataset" in
file "my filel.h5"
CREATE EXTERNAL LINK my link TO my filel.h5 my dataset

select (i.e. read) data from object "my link" and populate cursor in use with it (should
raise an error since "my 1link" is a dangling link due to "my filel.h5" being located in
directory "/target" and not in the directory currently in use)

SELECT FROM my link

set external link prefix to "/target"

SET EXTERNAL LINK PREFIX /target

select (i.e. read) data from object "my link" and populate cursor in use with it (should be
7.8)
SELECT FROM my link

Version 2.4.0 Page 337 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

6.8.12 SET FLUSH

Syntax

SET FLUSH {{{GLOBAL | LOCAL] ENABLE} | DISABLE | DEFAULT}

Description

Set automatic flushing®* of the entire virtual HDF5 file (global) or only the HDFS5 file (local) currently in use to enabled or
disabled. If enabled, automatic flushing (i.e. all buffered data is written into the disk) will subsequently occur whenever an
operation modifying the file is executed. If neither the keyword GLOBAL nor LOCAL is specified, automatic global flushing
is set by default (optionally, the keyword GLOBAL may be specified to make the purpose of this operation clearer). To set
automatic local flushing, the keyword LOCAL must be specified. In case the keyword DEFAULT is specified, the automatic

flushing is set to disabled (i.e. equivalent to specifying the keyword DISABLE).

Parameter(s)

None
Return

Nothing

Example(s)

enable automatic flushing of the entire virtual HDF5 file (global) currently in use

SET FLUSH ENABLE

enable automatic flushing of the entire virtual HDF5 file (global) currently in use

SET FLUSH GLOBAL ENABLE

enable automatic flushing of only the HDF5 file (local) currently in use
SET FLUSH LOCAL ENABLE

disable automatic flushing of the entire virtual HDF5 file (global) or only the HDF5 file
(local) currently in use

SET FLUSH DISABLE

54 By default (i.e. upon initialization of the HDFql library), the automatic flushing is set to disabled.

Version 2.4.0 Page 338 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

6.8.13 SET THREAD

Syntax

SET THREAD {thread_number | MAX | DEFAULT}

Description

Set number of (CPU) threads® to use when executing operations that support parallelism. In case the keyword MAX is
specified, the number of (CPU) threads to use is set to the maximum number of (CPU) cores that the machine possesses.
In case the keyword DEFAULT is specified, the number of (CPU) threads to use is set to the maximum number of (CPU)

cores that the machine possesses (i.e. equivalent to specifying the keyword MAX).

Parameterls[

thread_number — optional integer that specifies the number of (CPU) threads to use when executing operations that

support parallelism.
Return

Nothing

Example(s)

set number of (CPU) threads (to use when executing operations that support parallelism) to 2

SET THREAD

select (i.e. read) data from dataset "my dataset" and populate cursor in use with it in
ascending order using 2 (CPU) threads

SELECT FROM my dataset ORDER ASC

set number of (CPU) threads (to use when executing operations that support parallelism) to 8

SET THREAD

select (i.e. read) data from dataset "my dataset" and populate cursor in use with it in
descending order using 8 (CPU) threads
SELECT FROM my dataset ORDER DESC

55 By default (i.e. upon initialization of the HDFql library), the number of (CPU) threads to use is set to the maximum number of (CPU) cores that the
machine possesses.

Version 2.4.0 Page 339 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

set number of (CPU) threads (to use when executing operations that support parallelism) to
the maximum number of (CPU) cores that the machine possesses

SET THREAD MAX

select (i.e. read) data from dataset "my dataset" and populate cursor in use with it in
ascending order using a number of (CPU) threads equivalent to the maximum number of (CPU) cores
that the machine possesses

SELECT FROM my dataset ORDER ASC

6.8.14 SET PLUGIN PATH

Syntax

SET PLUGIN PATH {{path_name [, path_name]*} | DEFAULT}

Description

Set path® where plugins (in the form of shared libraries) are searched for and dynamically loaded by HDFql/HDF5 library.
In other words, to be able to perform certain actions, HDFql/HDF5 library needs to find and dynamically load the
appropriate shared library responsible for the action (e.g. to write a result set into an Excel file, HDFgl needs to find and
dynamically load a shared library named “libxl” which is responsible for handling files of this type). In case the keyword
DEFAULT is specified, the path where plugins are searched for and dynamically loaded by HDFgl/HDF5 library is set to the

“« Il)

working directory currently in use (i.e. “.

Parameter(s)

path_name — mandatory string that specifies the name of the path where plugins (in the form of shared libraries) are

searched for and dynamically loaded by HDFql/HDF5 library. Multiple paths are separated with a comma (,).
Return

Nothing

56 By default (i.e. upon initialization of the HDFq| library), the path where plugins (in the form of shared libraries) are searched for and dynamically loaded
by HDFql/HDFS5 library is set to the working directory currently in use (i.e. “.”).

Version 2.4.0 Page 340 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Example(s)

set path where plugins (in the form of shared libraries) are searched for and dynamically
loaded by HDFql/HDF5 library to "/home/dummy" and "/usr/lib"
SET PLUGIN PATH /home/dummy, /usr/lib

show (i.e. get) path where plugins (in the form of shared libraries) are searched for and
dynamically loaded by HDFgl/HDF5 library (should be "/home/dummy" and "/usr/1ib")
SHOW PLUGIN PATH

set path where plugins (in the form of shared libraries) are searched for and dynamically
loaded by HDFql/HDF5 library to default
SET PLUGIN PATH DEFAULT

show (i.e. get) path where plugins (in the form of shared libraries) are searched for and
dynamically loaded by HDFgl/HDF5 library (should be ".")
SHOW PLUGIN PATH

6.8.15 SET DEBUG

Syntax

SET DEBUG {ENABLE | DISABLE | DEFAULT}

Description

Set debug mechanism®’ to enabled or disabled. If enabled, debug messages will be displayed when executing operations,
which should help the programmer to have a better understanding of the parameters HDFql is receiving, the operation
performed, and the return value of this operation. Additionally, debug messages of the HDF5 library itself are displayed in
case of an error. In case the keyword DEFAULT is specified, the debug mechanism is set to disabled (i.e. equivalent to

specifying the keyword DISABLE).

Parameter(s)

None

57 By default (i.e. upon initialization of the HDFql library), the debug mechanism is set to disabled.

Version 2.4.0 Page 341 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Return

Nothing

Example(s)

enable debug mechanism (i.e. debug messages will be displayed when executing operations)

SET DEBUG ENABLE

disable debug mechanism (i.e. debug messages will not be displayed when executing operations)

SET DEBUG DISABLE

Version 2.4.0 Page 342 of 346

GLOSSARY

Application Programming Interface (API)

An Application Programming Interface (API) specifies how software components should interact with each other. In
practice, an APl comes in the form of a library that includes specifications for functions, data structures, object classes,

constants and variables. A good APl makes it easier to develop a program by providing all the building blocks.

Attribute

An (HDF5) attribute is a metadata object describing the nature and/or intended usage of a primary data object. A primary
data object may be a group, dataset or committed data type. Attributes are assumed to be very small as data objects go,

so storing them as standard (HDF5) datasets would be inefficient.

Cursor

A cursor is a control structure that is used to iterate through the results returned by a query (that was previously
executed). It can be seen as an effective means to abstract the programmer from low-level implementation details of
accessing data stored in specific structures. Besides offering several ways to traverse result sets according to specific
needs, cursors in HDFql also store result sets returned by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION
LANGUAGE (DIL) operations.

Dataset

A (HDF5) dataset is an object composed of a collection of data elements and metadata that stores a description of the
data elements, data layout and all other information necessary to write and read the data. A dataset may be a

multidimensional array of data elements and it may have zero or more attributes.

Version 2.4.0 Page 343 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Data type

A data type is a classification identifying one of various types of data such as integer, floating-point or string, which
determines the possible values for that type, the operations that can be done on values of that type, the meaning of the
data, and the way values of that type can be stored. In other words, a data type is a classification of data that tells HDFq|

how the user intends to use it.

Endianness

Endianness refers to the ordering of packing bytes into words when stored in memory. In big endian format, whenever
addressing memory or storing words bytewise, the most significant byte — i.e. the byte containing the most significant bit
— is stored first (has the lowest address); subsequently, the following bytes are stored in order of decreasing significance,
with the least significant byte — i.e. the one containing the least significant bit — stored last (having the highest address).
The little endian format reverses this order: the sequence addresses/stores the least significant byte first (lowest address)

and the most significant byte last (highest address).

Group

A (HDF5) group is a container structure which can hold zero or more objects (i.e. datasets, (soft) links, external links and
other groups) and have zero or more attributes (attached to it). Every object must be a member of at least one group,

except the root group, which (as the sole exception) may not belong to any group.

Hierarchical Data Format (HDF)

The Hierarchical Data Format (HDF) is the name of a set of file formats and libraries designed to store large amounts of
numerical data. It is a versatile data model that can represent complex data objects and a wide variety of metadata. HDF is
supported by The HDF Group, whose mission is to ensure continued development of HDF technologies and the continued

accessibility of data currently stored in this file format.

Hyperslab

A hyperslab allows reading or writing a portion (subset) of a dataset (as opposed to its entirety). It can be a selection of

logically contiguous collection of points in a dataspace, or it can be a regular pattern of points or blocks in a dataspace.

Version 2.4.0 Page 344 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Member

A member is an element that composes an HDF5 dataset or attribute of data type HDFQL_ENUMERATION or
HDFQL_COMPOUND. It has a descriptive name that uniquely identifies it amongst other members at the same (nested)

level (i.e. cannot be repeated) and stores a certain value in accordance to its nature (i.e. data type).

Message Passing Interface (MPI)

The Message Passing Interface (MPI) is a standardized means of exchanging messages between multiple computers
running a parallel program across distributed memory. It was designed by a group of researchers from academia and
industry to work on a wide variety of parallel computing architectures. MPI fosters the development of a parallel software

industry, and encourages development of portable and scalable large-scale parallel applications.

Operation

An operation is an action that can be performed in HDFgl such as to create an HDF5 file or read data from a dataset.
Operations can be seen as the HDFgl language itself. In HDFgl, many operations exist and these are categorized into DATA
DEFINITION LANGUAGE (DDL), DATA MANIPULATION LANGUAGE (DML), DATA QUERY LANGUAGE (DQL), DATA
INTROSPECTION LANGUAGE (DIL) and MISCELLANEOUS.

Parallel HDF5 (PHDF5)

The Parallel HDF5 (PHDF5) is a parallel version of HDF5 which is the name of a set of file formats and libraries designed to
store large amounts of numerical data. It leverages MPI to effectively manipulate HDF5 files in parallel across multiple

computers. In HDFqgl, PHDF5 can be explicitily used through the CREATE FILE, USE FILE, INSERT and SELECT operations.

Post-processing

Post-processing options enable transforming results of a query according to the programmer’s needs such as ordering or
truncating. These options are optional and may be used to create a (linear) pipeline to further process result sets returned

by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION LANGUAGE (DIL) operations.

Version 2.4.0 Page 345 of 346

Hierarchical Data Format query language (HDFql) Reference Manual

Redirecting

Redirecting options enable reading data from the cursor in use, a (text, binary or Excel) file or memory (i.e. user-defined
variable) and writing it into an HDF5 dataset or attribute through a CREATE DATASET, CREATE ATTRIBUTE or INSERT
operation. It also enables writing result sets (i.e. data) returned by DATA QUERY LANGUAGE (DQL) and DATA
INTROSPECTION LANGUAGE (DIL) operations into the cursor in use, a (text, binary or Excel) file or memory.

Result set

A result set stores the results (of data type HDFQL_TINYINT, HDFQL_UNSIGNED_TINYINT, HDFQL_SMALLINT,
HDFQL_UNSIGNED_SMALLINT, HDFQL_INT, HDFQL_UNSIGNED_INT, HDFQL_BIGINT, HDFQL_UNSIGNED_BIGINT,
HDFQL_FLOAT, HDFQL_DOUBLE and HDFQL_VARCHAR) returned by DATA QUERY LANGUAGE (DQL) and DATA
INTROSPECTION LANGUAGE (DIL) operations.

Result subset

A result subset stores the results (of data type HDFQL_CHAR, HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT,
HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT, HDFQL_VARINT, HDFQL_UNSIGNED_VARINT,
HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT, HDFQL_VARDOUBLE and HDFQL_OPAQUE)
returned by DATA QUERY LANGUAGE (DQL) and DATA INTROSPECTION LANGUAGE (DIL) operations.

Subcursor

A subcursor is meant to complement (i.e. help) cursors in the task of storing data of type HDFQL_CHAR,
HDFQL_VARTINYINT, HDFQL_UNSIGNED_VARTINYINT, HDFQL_VARSMALLINT, HDFQL_UNSIGNED_VARSMALLINT,
HDFQL_VARINT, HDFQL_UNSIGNED_VARINT, HDFQL_VARBIGINT, HDFQL_UNSIGNED_VARBIGINT, HDFQL_VARFLOAT,
HDFQL_VARDOUBLE and HDFQL_OPAQUE. In practice, when a result set is of one of these data types, only the first
element of the result set is stored in the cursor (as expected), while all elements of the result set are stored in the
subcursor. In other words, each position of the cursor stores the first element of the result set and also points to a
subcursor that in turn stores all the elements of the result set. Similar to cursors, HDFql subcursors offer several ways to

traverse result subsets.

Version 2.4.0 Page 346 of 346

	1. INTRODUCTION
	2. INSTALLATION
	2.1 WINDOWS
	2.2 LINUX
	2.3 MACOS

	3. USAGE
	3.1 C
	3.2 C++
	3.3 JAVA
	3.4 PYTHON
	3.5 C#
	3.6 FORTRAN
	3.7 R
	3.8 COMMAND-LINE INTERFACE

	4. CURSOR
	4.1 DESCRIPTION
	4.2 SUBCURSOR
	4.3 EXAMPLES

	5. APPLICATION PROGRAMMING INTERFACE
	5.1 CONSTANTS
	5.2 FUNCTIONS
	5.2.1 HDFQL_EXECUTE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.2 HDFQL_EXECUTE_GET_STATUS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.3 HDFQL_ERROR_GET_LINE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.4 HDFQL_ERROR_GET_POSITION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.5 HDFQL_ERROR_GET_MESSAGE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.6 HDFQL_CURSOR_INITIALIZE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.7 HDFQL_CURSOR_USE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.8 HDFQL_CURSOR_USE_DEFAULT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.9 HDFQL_CURSOR_CLEAR
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.10 HDFQL_CURSOR_CLONE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.11 HDFQL_CURSOR_GET_DATA_TYPE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.12 HDFQL_CURSOR_GET_COUNT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.13 HDFQL_SUBCURSOR_GET_COUNT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.14 HDFQL_CURSOR_GET_POSITION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.15 HDFQL_SUBCURSOR_GET_POSITION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.16 HDFQL_CURSOR_FIRST
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.17 HDFQL_SUBCURSOR_FIRST
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.18 HDFQL_CURSOR_LAST
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.19 HDFQL_SUBCURSOR_LAST
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.20 HDFQL_CURSOR_NEXT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.21 HDFQL_SUBCURSOR_NEXT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.22 HDFQL_CURSOR_PREVIOUS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.23 HDFQL_SUBCURSOR_PREVIOUS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.24 HDFQL_CURSOR_ABSOLUTE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.25 HDFQL_SUBCURSOR_ABSOLUTE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.26 HDFQL_CURSOR_RELATIVE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.27 HDFQL_SUBCURSOR_RELATIVE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.28 HDFQL_CURSOR_GET_TINYINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.29 HDFQL_SUBCURSOR_GET_TINYINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.30 HDFQL_CURSOR_GET_UNSIGNED_TINYINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.31 HDFQL_SUBCURSOR_GET_UNSIGNED_TINYINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.32 HDFQL_CURSOR_GET_SMALLINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.33 HDFQL_SUBCURSOR_GET_SMALLINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.34 HDFQL_CURSOR_GET_UNSIGNED_SMALLINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.35 HDFQL_SUBCURSOR_GET_UNSIGNED_SMALLINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.36 HDFQL_CURSOR_GET_INT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.37 HDFQL_SUBCURSOR_GET_INT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.38 HDFQL_CURSOR_GET_UNSIGNED_INT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.39 HDFQL_SUBCURSOR_GET_UNSIGNED_INT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.40 HDFQL_CURSOR_GET_BIGINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.41 HDFQL_SUBCURSOR_GET_BIGINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.42 HDFQL_CURSOR_GET_UNSIGNED_BIGINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.43 HDFQL_SUBCURSOR_GET_UNSIGNED_BIGINT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.44 HDFQL_CURSOR_GET_FLOAT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.45 HDFQL_SUBCURSOR_GET_FLOAT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.46 HDFQL_CURSOR_GET_DOUBLE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.47 HDFQL_SUBCURSOR_GET_DOUBLE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.48 HDFQL_CURSOR_GET_CHAR
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.49 HDFQL_VARIABLE_REGISTER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.50 HDFQL_VARIABLE_TRANSIENT_REGISTER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.51 HDFQL_VARIABLE_UNREGISTER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.52 HDFQL_VARIABLE_UNREGISTER_ALL
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.53 HDFQL_VARIABLE_GET_NUMBER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.54 HDFQL_VARIABLE_GET_DATA_TYPE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.55 HDFQL_VARIABLE_GET_COUNT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.56 HDFQL_VARIABLE_GET_SIZE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.57 HDFQL_VARIABLE_GET_DIMENSION_COUNT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.58 HDFQL_VARIABLE_GET_DIMENSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.59 HDFQL_MPI_GET_SIZE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	5.2.60 HDFQL_MPI_GET_RANK
	Syntax
	Description
	Parameters(s)
	Return
	Example(s)

	6. LANGUAGE
	6.1 DATA TYPES
	6.1.1 TINYINT
	6.1.2 UNSIGNED TINYINT
	6.1.3 SMALLINT
	6.1.4 UNSIGNED SMALLINT
	6.1.5 INT
	6.1.6 UNSIGNED INT
	6.1.7 BIGINT
	6.1.8 UNSIGNED BIGINT
	6.1.9 FLOAT
	6.1.10 DOUBLE
	6.1.11 CHAR
	6.1.12 VARTINYINT
	6.1.13 UNSIGNED VARTINYINT
	6.1.14 VARSMALLINT
	6.1.15 UNSIGNED VARSMALLINT
	6.1.16 VARINT
	6.1.17 UNSIGNED VARINT
	6.1.18 VARBIGINT
	6.1.19 UNSIGNED VARBIGINT
	6.1.20 VARFLOAT
	6.1.21 VARDOUBLE
	6.1.22 VARCHAR
	6.1.23 OPAQUE
	6.1.24 ENUMERATION
	6.1.25 COMPOUND

	6.2 POST-PROCESSING
	6.2.1 ORDER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.2.2 TOP
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.2.3 BOTTOM
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.2.4 FROM TO
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.2.5 STEP
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.3 REDIRECTING
	6.3.1 FROM
	Syntax
	Description
	Parameter(s)
	Example(s)

	6.3.2 INTO
	Syntax
	Description
	Parameter(s)
	Example(s)

	6.4 DATA DEFINITION LANGUAGE (DDL)
	6.4.1 CREATE DIRECTORY
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.2 CREATE FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.3 CREATE GROUP
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.4 CREATE DATASET
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.5 CREATE ATTRIBUTE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.6 CREATE [SOFT | HARD] LINK
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.7 CREATE EXTERNAL LINK
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.8 ALTER DIMENSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.9 RENAME DIRECTORY
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.10 RENAME FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.11 RENAME [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK]
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.12 COPY FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.13 COPY [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK]
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.14 DROP DIRECTORY
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.15 DROP FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.4.16 DROP [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK]
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.5 DATA MANIPULATION LANGUAGE (DML)
	6.5.1 INSERT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.6 DATA QUERY LANGUAGE (DQL)
	6.6.1 SELECT
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7 DATA INTROSPECTION LANGUAGE (DIL)
	6.7.1 SHOW FILE VALIDITY
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.2 SHOW USE DIRECTORY
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.3 SHOW USE FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.4 SHOW ALL USE FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.5 SHOW USE GROUP
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.6 SHOW [GROUP | DATASET | ATTRIBUTE | [SOFT] LINK | EXTERNAL LINK]
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.7 SHOW TYPE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.8 SHOW DATA TYPE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.9 SHOW MEMBER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.10 SHOW MASK
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.11 SHOW ENDIANNESS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.12 SHOW CHARSET
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.13 SHOW STORAGE TYPE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.14 SHOW STORAGE ALLOCATION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.15 SHOW STORAGE DIMENSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.16 SHOW DIMENSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.17 SHOW ORDER
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.18 SHOW TAG
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.19 SHOW OFFSET
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.20 SHOW FILL TYPE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.21 SHOW FILL VALUE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.22 SHOW FILE SIZE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.23 SHOW USERBLOCK SIZE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.24 SHOW USERBLOCK
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.25 SHOW [DATASET | ATTRIBUTE] SIZE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.26 SHOW HDFQL VERSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.27 SHOW HDF5 VERSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.28 SHOW MPI VERSION
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.29 SHOW DIRECTORY
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.30 SHOW FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.31 SHOW EXECUTE STATUS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.32 SHOW LIBRARY BOUNDS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.33 SHOW CACHE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.34 SHOW ATOMIC
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.35 SHOW EXTERNAL LINK PREFIX
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.36 SHOW FLUSH
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.37 SHOW THREAD
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.38 SHOW PLUGIN PATH
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.7.39 SHOW DEBUG
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8 MISCELLANEOUS
	6.8.1 USE DIRECTORY
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.2 USE FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.3 USE GROUP
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.4 FLUSH
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.5 CLOSE FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.6 CLOSE ALL FILE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.7 CLOSE GROUP
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.8 SET LIBRARY BOUNDS
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.9 SET CACHE
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.10 SET ATOMIC
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.11 SET EXTERNAL LINK PREFIX
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.12 SET FLUSH
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.13 SET THREAD
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.14 SET PLUGIN PATH
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	6.8.15 SET DEBUG
	Syntax
	Description
	Parameter(s)
	Return
	Example(s)

	GLOSSARY
	Application Programming Interface (API)
	Attribute
	Cursor .
	Dataset
	Data type
	Endianness
	Group .
	Hierarchical Data Format (HDF)
	Hyperslab
	Member
	Message Passing Interface (MPI)
	Operation
	Parallel HDF5 (PHDF5)
	Post-processing
	Redirecting
	Result set
	Result subset
	Subcursor

